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Abstract

The bounds for the eigenvalues of the stiffness matrices in the finite element discretiza-
tion corresponding to Lu := —u" with zero boundary conditions by quadratic hierarchical
basis are shown explicitly. The condition number of the resulting system behaves like O(%)
where h is the mesh size. We also analyze a main diagonal preconditioner of the stiffness
matrix which reduces the condition number of the preconditioned system to O(1).
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1. Introduction

The main object in this paper is to investigate the explicit bounds of the eigenvalues for the
stiffness matrix B; arisen from the finite element method using piecewise quadratic hierarchical
multilevel basis instead of the usual piecewise quadratic nodal basis for the one dimensional
elliptic operator Lu := —u' with zero boundary conditions defined on [0, 1]. Hence the condition
number of B; can be shown as about % One may use an interpolation operator to obtain the
asymptotic behavior of condition numbers like O(%), but such technique does not yield the
explicit bound for the eigenvalues (see [5]).

For piecewise linear hierarchical multilevel elements, the condition numbers are analyzed in
[4, 6, 7]. One can easily see that the stiffness matrix for the unidimensional case using piecewise
linear hierarchical basis becomes a diagonal matrix. This phenomenon is quite different from
the case of piecewise quadratic hierarchical multilevel elements mainly because of their non-
orthogonalities in the H! sense.

Define the bilinear form corresponding to Lu = —u" with zero boundary conditions as

b(u,v) = /01 u'v'dz. (1.1)

16(v/2+1)
3(vV2-1) h
Euclidean norm of the hierarchical coefficient vector of © when u is represented by the piecewise

quadratic hierarchical basis where h denotes the uniform mesh size of the final level space. In
order to get the uniform lower bound % of b(u,u), we will use a lower bound for eigenvalues of
certain symmetric matrices which will be given in Appendix. There are lots of literature on the

Following the ideas [6], we will give the upper bound of b(u,u) in terms of the
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multilevel or two level hierarchical bases. One may refer to, for example, [1, 2, 3, 4, 5, 6, 7] for
understanding of them.

The rest of paper is as follows. In section 2, we provide some of definitions and preliminaries
on the piecewise quadratic hierarchical basis. In section 3, we analyze the explicit bounds of
the stiffness matrix B; using the ideas given in [6] and the results given in Appendix. We
analyze a preconditioner which is the main diagonal of the stiffness matrix and give a numerical
experiment in section 4. Appendix which plays an important role to investigate the result in
section 3 will be provided in the last of this paper.

2. Preliminaries

For I = [0,1], let us denote m a uniform partition of I, that is to say, any elements of
m has same length such that the union of these intervals is I and such that the intersection
of two subintervals of 7 either consists of a common knot of both intervals or is empty. Let
mo = I be a coarse initial partition, beginning with this partition we construct a nested family
o, 1,2, -+ of partitions of I where 71 is obtained from 7 by subdividing each interval of
7, into two subintervals having the same size. Note that the partition 7 of level k£ has the
mesh size hy, := (1/2)*.

Denote by || - ||o,p the usual L?(D)-norm, ||-||1,p the usual Sobolev H!(D)-norm and |- |1 p
the Sobolev H'(D)-seminorm. Throughout this paper, we will use k and ¢ for levels, j for last
level, p and ¢ denote indices for nodes.

Let NVi(k = 0,1,---,7) be the set consisting of the nodes of the intervals of mj, their
mid-points and end-points of I and let S; be the subspace of the Sobolev space Hg(I) which
consists of all continuous functions on I that is quadratic on the intervals of 7 vanishing at
two boundary points 0 and 1. We call the function in Sy, finite element functions of level
k. Obviously we have S C Sgy1 from the fact that My C Npi1, and a function u € Sy is
determined by its values at the nodes x € Nj.

Let Ji, be the interpolation operator from S; to Si such that

Jru € Sy (Jru)(z) = u(x), =€ N;.

For k£ < j, a function u € S, can be reproduced by the interpolation operator J;, so that any
function v € S; has the representation

J
u = Jou + Z(Jku - Jk_lu), (2.1)
k=1

which is a decomposition of u into fast oscillating functions corresponding to the different
refinement levels. Note that Jou is a function of the finite element space corresponding to the
initial partition and Jyu — Jiy_1u € S vanishes at all nodal points of level k& — 1.

Let Vi(k = 1,2,---,7) be the subspace of Sy consisting of all finite element functions
vanishing at the nodes of level k£ — 1. Let us denote the nodes in N \ Ni—y as {zF|p =
1,2,--- ,di} and let Vo := Sp with N := {29}. Then we can easily check that the dimension
of Vi is dy := 2%, Vy, is the range of Jj, — Jx_1, and (2.1) means that S; is the direct sum of
Vo, Vi, Va,---,Vj—1 and V;. The hierarchical basis of Sy, k > 1, consists of the old hierarchical
basis functions of level £ — 1 and the functions forming a nodal basis of V. For a function
u € §; with hierarchical basis of this space, we can represent v as

J dr,
u= Zuk €S; with wf = Zuﬁ(t)'z € Vs (2.2)
k=0 p=1

where the quadratic hierarchical basis {gb’; tk=0,1,---,4, p:=pk) =1,2,--- ,di, } of S is
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Figure 1: The stiffness matrix B; when j =4

given by
—f—i(w—(p—l)hk)(w—l?hk), if (p— 1)hy <z < phy,
0 otherwise.

(o) = {

Note that gb’; is the nodal basis function corresponding to the nodal point mf) of V.
With the multilevel splitting (2.1) of the finite element space S;, we associate a mesh
dependent seminorm defined by
J o dp
> =D [(Jru— Jeau) (@), weES;.
k=1p=1
This seminorm has a very simple representation when the function wu is represented with respect
to the hierarchical basis of S;. It is the Euclidean length of the vector of its coeflicients with
the exception of that corresponding to the initial level.
The above observations together with some results with respect to the space Vj are sum-
marized in the following proposition.

Proposition 2.1. We have the followings:
(a) Forv €V, with £ >k, Jv =0.
(b) For1<k<yj, {¢§}Zk:1 is the orthogonal basis of the subspace Vi, of Sobolev space H (I).
(¢c) For 0 <k < /(< j, we have

: : 16 161\ &
b(¢z7¢2):|¢2|%712% = (?) 2k’ vp:1727 72k7

l—k
1 k { 16) 2k—(
- = (=) 9
b(¢k,¢l) — <2\/§> |¢p|17[ |¢q|1,[ g?)
v if 1+27%(p—1) < g < 2¢7Fp,

0 otherwise.

(d) For u € S;, u has its hierarchical basis representation such that
J o di

u=3 > wd €S

k=0 p=1
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and then the seminorm |u| is the Euclidean length of the vector of its coefficient except of

the initial level: '
j
u> =" Z |up|®

k=1 p=1

The topological structure of the stiffness matrix B; associated with hierarchical piecewise
quadratic basis is shown in FIGURE 1 for the finest level j = 4, which comes from (c) of
Proposition 2.1.

3. Bounds of b(u, u)

In this section, using the ideas in [6] and a lower bound of the eigenvalues for a symmetric
matrix which will be given in Appendix, we will give the explicit lower and upper bounds of
b(u,u) in terms of the Euclidean norm |ul|? + |u|? of the hierarchical coefficient vector of w.
Indeed the following theorem follows from Theorem 3.2 and 3.3 which will be proved in the rest
of this section.

Theorem 3.1 For every

i 2*
_ k ik ]
u=3 > ud €S,
k=0 p=1

we have
¢ ([ul? + [ul?) <blu,u) < C hyt (Jul]? + |ul?)

where ¢ = g, C= 16((\\//—_+11)) and hj = 1/27 is the mesh size of the S;. That is, for any nonzero

vector U = (uf,uf,- - ,uy - ,uf,--- ,ufij)t, we have
cU'U < U'B;U < Ch;' U,
so that the condition number of B; is about %

3.1 Upper bound
In this subsection, we discuss an explicit upper bound for b(u, u).
Lemma 3.1. For all u € S;, we have

16
|U|2

16 - 2
— |u|” < Jru — Jp_1u
3h1||_2|k r—1ulir <
k=1
Proof. Let u* := Jyu — Ji_1u for each k < j and let Z};*l be the p-th interval of 7p_1
which is subdivided into two intervals Z§, _,,Z3 of m;. Then u* € V. Hence u* is piecewise

quadratic on these two intervals and vanishes at the nodes of ZNA},_;. Then uk| k-1 is written
P

as

uk|I§_1 = uk(mgp—l) ¢]2€p—1 + uk(mé:p) ¢]2€p

By (c) of Proposition 2.1, we have

16
utf; 1,7kt = 3hn ——(Ju” (x2p 1)|2+|Uk(x§p)|2)
so that
o 16 &
|Jku— Jk 1’LL|1I = Z |U II’“ = %Zh"k(mk) 2
p=1 p=1

By summing over k from 1 to j, we have the conclusion.
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Lemma 3.2. For all u € V, and all v € Vy, we have

V2

Proof. Without loss of generality, we assume that £ > k. Since there are
of level ¢ in ZF € m;, we can write v € V; as the form

LN e
b(u,v) < (—) ol 1ol

26—k _gubintervals

QZ—kp

v= Z v(a:é)gzﬁg on IZF.
g=142¢—*(p—1)
On the other hand, since the interval Z* of 7, contains only one nodal point ) in Z¥ for V¥,
u =u(xk) ¢F on ZF. Then, using (c) of Proposition 2.1, we have

QZ—kp

li 'd — k l k! 14 'd
/I;UU T q:H;(pl)u(wp)v(wq) /Ig(fﬁp) (¢q) L

2£—k

1 L—k P
JAPYA
<(35) lwhar X o

g=1+2¢%(p—1)

Using Cauchy-Schwarz inequality and the orthogonality of ¢)’é yields

1 —k
uv' de < <—> wly 7x|v .
/I 5 <(75)  Iwhalvhy

By summing these inequalities over p = 1,2, -+ ,d; and then applying the Cauchy-Schwarz
inequality to the right hand side of their sum, we have the conclusion.
Lemma 3.3 For all u € S; we have

\/§+1< 16
b(u,u) < Jou|? +—u2>.
() < T (ol gl

Proof. Let u° := Jou and u* := Jpu — Jp_qu (k = 1,2,---,j) so that u = Ei:o u*. By
Lemma 3.2, we have that

J [k—£|

1 . ~ ~

b(u,u) = Julf < (ﬁ) luF |y 1 Jublyr = UYAU,
k,£=0

where the matrix A = (ag¢) and the vector U = (ii*) are defined as
1\ ,
Are = <E> and @* = |uk|17[.

Then, since A is symmetric and the spectral radius p(A) of A is bounded by the largest row
sum of A, we have

b, u) < (40T < Y2ELS e (3.1)

which completes the proof.
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Let u = i:o EZ’;l uﬁqﬁ’; € §; be the representation with respect to the hierarchical basis
of §;. Then, by Proposition 1 (d), we have
J o dk
ul =N P = lupP o g, [P ] P P
k=1 i=1
and

16
doul g = 831 1 = St

Hence combining these facts with Lemma 3.3 yields the upper bound of b(u, ), which is stated
as a theorem.
Theorem 3.2. For every

j o 2*
_ k 1k .
u=3 ) usdh€S;,
k=0 p=1
we have

j 2k
b(u,u) < C b7 (Juf)” + [ul?) = C h7" DD ukf?

k=0 p=1

where C' := %ﬁi; and hj = 1/27 is the mesh size of the S;.

3.2 Lower bound

Here we reformulate the result given in Theorem A.2 in Appendix which plays an important
role to get an explicit lower bound of b(u,u).

Lemma 3.4. For every sequence {aj};_, C R with an integer j > 1, we also have

J J J J
1
k 2 k k 2
13704 |ak| + 2 E E 4®ay ap > 5 ké 02 |ak| . (32)

k=0 {=Fk+1

Proof. Let m = j + 1. By taking x =4 and o = 2 in Theorem A.2 (2), we have
1 N
anMme Z <§> anDme; Xm = (a07a17 e 7aj)t> (33)

where the symmetric matrix M, is given by
Mpy(p,q) = 47" with £ = min{p,¢}, 1 <p, ¢ <m

and the diagonal matrix Dy, is given by Dy, (p,p) = 2P 1. Now, expanding the inequality (3.3)
in terms of the sequence {ay}}_, yields the conclusion (3.2).
Let us turn to a lower bound of b(u,u). First, recall that if u € S;, then by (2.2)

b(u,u) = 2]: b(uk, ub) +2 z]: z]: b(ub,uf). (3.4)
k=0

k=0 {=k+1
We will reorder the sums in (3.4) to a particular form to be easily handled. Using (2.2), the
orthogonality and Proposition 2.1, the first term of the right hand side in (3.4) can be written
as

J J 2k j 2"
Yobt )y =[N upubb(of, 0f) | =D [uplPb(ey, 65)
k=0 k=0 \p,qg=1 k=0 p=1

(3.5)

16 g~ &
=35>0 2l

k=0 p=1
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For 1<k <j,1<q<2/, we define

0k =k = - |t
gy :=u, where g :=qr(k,q)= {2] kJ +1

where ¢, is the largest integer less than or equal to Then we have

2:k

dp =up for 1+ (g —1)277% < ¢ < 277",
that is to say,
uk =k =ak =-..=ak (3.6)
P 1427~ (p—1) 2427~k (p—1) 2i=kp? :

hence

Nk 2T Nk 2T
u'; = <§> Z ﬁ’; and |u£|2 = <§> Z |U 2. (3.7)
q=142i—k(p—1) g=1+27—%(p—1)

By applying (3.7) to (3.5) we have

j ok 2J— k 27
St =2 ()T Y a2 (1) S e
k=0 k=0 p=1 g=1+2i—F(p—1) k=0 p=1

or

i}bu ub) = 16( ) Z<Z4k|uk|> (3.8)

On the other hand, b(u*,u’) in the second term of the right hand side in (3.4) is in fact
PLE
b(ub, ut) = " ubul b(ek, ¢h). (3.9)
p=1g¢g=1
Note that if we let 7; = {If 1 be the partition of last level j, then we have the followings:
i) For fixed k and p (0 < k < £ < j, 1 < p < 2F), there exist only 2% basis functions

l—k
{(j)’é}z:lfﬂ,k(pil of Vy whose supports are contained in the support of gb’;.

i) Since supp(¢f) C supp(¢f), by Proposition 2.1 (c), we have

o 16 _
behoh) = () 20 Pora=142 Ko, 2

Using (3.9) and the above facts, we can rewrite

zl—kp

b(u,u’) = (16> 2%k ZZ > ul |, (3.10)

g=1+2¢"F(p—1)
and then, by using (3.7) and (3.6) we have

2j_kp

ES BSOS D S €

q=1+27"F(p-1)

b(uk,u) =

A

2i—ky

_ ?6 ( ) i (4*akal) (3.11)

p=1lg=1427"*(p—1)

() S
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Hence, by substituting (3.8) and (3.11) into (3.4), we have

b(u,u):§<%>12<z4’” A’”2+2Z Z 4’»@@). (3.12)

g=1 = k=0 (=k+1
Theorem 3.3. For every
i 2k
_ k ik _
= ZZ“p¢p € Sj,
k=0 p=1

we have

oo

bu,u) > S (|ludl” + Juf*) = ZZI ol

k 0 p=1
Proof. ;From (3.2) and (3.12), we have
81j2JjLL28 I ij k|2
)25 (5) L2t =5 (5) X (2 S
g=1 k=0 k=0 g=1

Using (3.7) we have
27 2k
S kP =2 2
g=1 p=1

Combining these arguments yields that

b(u ZDu S + fuf?).

kOpl

4. Preconditioning

Let us consider the linear system corresponding to the problem Lu = f in (0,1) with
homogeneous Dirichlet boundary conditions based on the finite element space S; using piecewise
quadratic hierarchical basis such that

B;U=F (4.1)
where
Bj(p,q) = b(¢p, ¢4),  F(p) = (f,0p)
and
U=}, ub,--- ’ugh’... ,u{',... ’u{ij)t

with the basis {¢, ?)J:*l reordered as

¢1>¢2) 7"'7¢§27"'>¢{)"'7¢%j
In this section we analyze a precondltloner P; which is the diagonal matrix of B;. In deed, P;
is the Jacobi preconditioner. The following theorem shows that the iteration numbers to solve
the linear system (4.1) by Jacobi method do not depend on the finest level number.
Theorem 4.1. Let P; be the diagonal matriz such that

P](pap):B](pvp) fOTp:].,Q,"',N
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where N := 2/%1 — 1 is the dimension of S;. Then we have

1 V241 )
(Z) U'P;U < U'B;U < (\@_ 1) U'P;U  forVj > 1. (4.2)

That is, if X is an eigenvalue of ijlBj, then

1oy« V2+1
4" -1

Proof. Using (b) of Proposition 2.1 and the fact that the main diagonal elements consist
of b(¢k, k) for k=0,1,---,jand p=1,2,--- ,dy, we get

J o odi J dr.
U'PU =Y bubek ufgh) = > bk, ub)  with u* =) ufgh. (4.3)
k=0 p=1

k=0 p=1
JFrom (3.12) and (3.8) we have

UfB,-U—<>UtPU_b(uu <>Zbu uk
B S (3 ey 3 ) 20

k=0 {=k+1

where the last inequality comes from Theorem A.2 (1) with = 4 and a = 2. This completes
the first inequality of (4.2). Now, from (3.1) in Lemma 3.3 we have

V21 < V2+1
UtBjUZb(u,U)Zluﬁ,zS(ﬁ ol = a1 U'p;U.

k=0

This implies the second inequality of (4.2). Thus the proof is completed.

For numerical evidence, we compute the eigenvalues and condition numbers of B; and the
preconditioned system Pj_lBj. The following table reveals that numerical results are coincide
with our theory developed.

Table 1. Eigenvalues and condition numbers of B; and ijlB‘j

j N B; P 'B;
level | Dim. Amin Amaz Cond. Amin Amaz Cond.
2 3 | 3.3812 12.6188 3.7321 | 0.5000 | 1.5000 3.1861
3 7 | 3.2747 26.0587 7.9577 | 0.4069 | 1.8431 4.9529
4 15 | 3.2728 52.3969 16.0098 | 0.3750 | 2.0856 6.2432
5 31 | 3.2728 104.8760 32.0448 | 0.3602 | 2.2619 7.2131
6 63 | 3.2728 209.7743 64.0964 | 0.3522 | 2.3934 7.9642
7 127 | 3.2728 419.5544 128.1945 | 0.3473 | 2.4937 8.5593
8 255 | 3.2728 839.1102 256.3894 | 0.3441 | 2.5716 9.0395
9 511 | 3.2728 | 1678.2209 512.7789 | 0.3419 | 2.6333 9.4325
10 | 1023 | 3.2728 | 3356.4418 | 1025.5579 | 0.3403 | 2.6828 9.7583
11 2047 | 3.2728 | 6712.8836 | 2051.1158 | 0.3391 | 2.7231 | 10.0311

A A Lower bound of eigenvalues for certain symmetric matrices

Consider positive symmetric matrices My, := M,,[z] of order m > 1 defined by
M, (i,j) =2t (x> 1) with £ = min{i,j} for 1 <i,j < m,
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that is,
1 1 1 1 1
1 2 x «x T
1 = 22 22 x?
Mn=11 2 22 23 x3
1 = 22 28 ™l

The matrices M, play an important role to prove the lower bound of b(u,u) in section 3 and
it has somewhat interesting algebraic structure itself which is defined hierarchically. In this
appendix, we give a positive lower bound for the eigenvalues of M,,, which is independent of
the order m of M,, when z > 1. The uniform positive lower bound yields such matrices to be
positive definite. In the rest of section we will prove that any eigenvalue A,, of M,, satisfies

1 _
Am > max{(a )(m a)} forl<ax<2
1<a<z [0} T

-2
)\mzx for x > 2.
z—1

and

Let us begin with a simple lemma, which is evidently clear.
Lemma A.1. Let us define a symmetric matriz Qu, ¢ := Qm,¢[c] of order m as
1 ifi=j=¢,
o Joa ifli=ti<j)or(j=2L0i>7]),
Cmelbd) =9 02 r<i<j)ort<j<i)
0  otherwise,

for1 <l <m-—1. Then Q. is nonnegative definite for all positive integers m and ¢ satisfying
1<?¢<m—1, that is, for any real number o and any vector x,, € R™

xt Qm,t Xm = (ag + atry1 + @@z + - + ozam)2 > 0.

Lemma A.2. Define the sequence of matrices S, := Sp[z,a] as

Sp = M, — (%)Qn,l - (%)Qnﬂ - ( )Qn,n—l forn >1

where Sy := My = [1] and sj, denote the k" diagonal element of Sy, i.e., s = Sk(k, k).
Then, the matrices Sy, are diagonal matrices and their diagonal elements are given by

Sp—1
(0]

(a—1)s; .
S,(ivi) = { —— ifi#n (1.9
Sn ifit=n
where s; = 21 — 2772 — (a — 1)s;_y fori=2,3,...,n with s; := 1.

Proof. We will prove this lemma using the mathematical induction. First, for the case of
k = 2 we can easily show from s; = 1 that Sy is diagonal matrix and

Sa(1,1) = (O‘ — 1) 51,

(07

$5(2,2) = My(2,2) — %QM(Q, 2) =z —2°— (a—1)s;.
Now, in order to show (4.4), we suppose that (4.4) holds for k = n + 1. Set

& s S Spn—
Spy1 = Mpq1 — (El)Qn—i-l,l - (ﬁ)Qn-H,Q ——( !

)Qn+1,n—1-
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Using the fact that, for any integer m > 1
M. (k,£) = M, (k, k) for £ >k,
Qu(k,0) = Qui(k, k) for >k,
Qmi(l,7) =Qmrk+1,k+1) fori,j>k+1,

we have

where 5,1 = 2™ — 2""! + s,,. Since

where s,41 is given by
Spil = 8np1 — Sy =" — 2"t 4 5, — asy.

Hence, by the mathematical induction, (4.4) holds for any integer n > 1.

Theorem A.1l. Assume that the hypotheses of Lemma 2 hold. For a given real number
x > 1, if we choose a > 1 satisfying x — a > 0, then for any positive integer m, My, := My,[z]
are positive definite matrices such that
-1
e

(8 ~
xanmxm > ( ) xfnSmxm >0 for any monzero vector x,, € R™

where Sy, := S'm[m,a] is the diagonal matriz such that S’m(k, k) = s is given by

spi=aft — 2k (o= 1)sp 1 fork=1,2,---,m, with s; := 1.

Proof. Since sy = 1 and x — a > 0, we have 0 < (z — a) < so < x. If we suppose that
(r —a)z™ 2 < s, < 2" !, then we have clearly s,11 = 2" — 2" ! — (a — 1)s,, < 2" and
Spy1 > 2" — 2" — (@ =Dzt > (z — )z > 0.
Therefore, by mathematical induction, s > 0 for any positive integer k. Now, using the facts

that (“T’l) s > 0 and each @, is nonnegative definite matrix, we obtain

1 .
xanmxm > xfnSmxm > (a > xfnSmxm.
@
This completes the proof of theorem.
Theorem A.2. We have the followings.
1) For a given real number x > 1, if we choose a > 1 satisfying v — « > 0, then for any
positive integer m and for any vector x,, € R™ we have

-1 _
xanmxm > <a > (a: a) xanmxm
«a x

where Dy, := Dy,[z] is the main diagonal matriz of My, i.e., Dp(k, k) = z*~1. If X is any
eigenvalue of M,,, then we have

(55 (59
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2) For x > 2, if we choose a > 1 satisfying x — a > 1, then for any positive integer m and
for any vector x,, € R"™ we have

a—1 A
xanmxm > < ) xanmxm

(07

where Dy, := D[z, 0] is the diagonal matriz such that Dy, (k, k) = (x — a)*='. Hence, if X is
any eigenvalue of M,,, then by choosing a = x — 1 we have

T —2
> .
22 (559)

Proof. Using the argument in the proof of Theorem 1, for the case of xz > 1, the following

inequality
: rT—a
s> (x—a)gh? = ( ) okt

a
yields the conclusion (1) and, for the case of z > 2, using the facts that © > z — a and
sp > (. —a)z® 2 > (z — o)1,

we get the conclusion (2). The results connected with eigenvalues are easily checked by observing
that the diagonal elements of both D,, and D,, are all greater than or equal to 1. Thus, the
proof is completed.
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