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Abstract

This paper considers the asymptotic stability analysis of both exact and numerical
solutions of the following neutral delay differential equation with pantograph delay.⎧⎨

⎩
x′(t) + Bx(t) + Cx′(qt) + Dx(qt) = 0, t > 0,

x(0) = x0,

where B, C, D ∈ Cd×d, q ∈ (0, 1), and B is regular. After transforming the above equation
to non-automatic neutral equation with constant delay, we determine sufficient conditions
for the asymptotic stability of the zero solution. Furthermore, we focus on the asymptotic
stability behavior of Runge-Kutta method with variable stepsize. It is proved that a L-
stable Runge-Kutta method can preserve the above-mentioned stability properties.

Mathematics subject classification: 65L02, 65L05, 65L20.
Key words: Neutral delay differential equations, Pantograph delay, Asymptotic stability,
Runge-Kutta methods, L-stable.

1. Introduction

Delay differential equations of neutral type provide a mathematical instrument to applied
science[1]. Especially, it exerts important effect on investigating several electromagnetic prob-
lems. The general functional differential equation is given by

x′(t) = f (t, x(t), x′(α(t)), x(α(t))) .

A classical case α(t) = t − τ of such system has been recently considered by a lot of authors
(for example, Kuang et al.[2] and Hu and Mitsui [3]). What’s more, another interesting case
which is far different from the previous, is the pantograph equation⎧⎨

⎩
x′(t) = f(t, x(t), x′(qt), x(qt)), t > 0,

x(0) = x0.
(1.1)

Where f is a given function, 0 < q < 1, and x(t) is unknown for t > 0. There are many
applications for (1.1) both in electrodynamics and in the collection of current by the pantograph
of an electric locomotive [4, 5]. We are interested in the investigation of the qualitative properties
of equation (1.1). To this purpose we restrict ourselves to the special form of equation (1.1)
given by ⎧⎨

⎩
x′(t) + Bx(t) + Cx′(qt) + Dx(qt) = 0, t > 0,

x(0) = x0,
(1.2)
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where B, C, D are constant d × d complex matrices, 0 < q < 1, and B is regular.
The asymptotic behaviour of the pantograph equation (1.2) has been analyzed, often in a

simplified form,by a number of authors.Concerning pantograph equation⎧⎨
⎩

x′(t) = ax(t) + bx(qt) + cx′(qt), t > 0,

x(0) = x0,
(1.3)

where a, b, c ∈ C and 0 < q < 1, an analytical study occurred in the works of Kato and McLeod
[6], Carr and Dyson [7], Iserles and Terjéki [8] and Iserles [9], in which Iserles and Terjéki [8]
applied a transformation to examine the behavior of the exact solutions, and Iserles [9] applied
Dirichlet series to equation (1.3) for considering whether the exact solution displayed inside and
on its stability boundary. In the present paper, we investigate the stability of exact solution of
equation(1.2) by transforming equation(1.2) to a non-automatic neutral equation with constant
delay and prove the contractivity and asymptotic stability by norm assessing. Related ideas
of reformulating the problem for studying the asymptotic stability of the solutions have been
considered in some recent papers such as in [8]. Actually Bellen et al.[10] has been used norm
assessing to consider the analytical stability of equation⎧⎨

⎩
x′(t) = Lx(t) + M(t)x(t − τ(t)) + N(t)x′(t − τ(t)), t > t0,

x(t) = g(t), t ≤ t0,

but we consider that the coefficient of x(t) is matrix-value function like M(t) and N(t).
On the other hand, the investigations of numerical stability for (1.3) can be found in many

papers, such as Buhmann, Iserles and Nørsett [11], Buhmann and Iserles [12, 13] and Liu [14],
in which [12] considered a special case when q is a reciprocal of an integer and [14] gave an
extension of this analysis to θ-methods by transforming the equation under consideration into
a neutral equation with constant time lags. Moreover, Koto [15] dealt with stability of Runge-
Kutta methods applied to the equation which is obtained from the equation (1.2) by the same
change of the independent variable with [14]

y(t) = x(et).

In 1997, Bellen[16] applied the θ-methods with variable stepsize to (1.3). It is proved that
θ-methods are asymptotically stable iff θ > 1/2, which provided the subsequent research with
a new idea. In the present paper, the Runge-Kutta methods with variable stepsize is applied
to equation(1.2) and asymptotic stability of numerical solution is probed by investigating the
Schur polynomial of perturbed equation.

This paper is organized as follows. In Section 2, the sufficient conditions both for the
contractivity and for asymptotic stability of the exact solutions are given. In Section 3, we apply
Runge-Kutta methods with variable stepsize to equation(1.2) and obtain numerical solutions.
In Section 4, the conclusion of numerically asymptotic stability is drawn.

2. Sufficient Conditions of Contractivity and Asymptotic Stability

2.1. Transformation of Equation Form

To eliminate dependence on the derivative of the solution, we transform (1.2) to a neutral
equation with constant delay by conversion

y(t) = x(et),
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then y(t) satisfies the following initial value problem

y′(t) + Bety(t) + Cq−1y′(t + log q) + Dety(t + log q) = 0, t ≥ 0,

y(t) = x(et), log q ≤ t ≤ 0,
(2.1)

where y(t), log q ≤ t ≤ 0, can be obtained numerically by using Runge-Kutta methods to (1.2).
Let y(t) = g(t), log q ≤ t ≤ 0, τ = − log q > 0, then (2.1) are written

y′(t) + Bety(t) + Cq−1y′(t − τ) + Dety(t − τ) = 0, t ≥ 0,

y(t) = g(t), −τ ≤ t ≤ 0,
(2.2)

where B,C,D ∈ Cd×d, B is regular, and g(t) is a C1-continuous complex-valued function.
Insert a series of points

0 = ξ0 < ξ1 < ξ2 < · · · < ξj < ξj+1 < · · ·
in interval [0, +∞), where ξj+1 being the unique solution of α(ξ) = ξ − τ = ξj . The following
notation is useful to our aims. Let I0 := [−τ(t0), ξ0] and Ij := [ξj−1, ξj ], for j = 1, 2, 3, · · · . It
will be shown that our investigation of the behavior of the solutions will be developed across
the intervals {Ij}, by relating the solution in Ij with the one in Ij−1.

We propose a reformulation of the considered problem (2.2), which is fundamental for the
stability analysis in this paper. First, we rewrite the system (2.2) as follows⎧⎪⎪⎨

⎪⎪⎩
y′(t) = −Bety(t) + (−Det + Cq−1Bet)y(t − τ)

−Cq−1(y′(t − τ) + Bety(t − τ)) t ≥ 0,

y(t) = g(t), −τ ≤ t ≤ 0

(2.3)

Let
φ(t) = y′(t) + Bety(t),

then the previous system (2.3) is equivalent to⎧⎨
⎩

y′(t) = −Bety(t) + φ(t), t ≥ 0,

y(0) = g(0),
(2.4)

where

φ(t) =

⎧⎨
⎩

−Detg(t − τ) − Cq−1g′(t − τ), 0 ≤ t ≤ ξ1,

(−Det + Cq−1Bet)y(t − τ) − Cq−1φ(t − τ), t ≥ ξ1.
(2.5)

For convenience sometimes we let g(0) = y0.

2.2. Stability Analysis of Exact Solution

In the above approach the neutral system, is transformed into an ordinary differential sys-
tem and an algebraic recursion. Below we consider the stability of exact solution of (2.1) by
investigating (2.4),(2.5). First we prove the following useful lemma.

Lemma 2.1. Consider the system (2.4), where the components of the forcing term φ(t) are
assumed to be continuous functions. Given an inner product 〈·, ·〉 in Cd and the corresponding
norm ‖·‖, let µ[·] stands for the logarithmic norm induced by 〈·, ·〉 and µ[B] > 0. Then the
following inequality
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‖y(t)‖ ≤ E(0, t)‖y0‖ + (1 − E(0, t)) sup
0≤x≤t

‖φ(x)‖
µ[B]

, (2.6)

with
E(t1, t2) = exp (−µ[B](exp t2 − exp t1)) . (2.7)

holds for all t ≥ 0.

Proof. By (2.4), we get

y(t) = e
∫

t
0 −Betdt

[
y0 +

∫ t

0

φ(x)e
∫

x
0 Besdsdx

]
,

then

‖y(t)‖ ≤ e−µ[B](et−1)

[
‖y0‖ + sup

0≤s≤t

‖φ(s)‖
µ[B]es

∫ t

0

µ[B]eseµ[B](es−1)ds

]
,

that is

‖y(t)‖ ≤ e−µ[B](et−1)‖y0‖ +
(
1 − e−µ[B](et−1)

)
sup

0≤s≤t

‖φ(s)‖
µ[B]

, (2.8)

by (2.7), it holds that

‖y(t)‖ ≤ E(0, t)‖y0‖ + (1 − E(0, t)) sup
0≤s≤t

‖φ(s)‖
µ[B]

. (2.9)

The proof is completed.
By considering φ(ξn) = limt→ξn− φ(t) we can assume the function φ(t) continuous in the

closed interval In = [ξn−1, ξn], n ≥ 1. Therefore, there exists

maxξn−1≤s≤ξn‖φ(s)‖

for every n ≥ 1.
The following theorem is devoted to the contractivity properties of the solutions of (2.4),

(2.5).

Theorem 2.1. For the system (2.2), the condition

‖ − D + Cq−1B‖
µ[B]q

+ ‖Cq−1‖ ≤ 1, ∀t ≥ 0, (2.10)

implies that the solution y(t) satisfies

‖y(t)‖ ≤ max
{
‖g(0)‖, K

µ[B]

}
, ∀t ≥ 0. (2.11)

for every initial function g(t) and norm defined in Lemma 2.1, where µ[B] > 0 and

K = max
0≤t≤ξ1

‖ − Detg(t − τ) − Cq−1g′(t − τ)‖. (2.12)

Proof. we consider the interval In = [ξn−1, ξn], n ≥ 2. By (2.6), we have, for every t ∈
[ξn−1, ξn]

‖y(t)‖ ≤ E(ξn−1, t)‖y(ξn−1)‖ + (1 − E(ξn−1, t)) max
ξn−1≤x≤t

‖φ(x)‖
µ[B]eξn−1

, (2.13)



Asymptotic Stability of Runge-kutta Methods for the Pantograph Equations 527

µ[B] > 0 and (2.7) imply E(ξn−1, t) ≤ 1. Inequality (2.13) means that

‖y(t)‖ ≤ max
{
‖y(ξn−1)‖, max

ξn−1≤x≤t

‖φ(x)‖
µ[B]eξn−1

}
, t ∈ [ξn−1, ξn]. (2.14)

For any vector function γ(s) and any integer i ≥ 0, let

|‖γ‖|i := max
s∈Ii

‖γ(s)‖,

then by (2.12) and the condition (2.10), we immediately have

|‖φ‖|1 = K,

|‖φ‖|n ≤ max
ξn−1≤s≤ξn

{‖Cq−1φ(s − τ)‖ + ‖(−Des + Cq−1Bes)y(s − τ)‖}
≤ ‖Cq−1‖ · |‖φ‖|n−1 + max

ξn−1≤s≤ξn

[
(1 − ‖Cq‖−1)µ[B]qes‖y(s − τ)‖]

≤ ‖Cq−1‖ · |‖φ‖|n−1 + (1 − ‖Cq‖−1) · µ[B]eξn−1 |‖y‖|n−1, (2.15)

which apply the assumption q = elog q = e−τ . Since ‖Cq−1‖ < 1 , then

|‖φ‖|n ≤ max
{
µ[B]eξn−1 |‖y‖|n−1, |‖φ‖|n−1

}
Now, for all n ≥ 1 define

αn = max
{
|‖y‖|n,

|‖φ‖|n
µ[B]eξn−1

}
. (2.16)

By (2.14), we get

|‖y‖|n ≤ max
{
|‖y‖|n−1,

|‖φ‖|n
µ[B]eξn−1

}
. (2.17)

hence, (2.16) and (2.17) show

αn ≤ max
{
|‖y‖|n−1,

|‖φ‖|n−1

µ[B]eξn−1

}
≤ max

{
|‖y‖|n−1,

|‖φ‖|n−1

µ[B]eξn−2

}
= αn−1,

then we can obtain non-increasing positive sequence

α1 ≥ α2 ≥ · · · ≥ αn · · · , n ≥ 2.

Finally consider the case n = 1, for which (2.14) yields

|‖y‖|1 ≤ max
{
‖y0‖, |‖φ‖|1

µ[B]

}
= max

{
‖g(0)‖, K

µ[B]

}
,

α1 = max
{
|‖y‖|1, |‖φ‖|1

µ[B]eξ0

}
,

the last two equations imply

α1 ≤ max
{
‖g(0)‖, K

µ[B]

}
then

‖y(t)‖ ≤ max
{
‖g(0)‖, K

µ[B]

}
.

is hold ∀t ∈ In, n ≥ 1.
The following theorem concerns asymptotic stability of the system (2.2).
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Theorem 2.2. For the system (2.2), the conditions

‖Cq−1‖ = ζ < 1, ∀t ≥ 0, (2.18)

‖ − D + Cq−1B‖
µ[B]q

≤ k(1 − ‖Cq−1‖), ∀t ≥ 0, (2.19)

for an arbitrary k < 1, imply limt→∞ ‖y(t)‖ = 0, for every initial function g(t).

The proof of this theorem is analogy to the process of proving Theorem 3.2 in [10], hence
we omit it here.

In conclusion, though the conversion and reformulation which we applied to the system
(1.2) are similar to Iserles and Terjéki [8] and Liu [14], we effectively associate the two different
reformulations above-mentioned to obtain a favorable form for analyzing stability and obtain
the asymptotic stability for the pantograph system (1.2), that is

lim
t→∞ ‖x(t)‖ = 0

when the conditions of Theorem 2.2 are hold.

3. Runge-Kutta Methods with Variable Stepsize

Bellen et al.[16] described in detail the discretization scheme and constrained global mesh.
We show that process here.

Firstly we build a primary mesh based on the following relation,

Tk = Tk−1/q, k = 1, 2, · · · ,

where T0 > 0 is given. In this way the primary intervals are defined by

Hk := Tk − Tk−1 =
1 − q

qk
T0, k = 1, 2, · · · . (3.1)

Observe that the sequence {Hk} increases exponentially, therefore we define the mesh by par-
tition every primary interval into a fixed number m of sub-intervals of the same size. Let [·]
denote the integer part, we set

hn+1 :=
H[n/m]+1

m
=

1
m

1 − q

q[n/m]+1
T0, n = 0, 1, 2, · · · , (3.2)

For simplicity(but without loss of generality), we assume t0 = T0 = 1. Let l = n mod m, then
we define the grid points of H :

tn := T[n/m] + lhn, n = 1, 2, · · · ,

which yields
tn := q−1tn−m, n > m. (3.3)

Now we consider the application of Runge-Kutta methods to (1.2). We have

xn+1 = xn +
s∑

i=1

b̂ikn,i, (3.4)

where

kn,i + hn+1B(xn +
s∑

j=1

âijkn,j) + Ckn−m,i + hn+1D(xn−m +
s∑

j=1

âijkn−m,j) = 0,
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and by (3.3), the descretization of pantograph delay is given by

xn−m +
s∑

j=1

âijkn−m,j.

Let
Kn =

[
kT

n,1, k
T
n,2, · · · , kT

n,s

]T
,

Ã = (âij)s×s,

b = (b̂1, b̂2, · · · , b̂s)T ,

e = (1, 1, · · · , 1)T is a s-dimensional vector.

Applying operator of ⊗, we transform (3.4) to

xn+1 = xn + (bT ⊗ Id)Kn,

(Is ⊗ Id)Kn + hn+1(e ⊗ B)xn + hn+1(Ã ⊗ B)Kn + (Is ⊗ C)Kn−m

+hn+1(e ⊗ D)xn−m + hn+1(Ã ⊗ D)Kn−m = 0,

(3.5)

which yields⎛
⎝Isd + hn+1(Ã ⊗ B) 0

−bT ⊗ Id Id

⎞
⎠

⎛
⎝ Kn

xn+1

⎞
⎠ +

⎛
⎝0 hn+1(e ⊗ B)

0 −Id

⎞
⎠

⎛
⎝Kn−1

xn

⎞
⎠

+

⎛
⎝hn+1(Ã ⊗ D) + Is ⊗ C 0

0 0

⎞
⎠

⎛
⎝ Kn−m

xn−m+1

⎞
⎠ +

⎛
⎝0 hn+1(e ⊗ D)

0 0

⎞
⎠

⎛
⎝Kn−m−1

xn−m

⎞
⎠ = 0. (3.6)

Observe that matrices of equality (3.6) are (s + 1)d × (s + 1)d complex matrices. To research
the stability of numerical solutions, we transform (3.6) to the following form.⎛

⎝Isd + hn+1(Ã ⊗ B) 0

−e ⊗ bT ⊗ Id Isd

⎞
⎠

⎛
⎝ Kn

e ⊗ xn+1

⎞
⎠ +

⎛
⎝0 1

shn+1(eT ⊗ e ⊗ B)

0 −Isd

⎞
⎠

⎛
⎝ Kn−1

e ⊗ xn

⎞
⎠

+

⎛
⎝hn+1(Ã ⊗ D) + Is ⊗ C 0

0 0

⎞
⎠

⎛
⎝ Kn−m

e ⊗ xn−m+1

⎞
⎠+

⎛
⎝0 hn+1

s (eT ⊗ e ⊗ D)

0 0

⎞
⎠

⎛
⎝ Kn−m−1

e ⊗ xn−m

⎞
⎠ = 0.

(3.7)

4. Stability Analysis of Numerical Solutions

First we show the definition in [17].

Definition 4.1. A Runge-Kutta method (Ã, b, c) is called to be L-stable, if it is A-stable, and
its stability function given by R(z) = 1 + zbT (I − zÃ)−1e satisfies

lim
|z|→∞

|R(z)| = 0. (4.1)
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Below we find the stability function of equation

x′(t) + Bx(t) = 0, (4.2)

which is fundamental for the asymptotic stability analysis. Applying the Runge-Kutta methods
with variable stepsize to (4.2), we get

xn+1 = xn +
s∑

i=1

b̂ikn,i, (4.3)

where

kn,i + hn+1B(xn +
s∑

j=1

âijkn,j) = 0,

in analogy to the previous derivation, (4.3) yields

e ⊗ xn+1 = e ⊗ xn + (e ⊗ bT ⊗ Id)Kn,

Kn + hn+1
1
s
(eT ⊗ e ⊗ B)(e ⊗ xn) + hn+1(Ã ⊗ B)Kn = 0,

then the following equality can be induced.

e ⊗ xn+1 = e ⊗ xn − (e ⊗ bT ⊗ Id)
(
Isd + hn+1(Ã ⊗ B)

)−1 1
s
hn+1(eT ⊗ e ⊗ B)(e ⊗ xn),

that is

e ⊗ xn+1 =
[
Isd − (e ⊗ bT ⊗ Id)

(
Isd + Ã ⊗ (hn+1B)

)−1 1
s
(eT ⊗ e ⊗ (hn+1B))

]
(e ⊗ xn),

we immediately have

R(−hn+1B) = Isd +
(
e ⊗ bT ⊗ Id

) (
Isd − Ã ⊗ (−hn+1B)

)−1 1
s

(
eT ⊗ e ⊗ (−hn+1B)

)
. (4.4)

Assume that the Runge-Kutta method applied to system (1.2) is L-stable, and Ã is regular.
Let

M(hn+1) =

⎛
⎝Isd + hn+1(Ã ⊗ B) 0

−e ⊗ bT ⊗ Id Isd

⎞
⎠ , P (hn+1) =

⎛
⎝0 1

shn+1(eT ⊗ e ⊗ B)

0 −Isd

⎞
⎠ ,

Q(hn+1) =

⎛
⎝hn+1(Ã ⊗ D) + Is ⊗ C 0

0 0

⎞
⎠ , R(hn+1) =

⎛
⎝0 hn+1

s (eT ⊗ e ⊗ D)

0 0

⎞
⎠ .

Then it holds that

M−1(hn+1) =

⎛
⎝ (Isd + hn+1(Ã ⊗ B))−1 0

(e ⊗ bT ⊗ Id)(Isd + hn+1(Ã ⊗ B))−1 Isd

⎞
⎠ .

Hence we have

M−1(hn+1)P (hn+1) =

⎛
⎝0 hn+1

s (Isd + hn+1(Ã ⊗ B))−1(eT ⊗ e ⊗ B)

0 −Isd + (e ⊗ bT ⊗ Id)(Isd + hn+1(Ã ⊗ B))−1 hn+1
s (eT ⊗ e ⊗ B)

⎞
⎠ ,
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M−1(hn+1)Q(hn+1) =

⎛
⎝ (Isd + hn+1(Ã ⊗ B))−1(hn+1(Ã ⊗ D) + Is ⊗ C) 0

(eT ⊗ bT ⊗ Id)(Isd + hn+1(Ã ⊗ B))−1(hn+1(Ã ⊗ D) + Is ⊗ C) 0

⎞
⎠ ,

M−1(hn+1)R(hn+1) =

⎛
⎝0 hn+1

s (Isd + hn+1(Ã ⊗ B))−1(eT ⊗ e ⊗ D)

0 (e ⊗ bT ⊗ Id)(Isd + hn+1(Ã ⊗ B))−1 hn+1
s (eT ⊗ e ⊗ D)

⎞
⎠ . (4.5)

Below we consider the difference equation (3.7). Let

Xn+1 =
(

Kn

e ⊗ xn+1

)
,

by which, we transform (3.7) to

Xn+1 + M−1(hn+1)P (hn+1)Xn + M−1(hn+1)Q(hn+1)Xn−m+1

+M−1(hn+1)R(hn+1)Xn−m = 0
(4.6)

By (3.2) we conclude that the stepsize hn+1 yields hn+1 → ∞. Let

P = limhn+1→∞M−1(hn+1)P (hn+1),

Q = limhn+1→∞M−1(hn+1)Q(hn+1),

R = limhn+1→∞M−1(hn+1)R(hn+1),

then by the Definition 4.1 and the equality(4.4), we obtain

P =

⎛
⎝0 1

S eT ⊗ (Ã−1e) ⊗ Id

0 0

⎞
⎠ , Q =

⎛
⎝ Is ⊗ (B−1D) 0

e ⊗ bT ⊗ (B−1D) 0

⎞
⎠ ,

R =

⎛
⎝0 1

S eT ⊗ (Ã−1e) ⊗ (B−1D)

0 1
S eeT ⊗ (bT Ã−1e) ⊗ (B−1D)

⎞
⎠ , (4.7)

where P, Q, R are 2sd × 2sd matrices and zeros in matrices denote 0sd. Thus we obtain the
perturbation equation of the difference equation (4.6)

Xn+1 + PXn + QXn−m+1 + RXn−m = 0 (4.8)

Let
Xn+1 = znx, (4.9)

where x = (ξ(1), ξ(2), · · · , ξ(2sd))T is a 2sd-dimensional complex vector, z is a complex variable.
By the assumption (4.9), equation (4.8) induces

(zm+1I2sd + Pzm + Qz + R) = 0. (4.10)

Finally, we given the main theorem of this paper.

Theorem 4.1. The L-stable Runge-Kutta method (Ã, b, c) which is applied to the system (1.2)
is asymptotically stable if Ã is regular, and the condition

‖B−1D‖ < 1

holds.
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Proof. To prove the theorem, it is important to show the implication

det
(
zm+1I2sd + Pzm + Qz + R

)
= 0 ⇒ |z| < 1.

We have
det

(
zm+1I2sd + Pzm + Qz + R

)
= det (zm(zI2sd + P ) + Qz + R)

= det
[
zmI2sd + (Qz + R)(zI2sd + P )−1

]
(zI2sd + P ),

(4.11)

where (zI2sd + P ) is regular, whose inverse is given by

(zI2sd + P )−1 =

⎛
⎝z−1Isd − z−2

s eT ⊗ (Ã−1e) ⊗ Id

0 z−1Isd

⎞
⎠ ,

which induces

(Qz + R)(zI2sd + P )−1 =

⎛
⎝ Is ⊗ (B−1D)z 1

seT ⊗ (Ã−1e) ⊗ (B−1D)

e ⊗ bT ⊗ (B−1D)z 1
seeT ⊗ (bT Ã−1e) ⊗ (B−1D)

⎞
⎠ · (zI2sd + P )−1

=

⎛
⎝ Is ⊗ (B−1D) 0

e ⊗ bT ⊗ (B−1D) 0

⎞
⎠ ,

by assumption of theorem and (4.7), the last equality implies

ρ(−P ) = 0 < 1, ρ
(−(Qz + R)(zI2sd + P )−1

) ≤ ‖B−1D‖ < 1. (4.12)

Rewrite (4.11) to the following form:

det (zI2sd − (−P )) · det
[
zmI2sd − (−(Qz + R)(zI2sd + P )−1

)]
= 0,

then by (4.12), it is obvious that
|z| < 1.

Now we consider the relation between the difference equation(4.6) and its perturbation
equation (4.8). Equation(4.6) denotes

R{{Xi}∞i=0; n
}

= Fn, n ≥ 0,

where
R{{Xi}∞i=0; n

}
= Xn+1 + PXn + QXn−m+1 + RXn−m,

Fn = (P − M−1(hn+1)P (hn+1))Xn + (Q − M−1(hn+1)Q(hn+1))Xn−m+1

+ (R − M−1(hn+1)R(hn+1))Xn−m.

Let

(P − M−1(hn+1)P (hn+1)) =
(

P1 P2

P3 P4

)
, where P1, P2, P3, P4 are sd × sd matrices .
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Obviously,
P1 = 0sd, P3 = 0sd,

P2 =
1
s
eT ⊗ Ã−1e ⊗ Id − hn+1

s

(
Isd + hn+1(Ã ⊗ B)

)−1

(eT ⊗ e ⊗ B)

= h−1
n+1

1
s

[
h−1

n+1Isd + (Ã ⊗ B)
]−1

(eT ⊗ Ã−1e ⊗ Id).

Moreover, P4 is the stability function of Runge-Kutta method, then P4 = O(hn+1)G, where G
is a sd× sd matrix, and there exist a positive number MG such that ‖G‖ ≤ MG. Immediately,
we have the estimation

‖P − M−1(hn+1)P (hn+1)‖ ≤ h−1
n+1MP ,

for some MP > 0. Analogously, we have

‖Q − M−1(hn+1)Q(hn+1)‖ ≤ h−1
n+1MQ,

‖R − M−1(hn+1)R(hn+1)‖ ≤ h−1
n+1MR,

where MQ, MR > 0. Let M = max
{
MP , MQ, MR

}
, then we get

‖Fn‖ ≤ h−1
n+1M

(‖Xn‖ + ‖Xn−m+1‖ + ‖Xn−m‖), n > 0. (4.13)

By reference [18] and inequality (4.13), the difference equation (4.6) preserve the asymptotic
stability of its perturbation equation (4.8). Then the above theorem is proved.

The following theorem is obvious.

Theorem 4.2. Suppose that conditions (2.18) and (2.19) holds.Then the L-stability Runge-
Kutta method (Ã, b, c) applied to the system (1.2) is asymptotically stable, where Ã is regular.
That is, the solution of (3.7) satisfies

lim
n→∞xn = 0.
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