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Abstract

This paper is concerned with numerical stability of nonlinear systems of pantograph
equations. Numerical methods based on (k, l)−algebraically stable Runge-Kutta methods
are suggested. Global and asymptotic stability conditions for the presented methods are
derived.
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1. Introduction

Consider the following systems of the pantograph equations{
y′(t) = f(t, y(t), y(pt)), t > 0,
y(0) = η, η ∈ CN ,

(1.1)

where f : [0, +∞) × CN × CN → CN is a given function and p ∈ (0, 1) is a real constant. For
applications of the systems(1.1), we refer to Iserles[1].

In order to investigate the stability of numerical methods for the pantograph equations, the
scalar linear pantograph equations

y′(t) = λy(t) + µy(pt),

where λ, µ ∈ C and p ∈ (0, 1) are constants, have been used as the test problem and many
significant results have been derived(cf.[2-10, 16, 17]). However, little attention has been paid to
the nonlinear case of the form (1.1). In 2002, Zhang and Sun[11] considered nonlinear stability
of one-leg θ−methods for (1.1) and obtained some results of global and asymptotic stability.
On the basis of their works, the present paper further deal with numerical stability of (k, l)-
algebraically stable Runge-Kutta methods with variable stepsize (introduced by Liu[9]) for the
nonlinear systems (1.1). Global and asymptotic stability conditions for the presented methods
are derived.

2. Runge-Kutta Methods with Variable Stepsize

In this section, we consider the adaptation of Runge-Kutta methods for solving (1.1). Let
(A, b, c) denotes a given Runge-Kutta method with matrix A = (aij) ∈ Rs×s and vectors
b = (b1, b2, . . . , bs)

T ∈ Rs, c = (c1, c2, . . . , cs)
T ∈ Rs. In this paper, we always assume that

ci ∈ [0, 1], i = 1, 2, . . . , s. The application of the Runge-Kutta method (A, b, c) to (1.1) yields



Y
(n)
i = yn + hn+1

s∑
j=1

aijf(tn + cjh, Y
(n)
j , Ỹ

(n)
j ), i = 1, 2, . . . , s,

yn+1 = yn + hn+1

s∑
i=1

bif(tn + cih, Y
(n)
i , Ỹ

(n)
i ), n = 0, 1, 2, . . . ,

(2.1)
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where hn+1 = tn+1 − tn, yn, Y
(n)
i and Ỹ

(n)
i (n ≥ 0, i = 1, 2, . . . , s) are approximations to y(tn),

y(tn + cihn+1) and y(p(tn + cihn+1)) respectively.
Since a serious storage problem is created when the computation for (1.1) with constant

stepsize is run on any computer, we consider a variable stepsize strategy introduced by Liu[9]
and Bellen et al.[2] to resolve the storage problem. The grid points are selected as follows(cf.
[11]).

First, divide [0, +∞) into a set of infinite bounded intervals, that is

[0, +∞) =

∞⋃

l=0

Dl,

where D0 = [0, γ] with a given positive number γ and Dl = (Tl−1, Tl](l ≥ 1) with Tl = p−lγ.
Then, partition every primary interval Dl(l ≥ 1) into equal m subintervals. Thus the grid
points on [0, +∞)/D0 are determined by

tn = Tb(n−1)/mc + (n − b(n − 1)/mcm)hn, n ≥ 1,

where bxc denotes the maximal integer which not exceeds x. On D0, choose t0 = γ, t−(m+1) = 0,
t−i = ptm−i, i = m, m− 1, . . . , 1, as grid points. The corresponding numerical solutions y0, y−i

and Y
(−i)
j (i = m + 1, m, . . . , 1, j = 1, 2, . . . , s) are assumed to exist. So the function ϕ(t) := pt

has these properties:

[S1] ϕ(tn) = tn−m, n ≥ 0,

[S2] ϕ(Dn+1) = Dn, n ≥ 1,

[S3] ϕ(hn) = hn−m, n ≥ 1,

and the stepsize sequence {hn} is determined by

hn =






pγ, n = −m,
(1−p)γ

m , n = −m + 1,−m + 2, . . . ,−1, 0,
(1−p)γ

mpb(n−1)/mc+1 , n = 1, 2, 3, . . . .

(2.2)

Properties [S1]-[S3] imply that the choice of grid points has removed the computational storage
problem for (1.1) and the method (2.1) can be written as




Y
(n)
i = yn + hn+1

s∑
j=1

aijf(tn + cjh, Y
(n)
j , Y

(n−m)
j ), i = 1, 2, . . . , s,

yn+1 = yn + hn+1

s∑
i=1

bif(tn + cih, Y
(n)
i , Y

(n−m)
i ), n = 0, 1, 2, . . . ,

(2.3)

3. Stability Analysis of the Methods

In order to study the stability of the methods (2.3), consider the perturbed systems of (1.1){
z′(t) = f(t, z(t), z(pt)), t > 0,
z(0) = ς, ς ∈ CN ,

(3.1)

Similarly, applying method (2.3) to the systems (3.1) yields




Z
(n)
i = zn + hn+1

s∑
j=1

aijf(tn + cjh, Z
(n)
j , Z

(n−m)
j ), i = 1, 2, . . . , s,

zn+1 = zn + hn+1

s∑
i=1

bif(tn + cih, Z
(n)
i , Z

(n−m)
i ), n = 0, 1, 2, . . . ,

(3.2)

where zn and Z
(n)
i are approximations to z(tn) and z(tn + cihn+1) respectively.

Both (1.1) and (3.1), we assume that the function f satisfies{
Re〈u1 − u2, f(t, u1, v) − f(t, u2, v)〉 ≤ α‖u1 − u2‖

2, t > 0, u1, u2, v ∈ CN ,
‖f(t, u, v1) − f(t, u, v2)‖ ≤ β‖v1 − v2‖, t > 0, u, v1, v2 ∈ CN ,

(3.3)

where 〈·, ·〉 and ‖ · ‖ denote a given inner product and the corresponding norm in complex
N−dimensional space CN respectively. In the following, all systems (1.1) with (3.3) will be
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called class Dp(α, β)(cf.[11]). For systems (1.1) and (3.1) of class Dp(α, β), it follows from the
arguments given by Zennaro[12] that the solutions y(t) and z(t) satisfy

‖y(t) − z(t)‖ ≤ ‖η − ς‖, t > 0,

and
lim

t→+∞
‖y(t) − z(t)‖ = 0,

whenever 0 < β ≤ −pα.

Definition 3.1[13]. Let k, l be real constants. A Runge-Kutta method (A, b, c) is called to be
(k, l)−algebraically stable if there exists a diagonal nonnegative matrix D = diag(d1, d2, . . . , ds)
such that M = [mij ] ∈ R(s+1)×(s+1) is nonnegative definite, where

M =

(
k − 1 − 2leTDe eT D − bT − 2leT DA

De − b − 2lAT De DA + AT D − bbT − 2lAT DA

)

with e = [1, 1, . . . , 1]T ∈ Rs. In particular, the (1, 0)−algebraically stable Runge-Kutta method
is called algebraically stable.

Now, we focus on the stability analysis of the methods(2.3).
Let

wn = yn − zn, W
(n)
i = Y

(n)
i − Z

(n)
i ,

Q
(n)
i = f(tn + cih, Y

(n)
i , Y

(n−m)
i ) − f(tn + cih, Z

(n)
i , Z

(n−m)
i ), i = 1, 2, . . . , s.

Then, we have

W
(n)
i = wn + hn+1

s∑

j=1

aijQ
(n)
j , i = 1, 2, . . . , s,

wn+1 = wn + hn+1

s∑

i=1

biQ
(n)
i , n = 0, 1, 2, . . . .

Theorem 3.1. Assume that the Runge-Kutta method (A, b, c) is (k, l)−algebraically stable
with k ≤ 1, then the numerical solutions yn and zn, produced by the corresponding method
(2.3) applying to the systems (1.1) and (3.1) of the class Dp(α, β) with 0 < β ≤ −pα and

(α + β
p )h1 ≤ l respectively, satisfy

‖yn − zn‖ ≤ C( max
−m≤j≤0

‖yj − zj‖ + max
−m≤j≤−1

max
1≤i≤s

‖Y
(j)
i − Z

(j)
i ‖), n > 0, (3.4)

where C depends only on the method, α, β, p and γ, and the inequality(3.4) characterize the
global stability of the method (2.3).

Proof. As in Burrage and Butcher [13], we can obtain

‖wn+1‖
2 − k‖wn‖

2 − 2
s∑

i=1

diRe〈W
(n)
i , hn+1Q

(n)
i − lW

(n)
i 〉 = −

s+1∑

i=1

s+1∑

j=1

mij〈γi, γj〉, (3.5)

where γ1 = wn, γj = hn+1Q
(n)
j−1, j = 2, 3, . . . , s + 1.

By means of (k, l)−algebraic stability of the method and k ≤ 1, we have

‖wn+1‖
2 ≤ ‖wn‖

2 + 2
s∑

i=1

diRe〈W
(n)
i , hn+1Q

(n)
i − lW

(n)
i 〉. (3.6)

It follows from (3.3) that

2Re〈W
(n)
i , Q

(n)
i 〉 ≤ 2α‖W

(n)
i ‖2 + 2β‖W

(n)
i ‖‖W

(n−m)
i ‖

≤ (2α + β)‖W
(n)
i ‖2 + β‖W

(n−m)
i ‖2. (3.7)

Inserting (3.7) into (3.6) gives

‖wn+1‖
2 ≤ ‖wn‖

2 +

s∑

i=1

di(hn+1((2α + β)‖W
(n)
i ‖2 + β‖W

(n−m)
i ‖2) − 2l‖W

(n)
i ‖2). (3.8)
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Further, an induction yields

‖wn+1‖
2 ≤ ‖w0‖

2 +

s∑

i=1

di

n∑

j=0

(hj+1(2α + β) − 2l)‖W
(j)
i ‖2

+ β

s∑

i=1

di

n∑

j=0

hj+1‖W
(j−m)
i ‖2. (3.9)

Moreover, (2.2) leads to
n∑

j=0

hj+1‖W
(j−m)
i ‖2 =

n−m∑

j=−m

hm+j+1‖W
(j)
i ‖2

=
1

p

n−m∑

j=−m

hj+1‖W
(j)
i ‖2

=
1

p
(

n−m∑

j=0

hj+1‖W
(j)
i ‖2 +

−1∑

j=−m

hj+1‖W
(j)
i ‖2)

≤
1

p
(

n−m∑

j=0

hj+1‖W
(j)
i ‖2 + (1 − p)γ max

−m≤j≤−1
‖W

(j)
i ‖2). (3.10)

Substituting (3.10) into (3.9) yields that

‖wn+1‖
2 ≤ ‖w0‖

2 +

s∑

i=1

di

n∑

j=0

(hj+1(2α + β +
β

p
) − 2l)‖W

(j)
i ‖2

+
β(1 − p)γ

p

s∑

i=1

di max
−m≤j≤−1

max
1≤i≤s

‖W
(j)
i ‖2. (3.11)

Using condition β ≤ −pα and (α + β
p )h1 ≤ l, we have

hj+1(2α + β +
β

p
) − 2l ≤ 2hj+1(α +

β

p
) − 2l

≤ 2h1(α +
β

p
) − 2l ≤ 0.

Then (3.11) leads to

‖wn+1‖
2 ≤ ‖w0‖

2 +
β(1 − p)γ

p

s∑

i=1

di max
−m≤j≤−1

max
1≤i≤s

‖W
(j)
i ‖2, n ≥ 0,

which shows that the inequality (3.4) is satisfied and the proof is completed.
Theorem 3.2. Assume that the Runge-Kutta method (A, b, c) is (k, l)−algebraically stable
with k < 1, then the numerical solutions yn and zn, produced by the corresponding method
(2.3) applying to the systems (1.1) and (3.1) of the class Dp(α, β) with 0 < β ≤ −pα and

(α + β
p )h1 ≤ l respectively, satisfy

lim
n→+∞

‖yn − zn‖ = 0,

which characterize the asymptotic stability of the method (2.3).
Proof. Let

k = max{k, (
2pα + β

(2α + β)p
)1/m},

when 0 < β ≤ −pα and p ∈ (0, 1), we have k ≤ k < 1.
In view of (k, l)−algebraic stability of the Runge-Kutta method, it follows from (3.5) that

‖wn+1‖
2 ≤ k‖wn‖

2 + 2

s∑

i=1

diRe〈W
(n)
i , hn+1Q

(n)
i − lW

(n)
i 〉
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≤ k‖wn‖
2 +

s∑

i=1

di(hn+1((2α + β)‖W
(n)
i ‖2 + β‖W

(n−m)
i ‖2) − 2l‖W

(n)
i ‖2).

By induction, we have

‖wn+1‖
2 ≤ k

n+1
‖w0‖

2

+

s∑

i=1

di

n∑

j=0

k
n−j

(hj+1((2α + β)‖W
(j)
i ‖2 + β‖W

(j−m)
i ‖2) − 2l‖W

(j)
i ‖2). (3.12)

Moreover, (2.2) leads to
n∑

j=0

hj+1k
n−j

‖W
(j−m)
i ‖2 =

n−m∑

j=−m

hm+j+1k
n−j−m

‖W
(j)
i ‖2

=
1

p

n−m∑

j=−m

hj+1k
n−j−m

‖W
(j)
i ‖2

=
1

p
(

n−m∑

j=0

hj+1k
n−j−m

‖W
(j)
i ‖2 +

−1∑

j=−m

hj+1k
n−j−m

‖W
(j)
i ‖2)

≤
1

p
(

n−m∑

j=0

hj+1k
n−j−m

‖W
(j)
i ‖2 + k

n−m
(1 − p)γ max

−m≤j≤−1
‖W

(j)
i ‖2). (3.13)

Substituting (3.13) into (3.12) yields that

‖wn+1‖
2 ≤ k

n+1
‖w0‖

2 +

s∑

i=1

di

n∑

j=0

(hj+1(k
n−j

(2α + β) + k
n−j−m β

p
) − k

n−j
2l)‖W

(j)
i ‖2

+ k
n−m β(1 − p)γ

p

s∑

i=1

di max
−m≤j≤−1

max
1≤i≤s

‖W
(j)
i ‖2

= k
n+1

‖w0‖
2 +

s∑

i=1

di

n∑

j=0

k
n−j−m

((k
m

(2α + β) +
β

p
)hj+1 − k

m
2l)‖W

(j)
i ‖2

+ k
n−m β(1 − p)γ

p

s∑

i=1

di max
−m≤j≤−1

max
1≤i≤s

‖W
(j)
i ‖2. (3.14)

On the other hand, (k, l)−algebraically stable with k < 1 leads to l < 0. Then, using 0 < k < 1,
0 < β ≤ −pα and (α + β

p )h1 ≤ l, we have

−2k
m

l ≤ −2l,
and

(k
m

(2α + β) +
β

p
)hj+1 − k

m
2l ≤ (

2pα + β

p
+

β

p
)hj+1 − 2l

≤
2(pα + β)

p
h1 − 2l ≤ 0.

Noting that di ≥ 0, i = 1, 2, . . . , s, and 0 < k < 1, (3.14) leads to

‖wn+1‖
2 ≤ k

n+1
‖w0‖

2 + k
n−m β(1 − p)γ

p

s∑

i=1

di max
−m≤j≤−1

max
1≤i≤s

‖W
(j)
i ‖2. (3.15)

It is easily obtained from (3.15) that
lim

n→+∞
‖wn+1‖

2 = 0,

i.e.
lim

n→+∞
‖yn − zn‖ = 0.



356 Y.X. YU AND S.F. LI

Hence, the proof is completed.

Corollary 3.1. Assume that for every l < 0 there exists k < 1 such that the Runge-Kutta
method (A, b, c) is (k, l)−algebraically stable, then the corresponding method (2.3) is asymptot-
ically stable for the class Dp(α, β) whenever 0 < β ≤ −pα.

To examine the conditions of the above corollary, we have the following theorem which
introduced by Huang et al. [15]. Here the meaning that a method is irreducible refers to [14].

Theorem 3.3. Assume that an algebraically stable irreducible Runge-Kutta method (A, b, c) sat-
isfies detA 6= 0. Then for every l < 0 there exists k < 1 such that the method is (k, l)−algebraically
stable if and only if |1 − bT A−1e| < 1.

It is well known that the formulae Radau IA, Radau IIA and Lobatto IIIC (for ODEs)
satisfy the conditions of theorem 3.3. Therefore, in terms of corollary 3.1, the methods induced
by them are asymptotically stable for the class Dp(α, β) whenever 0 < β ≤ −pα.
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