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Abstract

Approximations using the generalized Laguerre polynomials are investigated in this
paper. Error estimates for various orthogonal projections are established. These estimates
generalize and improve previously published results on the Laguerre approximations. As
an example of applications, a mixed Laguerre-Fourier spectral method for the Helmholtz
equation in an exterior domain is analyzed and implemented. The proposed method enjoys
optimal error estimates, and with suitable basis functions, leads to a sparse and symmetric
linear system.
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1. Introduction

Many practical problems in science and engineering require solving partial differential equa-
tions in exterior domains. Considerable progress has been made recently in using spectral
methods for solving partial differential equations in unbounded domains. The first approach
is based on the classical orthogonal systems in the unbounded domains, namely, the Hermite
(cf. [7, 12, 10]) and Laguerre (cf. [16, 6, 17, 14, 18, 19, 20]) polynomials/functions. The second
approach is to map the original problem in a unbounded domain to a singular problem in a
bounded domain (cf. [8, 11, 13]). The third approach is based on rational approximations (cf.
[3, 2, 5, 15, 9]). However, none of the methods mentioned above has yet been analyzed for
multidimensional exterior problems.

In this paper, we investigate the spectral approximation using generalized Laguerre poly-
nomials which form a mutually orthogonal system in the weighted Sobolev space L2

ωα
(0,∞)

with ωα(ρ) = ρα exp(−ρ). The orthogonal projection in L2
ωα

(0,∞) has been analyzed in [6].
Other projection and interpolation operators for the special case α = 0 have been studied in
[16, 17, 14, 20]. However, the usual weighted Sobolev spaces used in these papers are not the
most appropriate. Here, we study the generalized Laguerre approximations in non-uniformly
weighted spaces, i.e., with different weights for derivatives of different orders, and we obtain
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optimal results for several projection operators for all α > −1. These new results enable us to
study numerical approximations of a large class of problems in unbounded domains.

As an example of applications, we consider the Helmholtz equation in the two dimensional
exterior domain Ω = {(ρ, θ) : ρ > 1, θ ∈ [0, 2π)}. We propose a mixed Laguerre-Fourier
spectral method using Laguerre polynomials for the radial direction and Fourier series for the
azimuthal direction. Thanks to the new results on generalized Laguerre approximations, we
are able to prove optimal error estimates for the mixed Laguerre-Fourier method applied to the
transformed equation. Furthermore, by choosing a set of suitable basis functions, we are also
able to construct an efficient numerical algorithm in which the linear system is symmetric and
sparse, and hence can be efficiently solved.

The paper is organized as follows. In the next section, we present several basic approxi-
mation results using generalized Laguerre polynomials. Then, we study the mixed Laguerre-
Fourier approximation outside a disk in Section 3. We construct the mixed Laguerre-Fourier
spectral scheme for a model problem, and prove its convergence in Section 4. In Section 5, we
present implementation details and an illustrative numerical result. Some concluding remarks
are presented in the final section.

2. Generalized Laguerre Approximation

2.1 Notations and preliminaries

Let us first introduce some notations. Let Λ = {ρ | 0 < ρ < ∞} and χ(ρ) be a certain
weight function in the usual sense. We define

L2
χ(Λ) = { v | v is measurable on Λ and ‖v‖L2

χ,Λ
<∞ }

with the following inner product and norm,

(u, v)χ,Λ =

∫

Λ

u(ρ)v(ρ)χ(ρ)dρ, ‖v‖χ,Λ = (v, v)
1
2

χ,Λ.

For simplicity, we denote by ∂k
ρv the k-th derivative of v(ρ) with respect to ρ. For any non-

negative integer m, we define the weighted Sobolev space

Hm
χ (Λ) =

{

v | ∂k
ρv ∈ L2

χ(Λ), 0 ≤ k ≤ m
}

equipped with the following inner product, semi-norm and norm

(u, v)m,χ,Λ =
∑

0≤k≤m

(∂k
ρu, ∂

k
ρv)χ,Λ, |v|m,χ,Λ = ‖∂m

ρ v‖χ,Λ, ‖v‖m,χ,Λ = (v, v)
1
2

m,χ,Λ.

For any real r > 0, the space Hr
χ(Λ) and its norm ‖v‖r,χ,Λ are defined by space interpolation

as in Adams [1]. In particular, we denote

0H
1
χ(Λ) = {v | v ∈ H1

χ(Λ) and v(0) = 0}.

Let ωα(ρ) = ραe−ρ. We denote in particular ω(ρ) = ω0(ρ) = e−ρ. The generalized Laguerre
polynomials of degree l are defined by

L(α)
l (ρ) =

1

l!
ρ−αeρ∂l

ρ(ρ
l+αe−ρ), l = 0, 1, 2, · · · , α > −1.

They are eigenfunctions of the Sturm-Liouville problem

∂ρ(ωα+1(ρ)∂ρv(ρ)) + λωα(ρ)v(ρ) = 0, 0 < ρ <∞, (2.1)
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with corresponding eigenvalues λl = l, and satisfy the recurrence relations

L(α)
l (ρ) = L(α+1)

l (ρ) −L(α+1)
l−1 (ρ) = ∂ρL(α)

l (ρ) − ∂ρL(α)
l+1(ρ), (2.2)

∂ρL(α)
l (ρ) = −L(α+1)

l−1 (ρ) =
1

ρ
(lL(α)

l (ρ) − (l + α)L(α)
l−1(ρ)). (2.3)

The set of generalized Laguerre polynomials forms an orthogonal system in L2
ωα

(Λ), namely,

(L(α)
l ,L(α)

m )ωα,Λ =

{

γ
(α)
l , for l = m

0, for l 6= m
, (2.4)

where

γ
(α)
l =

Γ(l + α+ 1)

l!
. (2.5)

Hence, for any v ∈ L2
ωα

(Λ), we can write

v(ρ) =

∞
∑

l=0

v̂
(α)
l L(α)

l (ρ) with v̂
(α)
l =

1

γ
(α)
l

(v,L(α)
l )ωα,Λ. (2.6)

In order to describe our approximation results, for any integer r ≥ 0, we define the non-
uniformly weighted spaces Ar

α(Λ) as follows:

Ar
α(Λ) =

{

v | v is measurable on Λ and ‖v‖Ar
α,Λ <∞

}

equipped with the following semi-norm and norm

|v|Ar
α,Λ = ‖∂r

ρv‖ωα+r,Λ, ‖v‖Ar
α,Λ =

(

r
∑

k=0

|v|2Ak
α,Λ

)
1
2

.

For any r > 0, we define the space Ar
α(Λ) and its norm by space interpolation.

Let N be any positive integer and PN(Λ) be the set of all algebraic polynomials of degree
at most N . We define the orthogonal projection PN,α : L2

ωα
(Λ) → PN(Λ) by

(PN,αv − v, φ)ωα,Λ = 0, ∀φ ∈ PN(Λ).

In the sequel, we denote by c a generic positive constant independent of any function and N.
The following simple, but important, result generalizes and improves previously published

results on the Laguerre approximations.
Theorem 2.1. Let r be an integer and 0 ≤ s ≤ r. Then,

‖PN,αv − v‖As
α,Λ ≤ cN

s−r
2 |v|Ar

α,Λ, ∀v ∈ Ar
α(Λ).

Proof. We first consider the integer case. Since

PN,αv(ρ) − v(ρ) = −
∞
∑

l=N+1

v̂
(α)
l L(α)

l (ρ),

we derive from (2.3) that for N ≥ r − 1,

∂s
ρ(PN,αv(ρ) − v(ρ)) = −

∞
∑

l=N+1

(−1)sv̂
(α)
l L(α+s)

l−s (ρ).
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Thus by (2.4),

‖∂s
ρ(PN,αv − v)‖2

ωα+s,Λ =
∞
∑

l=N+1

(v̂
(α)
l )2γα+s

l−s . (2.7)

By the same argument,

‖∂r
ρv‖2

ωα+r,Λ =

∞
∑

l=r

(v̂
(α)
l )2γ

(α+r)
l−r . (2.8)

A direct calculation gives

γ
(α+s)
l−s

γ
(α+r)
l−r

=
(l − r)!

(l − s)!
≤ cNs−r. (2.9)

The combination of (2.7)-(2.9) leads to

‖∂s
ρ(PN,αv − v)‖ωα+s,Λ ≤ cN

s−r
2 ‖∂r

ρv‖ωα+r,Λ.

Finally, the result for the non-integer s is proved by space interpolation.
Remark 2.1. Funaro [6] obtained the same result as Theorem 2.1 for integer r ≥ 0 and s = 0.
Maday, Pernaud-Thomas and Vandeven [16] derived another upper bound for ‖PN,αv− v‖ωα,Λ

with α = 0. In fact, they defined the space

Hr
ω0,β(Λ) =

{

v ∈ Hr
ω0

(Λ) | ρ β
2 v ∈ Hr

ω0
(Λ)
}

equipped with the norm ‖v‖r,ω0,β,Λ = ‖v(1 + ρ)
β
2 ‖r,ω0,Λ, and proved that for any real r ≥ 0,

‖PN,0v − v‖ω0,Λ ≤ cN− r
2 ‖v‖r,ω0,β,Λ,

where β is the largest integer for which β < r+ 1. Since ‖v‖r,ω0,β,Λ is not a semi-norm and the

weights for all derivatives of v are the same, i.e., (1+ρ)
β
2 e−ρ, its application is cumbersome and

may not lead to optimal error estimates for certain functions, e.g., those behaving like O(
1

ργ
) as

ρ→ ∞. However, the result in Theorem 2.1 is sharper and allow us to obtain optimal estimates
for a large class of problems, in particular, for the exterior problems considered in Sections 3
and 4 of this paper.
Remark 2.2. Mastroianni and Monegato [17] also studied the generalized Laguerre approxi-
mation. They defined the space

Br
α,Λ =

{

v ∈ L2
ωα

(Λ) | ‖v‖Br
α,Λ

<∞
}

with the norm

‖v‖Br
α,Λ

= (

∞
∑

l=0

(l + 1)r(v̂
(α)
l )2)

1
2 ,

and proved that for any 0 ≤ s ≤ r,

‖PN,αv − v‖Bs
α,Λ

≤ cN
s−r
2 ‖v‖Br

α,Λ
. (2.10)

By Lemma 2.3 of [17], for any integer r ≥ 0, the norm ‖v‖Br
α,Λ

is equivalent to the norm

‖v‖Ar
α,Λ

. So Theorem 2.1 improves the result (2.10) in the sense that the approximation error

only depends on the semi-norm ‖∂r
ρv‖ωα+r

.

2.2 Other projection operators
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To carry out numerical analyses of the Laguerre spectral method for PDEs in unbounded do-
mains, we need to consider other projection operators related to the PDEs under consideration.
Let us denote

H1
ωα,ωβ

(Λ) =
{

v | v is measurable on Λ and ‖v‖1,ωα,ωβ ,Λ <∞
}

,

equipped with the norm

‖v‖1,ωα,ωβ,Λ =
(

‖∂ρv‖2
ωα,Λ + ‖v‖2

ωβ ,Λ

)
1
2

.

In particular, we set

0H
1
ωα,ωβ

(Λ) =
{

v ∈ H1
ωα,ωβ

(Λ) | v(0) = 0
}

.

We define the orthogonal projection P 1
N,α,β : H1

ωα,ωβ
(Λ) → PN(Λ) by

(

∂ρ(P
1
N,α,βv − v), ∂ρφ

)

ωα,Λ
+
(

P 1
N,α,βv − v, φ

)

ωβ ,Λ
= 0, ∀φ ∈ PN (Λ). (2.11)

We set 0PN (Λ) = {v ∈ PN (Λ) | v(0) = 0} and define the orthogonal projection 0P
1
N,α(Λ):

0H
1
ωα

(Λ) → 0PN(Λ) by

(

∂ρ(0P
1
N,αv − v), ∂ρφ

)

ωα,Λ
= 0, ∀φ ∈ 0PN (Λ). (2.12)

In order to derive approximation results for these projections, we need several embedding
inequalities.
Lemma 2.1. Let −1 < β ≤ α ≤ β + 2. We assume that there exists ρ0 such that v(ρ0) = 0,
ρ0 > 0 for β ≤ 1 and ρ0 > 2

√

β(β − 1) for β > 1. Then, if ∂ρv ∈ L2
ωα

(Λ), we have

‖v‖ωβ ,Λ ≤ c‖∂ρv‖ωα,Λ.

Proof. Let Λ1 = (ρ0,∞), Λ2 = (0, ρ0) and

‖v‖ωβ,Λj
=
(

∫

Λj

ωβ(ρ)v2(ρ)dρ
)

1
2

, j = 1, 2.

For any ρ ∈ Λ1,

ωβ(ρ)v2(ρ) =

∫ ρ

ρ0

∂ξ(ωβ(ξ)v2(ξ))dξ

= 2

∫ ρ

ρ0

ωβ(ξ)v(ξ)∂ξv(ξ)dξ + β

∫ ρ

ρ0

ωβ−1(ξ)v
2(ξ)dξ −

∫ ρ

ρ0

ωβ(ξ)v2(ξ)dξ.

Letting ρ→ ∞ and using the Cauchy-Schwarz inequality, we obtain

‖v‖2
ωβ ,Λ1

≤ 1

2
‖v‖2

ωβ ,Λ1
+ 2‖∂ρv‖2

ωβ ,Λ1
+ β‖v‖2

ωβ−1,Λ1
.

Thus, for any β,
‖v‖2

ωβ,Λ1
≤ 4‖∂ρv‖2

ωβ,Λ1
+ 2β‖v‖2

ωβ−1,Λ1
. (2.13)

If β ≤ 0, (2.13) implies that for β ≤ α,

‖v‖2
ωβ ,Λ1

≤ 4‖∂ρv‖2
ωβ,Λ1

≤ 4ρβ−α
0 ||∂ρv||2ωα,Λ1

. (2.14)
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Otherwise, an integration by parts yields

2β‖v‖2
ωβ−1,Λ1

= 4β

∫

Λ1

ρβ−1e−ρv(ρ)∂ρv(ρ)dρ+ 2β(β − 1)‖v‖2
ωβ−2,Λ1

. (2.15)

Moreover, by the Cauchy-Schwarz inequality,

4β

∫

Λ1

ρβ−1e−ρv(ρ)∂ρv(ρ)dρ ≤ 4β‖∂ρv‖2
ωβ−1,Λ1

+ β‖v‖2
ωβ−1,Λ1

.

Therefore, for 0 < β ≤ 1,

2β‖v‖2
ωβ−1,Λ1

≤ 8β‖∂ρv‖2
ωβ−1,Λ1

.

The above inequality together with (2.13) implies that for 0 < β ≤ 1 and β ≤ α, we have

‖v‖2
ωβ ,Λ1

≤ 4‖∂ρv‖2
ωα,Λ1

+ 8β||∂ρv||2ωβ−1,Λ1
≤ 4(1 + 2βρ−1

0 )‖∂ρv‖2
ωβ ,Λ1

≤ 4(1 + 2βρ−1
0 )ρβ−α

0 ‖∂ρv‖2
ωα,Λ1

.
(2.16)

For β > 1, we have

4β

∫

Λ1

ρβ−1e−ρv(ρ)∂ρv(ρ)dρ ≤ 2β

β − 1
‖∂ρv‖2

ωβ,Λ1
+ 2β(β − 1)‖v‖2

ωβ−2,Λ1
.

This inequality together with (2.15) leads to

2β‖v‖2
ωβ−1,Λ1

≤ 2β

β − 1
‖∂ρv‖2

ωβ,Λ1
+ 4β(β − 1)‖v‖2

ωβ−2,Λ1
.

We infer from the above and (2.13) that for β > 1,

‖v‖2
ωβ,Λ1

≤ 2(3β − 2)

β − 1
‖∂ρv‖2

ωβ ,Λ1
+ 4β(β − 1)‖v‖2

ωβ−2,Λ1

≤ 2(3β − 2)

β − 1
‖∂ρv‖2

ωβ ,Λ1
+ 4β(β − 1)ρ−2

0 ‖v‖2
ωβ,Λ1

.

If ρ0 > 2
√

β(β − 1), then for 1 < β ≤ α,

‖v‖2
ωβ,Λ1

≤ 2ρ2
0(3β − 2)

(ρ2
0 − 4β(β − 1))(β − 1)

‖∂ρv‖2
ωβ ,Λ1

≤ 2ρ2+β−α
0 (3β − 2)

(ρ2
0 − 4β(β − 1))(β − 1)

‖∂ρv‖2
ωα,Λ1

.

(2.17)

Next, for any ρ ∈ Λ2,

ρβ+1v2(ρ) = −
∫ ρ0

ρ

∂ξ(ξ
β+1v2(ξ))dξ

= −2

∫ ρ0

ρ

ξβ+1v(ξ)∂ξv(ξ)dξ − (β + 1)

∫ ρ0

ρ

ξβv2(ξ)dξ.

Letting ρ→ 0 and using the Cauchy-Schwarz inequality, we find that for β > −1,

(β + 1)

∫ ρ0

0

ρβv2(ρ)dρ ≤ 2

β + 1

∫ ρ0

0

ρβ+2(∂ρv(ρ))
2dρ+

β + 1

2

∫ ρ0

0

ρβv2(ρ)dρ.
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Therefore

||v||2ωβ ,Λ2
≤
∫ ρ0

0

ρβv2(ρ)dρ ≤ 4

(β + 1)2

∫ ρ0

0

ρβ+2(∂ρv(ρ))
2dρ ≤ 4eρ0

(β + 1)2
||∂ρv||2ωβ+2,Λ2

.

Accordingly, for α ≤ β + 2 and β > −1,

‖v‖2
ωβ,Λ2

≤ 4eρ0ρ
2+β−α
0

(β + 1)2
‖∂ρv‖2

ωα,Λ2
. (2.18)

The combination of (2.14), (2.16), (2.17) and (2.18) leads to the desired result.
Lemma 2.2.

(i) For any v ∈ 0H
1
ωα

(Λ) and α < 1,

‖v‖2
ωα,Λ ≤ cα|v|21,ωα,Λ

where cα = 4 for α ≤ 0, and cα =
2(2− α)

1 − α
for 0 < α < 1;

(ii) For any v ∈ 0H
1
ω1

(Λ) ∩ L2
ω−1

(Λ),

‖v‖2
ω1,Λ ≤ 2(

√
2 + 1)(|v|21,ω1,Λ + ‖v‖2

ω−1,Λ);

(iii) For any v ∈ H1
ωα

(Λ) ∩ L2
ωα−2

(Λ) and α > 1,

‖v‖2
ωα,Λ ≤ 2(3α− 2)

α− 1
|v|21,ωα,Λ + 4α(α− 1)‖v‖2

ωα−2,Λ.

(iv) For any v ∈ A1
ωα

(Λ),

‖ω
1
2

α+1v‖2
L∞(Λ) ≤ max(α+ 1, 2)‖v‖2

A1
ωα
, ‖v‖2

ωα+1,Λ ≤ 2 max(α+ 1, 2)‖v‖2
A1

ωα
.

Proof. Following the same argument as in the derivation of (2.13), we deduce that if v(0) = 0
or α > 0, then

‖v‖2
ωα,Λ ≤ 4‖∂ρv‖2

ωα,Λ + 2α‖v‖2
ωα−1,Λ, (2.19)

The result (i) for α ≤ 0 follows (2.19) immediately. On the other hand, similar to (2.15),
we have

2α‖v‖2
ωα−1,Λ = 4α

∫

Λ

ρα−1e−ρv(ρ)∂ρv(ρ)dρ+ 2α(α− 1)‖v‖2
ωα−2,Λ. (2.20)

For 0 < α < 1, we derive by using the Cauchy-Schwarz inequality that

4α

∫

Λ

ρα−1e−ρv(ρ)∂ρv(ρ)dρ ≤ 2α

1 − α
|v|21,ωα,Λ + 2α(1 − α)‖v‖2

ωα−2,Λ.

Substituting the above and (2.20) into (2.19), we obtain the result (i) for 0 < α < 1.
For α > 1, we have

4α

∫

Λ

ρα−1e−ρv(ρ)∂ρv(ρ)dρ ≤ 2α

α− 1
|v|21,ωα,Λ + 2α(α− 1)‖v‖2

ωα−2,Λ.

Substituting the above and (2.20) into (2.19), we obtain the result (iii).
Now, if v(0) = 0 and α = 1, an integration by parts leads to

2‖v‖2
ω0,Λ = 4

∫

Λ

e−ρv(ρ)∂ρv(ρ)dρ ≤ 2(
√

2 − 1)‖∂ρv‖2
ω1,Λ + 2(

√
2 + 1)‖v‖2

ω−1,Λ.
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The above with (2.19) implies the result (ii).
Finally, we derive from

ρα+1e−ρv2(ρ) =

∫ ρ

0

∂ξ

(

ξα+1e−ξv2(ξ)
)

dξ

that

ωα+1(ρ)v
2(ρ) +

∫ ρ

0

ωα+1(ξ)v
2(ξ)dξ

= 2

∫ ρ

0

ωα+1(ξ)v(ξ)∂ξv(ξ)dξ + (α+ 1)

∫ ρ

0

ωα(ξ)v2(ξ)dξ

≤ 1

2

∫ ρ

0

ωα+1(ξ)v
2(ξ)dξ + 2‖∂ρv‖2

ωα+1,Λ + (α+ 1)‖v‖2
ωα,Λ

from which the result (iv) follows.
The following embedding inequality is also useful.

Lemma 2.3. If ∂ρv ∈ L2
ωα+2

(Λ) and v2(ρ)ρα+1 → 0 as ρ→ 0, then for α 6= −1,

‖v‖2
ωα,Λ ≤ 4

(α+ 1)2
‖∂ρv‖2

ωα+2,Λ.

Proof. By integration by parts and the Cauchy-Schwartz inequality,

‖v‖2
ωα,Λ = − 2

α+ 1

∫

Λ

ρα+1e−ρv(ρ)∂ρv(ρ)dρ+
1

α+ 1

∫ ∞

0

ρα+1e−ρv2(ρ)dρ

≤ 2

|α+ 1| ‖v‖ωα,Λ‖∂ρv‖ωα+2,Λ,

which implies the desired result.
We now turn to the error estimates for various orthogonal approximations.

Theorem 2.2. Let −1 < β ≤ α ≤ β + 2 and integer r ≥ 1. If v ∈ H1
ωα,ωβ

(Λ) and ∂ρv ∈
Ar−1

α (Λ), then

‖P 1
N,α,βv − v‖1,ωα,ωβ ,Λ ≤ cN

1−r
2 |∂ρv|Ar−1

α ,Λ.

Proof. By the definition (2.11) and the projection theorem, we have

‖P 1
N,α,βv − v‖1,ωα,ωβ ,Λ ≤ ‖φ− v‖1,ωα,ωβ,Λ, ∀φ ∈ PN(Λ).

We now take

φ(ρ) =

∫ ρ

0

PN−1,α∂ξv(ξ)dξ + λ

where λ is chosen in such a way that φ(ρ0) = v(ρ0), and ρ0 is the same as in Lemma 2.1. Then,
by Lemma 2.1 and Theorem 2.1 with s = 0, we assert that for any integer r ≥ 1,

‖φ− v‖1,ωα,ωβ ,Λ ≤ c|φ− v|1,ωα,Λ = c‖PN−1,α∂ρv − ∂ρv‖ωα,Λ

≤ cN
1−r
2 ‖∂r

ρv‖ωα+r−1,Λ
= cN

1−r
2 |∂ρv|Ar−1

α ,Λ.

Theorem 2.3. If v ∈ L2
ωα

(Λ), ∂ρv ∈ Ar−1
α (Λ) and v(0) = 0, then for integer r ≥ 1,

‖∂ρ(0P
1
N,αv − v)‖ωα,Λ ≤ cN

1−r
2 |∂ρv|Ar−1

α ,Λ.

If, in addition, |α| < 1, then

‖0P
1
N,αv − v‖1,ωα,Λ ≤ cN

1−r
2 |∂ρv|Ar−1

α ,Λ.
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Proof. By the definition (2.12), for any φ ∈ 0PN (Λ),

‖∂ρ(0P
1
N,αv − v)‖2

ωα,Λ = (∂ρ(0P
1
Nαv − v), ∂ρ(φ− v))ωα,Λ

≤ ‖∂ρ(0P
1
N,αv − v)‖ωα,Λ‖∂ρ(φ− v)‖ωα,Λ.

Taking φ(ρ) =

∫ ρ

0

PN−1,α∂ξv(ξ)dξ ∈ 0PN (Λ) in the above and using an argument similar to

the proof of the last theorem lead to the first desired result.
If in addition |α| < 1, then the second result follows from Lemma 2.2.

3. Mixed Laguerre-Fourier Approximation for Exterior Domains

In this section, we investigate the Laguerre-Fourier approximation for exterior problems. To
this end, we need several results related to the Laplace operator in the polar coordinates. Let
us consider first an auxiliary projection related to the generalized Laguerre approximation with
α = 2 and β = 0.

Let ω(ρ) = ω0(ρ) = e−ρ and η(ρ) = (ρ + 1)2e−ρ. We define the orthogonal projection

0Π
1
N : 0H

1
η (Λ) → 0PN (Λ) by

(

0Π
1
Nv − v, φ

)

1,η,Λ
= 0, ∀φ ∈ 0PN (Λ).

For simplicity, we denote Ar
0(Λ) by Ar(Λ) in the sequel.

Lemma 3.1. For any v ∈ H1
ω2,ω(Λ) ∩ Ar(Λ) with v(0) = 0 and integer r ≥ 2,

‖0Π
1
Nv − v‖1,η,Λ ≤ cN1− r

2 |v|Ar ,Λ.

Proof. By the projection theorem,

‖0Π
1
Nv − v‖1,η,Λ ≤ ‖φ− v‖1,η,Λ, ∀φ ∈0PN (Λ).

Let

φ(ρ) =

∫ ρ

0

P 1
N−1,2,0(∂ξv(ξ))dξ.

Clearly φ ∈ 0PN (Λ). Thus, it suffices to estimate ‖φ− v‖1,η,Λ. In other words, we only need to
estimate ‖∂ρ(φ− v)‖ωk,Λ and ‖φ− v‖ωk,Λ for k = 0, 2. In fact, a direct calculation reveals that

‖∂ρ(φ− v)‖ωk,Λ = ‖P 1
N−1,2,0∂ρv − ∂ρv‖ωk,Λ, k = 0, 2. (3.1)

Thanks to Lemma 2.2 with α = 2 and Theorem 2.2 with α = 2 and β = 0, we have

‖∂ρ(φ− v)‖2
ω2,Λ +‖∂ρ(φ− v)‖2

ω,Λ ≤ c(‖∂2
ρ(φ − v)‖2

ω2,Λ + ‖∂ρ(φ− v)‖2
ω,Λ)

= c‖∂ρ(φ− v)‖2
1,ω2,ω,Λ = c‖P 1

N−1,2,0∂ρv − ∂ρv‖1,ω2,ω,Λ

≤ cN2−r‖∂r
ρv‖2

ωr,Λ = cN2−r|v|2Ar ,Λ.

(3.2)

Next, thanks to Lemma 2.2 with α = 0, we get

‖φ− v‖2
ω,Λ ≤ 4‖∂ρ(φ− v)‖2

ω,Λ ≤ cN2−r|v|2Ar ,Λ. (3.3)

Finally, using (3.2), (3.3) and Lemma 2.2 with α = 2 yields

‖φ− v‖2
ω2,Λ ≤ 8‖∂ρ(φ− v)‖2

ω2,Λ + 8‖φ− v‖2
ω,Λ ≤ cN2−r|v|2Ar ,Λ.
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The proof is thus complete.
Next, we derive an approximation result in the L∞(Λ)-norm. To this end, we need the

following embedding inequality.
Lemma 3.2. For any v ∈ H1

η (Λ),

‖(1 + ρ)e−
ρ
2 v‖L∞(Λ) ≤ 2‖v‖1,η,Λ.

Proof. For any ρ ∈ Λ, we have from integration by parts that

(ρ2 + 2ρ)e−ρv2(ρ) =

∫ ρ

0

∂ξ((ξ
2 + 2ξ)e−ξv2(ξ))dξ

= 2

∫ ρ

0

(ξ2 + 2ξ)e−ξv(ξ)∂ξv(ξ)dξ +

∫ ρ

0

(2 − ξ2)e−ξv2(ξ)dξ

≤
∫ ρ

0

(ξ2 + 2ξ)e−ξ(∂ξv(ξ))
2dξ +

∫ ρ

0

(2ξ + 2)e−ξv2(ξ)dξ

≤
∫

Λ

(ρ2 + 2ρ)e−ρ(∂ρv(ρ))
2dρ+

∫

Λ

(2ρ+ 2)e−ρv2(ρ)dρ.

(3.4)

By (2.3) of Xu and Guo [20],

e−ρv2(ρ) ≤ 2

∫

Λ

e−ρ(v2(ρ) + (∂ρv(ρ))
2)dρ.

Adding the above to (3.4) yields that

(ρ+ 1)2e−ρv2(ρ) =

∫

Λ

(ρ2 + 2ρ+ 2)e−ρ(∂ρv(ρ))
2dρ+

∫

Λ

(2ρ+ 4)e−ρv2(ρ)dρ

≤ 4 ‖v‖2
1,η,Λ.

Combining Lemmas 3.1 and 3.2, we obtain the following result:
Lemma 3.3. For any v ∈ Ar(Λ) and integer r ≥ 2,

‖(ρ+ 1)e−
ρ
2 (0Π

1
Nv − v)‖L∞(Λ) ≤ cN1− r

2 |v|Ar ,Λ.

Since we will expand functions in the azimuthal direction by a Fourier series, we recall a basic
result on the Fourier approximation in one-dimension. Let I = (0, 2π) andHr(I) be the Sobolev
space with norm ‖ · ‖r,I and semi-norm | · |r,I . For any non-negative integer m, Hm

p (I) denotes
the subspace of Hm(I), consisting of all functions whose derivatives of order up to m − 1 are
periodic with the period 2π. For any real r > 0, the space Hr

p (I) is defined as in Adams [1]. In

particular, L2
p(I) = H0

p (I). Let M be any positive integer, and ṼM (I) = span
{

eilθ | |l| ≤M
}

.

We denote by VM (I) the subset of ṼM (I) consisting of all real-valued functions.
As usual, the L2

p(I)-orthogonal projection PM : L2
p(I) → VM (I) is defined by

∫

I

(PMv(θ) − v(θ))φ(θ)dθ = 0, ∀φ ∈ VM (I).

The next lemma can be found in Canuto, Hussaini, Quarteroni and Zang [4].
Lemma 3.4. Let integer r ≥ 0 and µ ≤ r. Then for any v ∈ Hr

p(I),

‖PMv − v‖µ,I ≤ cMµ−r|v|r,I .
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We are now in position to study the mixed Laguerre-Fourier approximation.
Let Ω = Λ × I and L2

χ(Ω) be the weighted Sobolev space with the following inner product
and norm,

(u, v)χ =

∫

Ω

u(ρ, θ)v(ρ, θ)χ(ρ)dρdθ, ‖v‖ = (v, v)
1
2
χ .

The weighted Sobolev spaces Hr
χ(Ω) and its norm ‖v‖r,χ and semi-norm |v|r,χ are defined in

the usual manner. In particular, we set

0H
1
p,ω(Ω) =

{

v ∈ H1
ω(Ω) | v(ρ, θ + 2π) = v(ρ, θ) and v(0, θ) = 0, for θ ∈ I, ρ ∈ Λ

}

.

Next, we define the non-isotropic space

0H
1
p,η,ω(Ω) = { v | v is measurable on Ω and ‖v‖1,η,ω <∞}

where

|v|1,η,ω = (‖∂ρv‖2
η + ‖∂θv‖2

ω)
1
2 , ‖v‖1,η,ω = (|v|21,η,ω + ‖v‖2

ω)
1
2 .

Let use denote

VN,M (Ω) = 0PN (Λ) ⊗ VM (I).

We define an orthogonal projector 0P
1
N,M : 0H

1
p,η,ω(Ω) → VN,M by

(

∂ρ(0P
1
N,Mv − v), ∂ρφ

)

η
+
(

∂θ(0P
1
N,Mv − v), ∂θφ

)

ω
= 0, ∀φ ∈ VN,M . (3.5)

In order to describe the approximation results related to this projection operator, we introduce
the non-isotropic space

Br,s = Ar(Λ, H1
p (I)) ∩ A2(Λ, Hs

p(I)) ∩H1
η (Λ, Hs−1

p (I)),

equipped with the norm

‖v‖Br,s =
(

‖v‖2
Ar(Λ,H1(I)) + ‖v‖2

A2(Λ,Hs(I)) + ‖v‖2
H1

η(Λ,Hs−1(I))

)
1
2

where the space Ar(Λ) and its norm are the same as in (3.1).
Theorem 3.1. For any v ∈ Br,s ∩ 0H

1
p,η,ω(Ω) and integers r ≥ 2, s ≥ 1, we have

‖v − 0P
1
N,Mv‖1,η,ω ≤ c(N1− r

2 +M1−s)‖v‖Br,s .

Proof. By the projection theorem,

|v − 0P
1
N,Mv|1,η,ω ≤ |v − φ|1,η,ω, ∀φ ∈ VN,M (Ω). (3.6)

Let φ = 0Π
1
N (PM v). We use Lemmas 3.1 and 3.4 to deduce that

‖∂ρ(v − 0Π
1
N (PMv))‖η ≤ ‖∂ρv − PM (∂ρv)‖η + ‖∂ρ(PM v − 0Π

1
N (PMv))‖η

≤ cM1−s‖∂ρv‖L2
η(Λ,Hs−1(I)) + cN1− r

2 ‖PMv‖Ar(Λ,L2(I))

≤ cM1−s‖∂ρv‖L2
η(Λ,Hs−1(I)) + cN1− r

2 ‖v‖Ar(Λ,L2(I))

≤ c(M1−s +N1− r
2 )‖v‖Br,s .

(3.7)
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Using Lemmas 3.1 and 3.4 again, we obtain that

‖∂θ(v − 0Π
1
N (PMv))‖ω ≤ ‖0Π

1
N∂θv − ∂θv‖ω + ‖0Π

1
N (∂θ(PMv − ∂θv))‖ω

≤ ‖0Π
1
N∂θv − ∂θv‖η + ‖0Π

1
N (∂θ(PMv − v))‖η

≤ cN1− r
2 ‖∂θv‖Ar(Λ,L2(I)) + c‖∂θ(PM v − v)‖A2(Λ,L2(I))

≤ cN1− r
2 ‖∂θv‖Ar(Λ,L2(I)) + cM1−s‖v‖A2(Λ,Hs(I))

≤ c(N1− r
2 +M1−s)‖v‖Br,s .

(3.8)

The combination of (3.6)-(3.8) leads to

|v − 0P
1
N,Mv|1,η,ω ≤ c(N1− r

2 +M1−s)‖v‖Br,s .

Finally, by Lemma 2.2 with α = 0,

‖v − 0P
1
N,Mv‖ω ≤ c‖∂ρ(v − 0P

1
N,Mv)‖ω ≤ c‖∂ρ(v − 0P

1
N,Mv)‖η

≤ c|v − 0P
1
N,Mv|1,η,ω ≤ c(N1− r

2 +M1−s)‖v‖Br,s .

4. Mixed Laguerre-Fourier Spectral Method for Exterior Problems

In this section, we take a model problem as an example to show how to construct and
analyze the mixed Laguerre-Fourier schemes for exterior problems.

Let x = (x1, x2), |x| =
√

x2
1 + x2

2 and Ω̃ = { x | |x| > 1}. We consider the following model
problem

{

−∆U + βU = F, in Ω̃,
U(x)|∂Ω̃ = g, lim

|x|→∞
U(x) = 0, (4.1)

where β is a positive constant, and F and g are given functions. For simplicity, we assume that
g ≡ 0.

Under the following polar transformation:

x1 = (ρ+ 1) cos θ, x2 = (ρ+ 1) sin θ, Ū(ρ, θ) = U(x1, x2), F̄ (ρ, θ) = F (x1, x2),

the problem (4.1) becomes















− 1

ρ+ 1
∂ρ((ρ+ 1)∂ρŪ) − 1

(ρ+ 1)2
∂2

θ Ū + βŪ = F̄ , in Ω,

Ū(0, θ) = 0, Ū(ρ, θ + 2π) = Ū(ρ, θ), lim
ρ→∞

Ū(ρ, θ) = 0, θ ∈ I.
(4.2)

Since Problem (4.1) is well-posed in the standard functional space, it is not appropriate to
consider (4.2) in a weighted Sobolev space with the Laguerre weight ω(ρ). Hence, we use the
following change of variables

u(ρ, θ) = (ρ+ 1)−
1
2 e

1
2
ρŪ(ρ, θ), f(ρ, θ) = (ρ+ 1)

3
2 e

1
2
ρF̄ (ρ, θ),

to transform (4.2) to










−(ρ+ 1)2∂2
ρu+ (ρ2 − 1)∂ρu− ∂2

θu+ (β(ρ+ 1)2 + 1
2 + 1

2ρ− 1
4ρ

2)u = f, in Ω,

u(0, θ) = 0, u(ρ, θ + 2π) = u(ρ, θ), lim
ρ→∞

(ρ+ 1)
1
2 e−

1
2
ρu(ρ, θ) = 0, θ ∈ I.

(4.3)
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We now consider the existence and regularity of solutions for the problem (4.3). For this
purpose, let us denote

A(u, v) =

∫

Ω

(ρ+ 1)2e−ρ∂ρu∂ρvdρdθ +

∫

Ω

e−ρ∂θu∂θvdρdθ

+

∫

Ω

e−ρ

(

β(ρ+ 1)2 − 1

4
ρ2 +

1

2
ρ+

1

2

)

uvdρdθ.

A weighted (with ω(ρ) = e−ρ and η(ρ) = (ρ + 1)2e−ρ)) weak formulation of (4.3) is to find
u ∈ 0H

1
p,η,ω(Ω) such that

A(u, v) = (f, v)ω , ∀v ∈ 0H
1
p,η,ω(Ω). (4.4)

Lemma 4.1. For any u, v ∈ 0H
1
p,η,ω(Ω),

A(v, v)≥
∫

Ω

(ρ+ 1)2e−ρ(∂ρv(ρ, θ))
2dρdθ +

∫

Ω

e−ρ(∂θv(ρ, θ))
2dρdθ

+(β − 1
4 )

∫

Ω

(ρ+ 1)2e−ρv2(ρ, θ)dρdθ +
3

4

∫

Ω

e−ρv2(ρ, θ)dρdθ,

and
|A(u, v)| ≤ c‖u‖1,η,ω‖v‖1,η,ω.

Proof. Obviously

−1

4
ρ2 +

1

2
ρ+

1

2
≥ −1

4
(ρ+ 1)2 +

3

4
,

which leads to the first result. The second result follows from Lemma 2.2 with α = 2.
Theorem 4.1. If β ≥ 1

4 and (ρ+ 1)−1f ∈ L2
ω(Ω), then, (4.4) admits a unique solution u(ρ, θ)

with ‖u‖1,η,ω ≤ c‖(ρ+ 1)−1f‖ω.
Proof. Due to β ≥ 1

4 and Lemma 4.1, A(u, v) is coercive on 0H
1
p,η,ω(Ω) × 0H

1
p,η,ω(Ω).

Moreover, by the result (iii) of Lemma 2.2,

|(f, v)ω | ≤ c‖v‖1,η,ω‖(ρ+ 1)−1f‖ω.

Thus, the conclusion follows from the Lax-Milgram Lemma.
Remark 4.1. The condition on f in Theorem 4.1 means (ρ+ 1)

1
2 F̄ ∈ L2

ω(Ω), and equivalently
F ∈ L2(Ω̃).

Next, we consider the mixed Laguerre-Fourier approximation for (4.4): find uN,M ∈ VN,M

such that
A(uN,M , φ) = (f, φ)ω , ∀φ ∈ VN,M . (4.5)

The following result is a direct consequence of Lemmas 2.1 and 4.1, and the Lax-Milgram
Lemma.
Theorem 4.2. For β ≥ 1

4 , the problem (4.5) admits a unique solution uN,M . Moreover,

‖∂ρuN,M‖2
η + ‖∂θuN,M‖2

ω + (β − 1

4
)‖uN,M‖2

η +
1

2
‖uN,M‖2

ω ≤ ‖(ρ+ 1)−1f‖2
ω. (4.6)

We now turn our attention to the error analysis.
Theorem 4.3. Let β ≥ 1

4 and integers r ≥ 2, s ≥ 1. For u ∈ Br,s(Ω), we have

‖∂ρ(u− uN,M )‖2
η + (β − 1

4
)‖u− uN,M‖2

η + ‖∂θ(u− uN,M)‖2
ω ≤ c(N1− r

2 +M1−s)2‖u‖2
Br,s.
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Proof. Let u∗N,M = 0P
1
N,Mu. We obtain from (3.5) and (4.4) that

∫

Ω

(ρ+ 1)2e−ρ∂ρu
∗
N,M∂ρφdρdθ +

∫

Ω

e−ρ∂θu
∗
N,M∂θφdρdθ

+

∫

Ω

e−ρ

(

β(ρ+ 1)2 − 1

4
ρ2 +

1

2
ρ+

1

2

)

uφdρdθ =

∫

Ω

e−ρfφdρdθ, ∀φ ∈ VN,M .
(4.7)

Now setting ũN,M = uN,M − u∗N,M and subtracting (4.7) from (4.5), we obtain

A(ũN,M , φ) = G(u, u∗N,M ;φ), ∀φ ∈ VN,M (4.8)

where

G(u, u∗N,M ;φ) =

∫

Ω

e−ρ

(

β(ρ+ 1)2 − 1

4
ρ2 +

1

2
ρ+

1

2

)

(u− u∗N,M)φdρdθ.

By Lemma 2.2 with α = 2,

‖ũN,M‖2
η ≤ c(‖∂ρũN,M‖2

η + ‖ũN,M‖2
ω).

Therefore, we deduce that for any δ > 0,

|G(u, u∗N,M ; ũN,M)| ≤ δ(||∂ρũN,M ||2η + ||ũM,N ||2ω) + c
δ
(‖∂ρ(u− u∗N,M)‖2

η + ‖u− u∗N,M‖2
ω).
(4.9)

Taking φ = ũN,M in (4.8), we use (4.9), Lemma 4.1 and Theorem 3.1 to obtain that

‖∂ρũN,M‖2
η + (β − 1

4
)‖ũN,M‖2

η + ‖∂θũN,M‖2
ω ≤ c(N1− r

2 +M1−s)2||u||2Br,s

which completes the proof.
Remark 4.2. The numerical solution of the original problem (4.1) is

UN,M = (1 + ρ)
1
2 e−

ρ
2 uN,M .

Thanks to Theorem 4.3 and the fact that U = (1 + ρ)
1
2 e−

1
2
ρu, we can obtain the following

estimate:

‖U − UN,M‖H1(Ω̃) ≤ c(N1− r
2 +M1−s)‖(1 + ρ)−

1
2 e

ρ
2U‖Br,s .

Remark 4.3. It can be shown, by using a suitable transformation, that the results of Theorems
4.1-4.3 are also valid for any β > 0. However, how to extend the convergence result to the more
interesting case, β < 0, is still an open question. Nevertheless, the algorithm developed here
can still be used to approximate the solution of (4.1) in the case of β < 0.

5. Implementation Details and Numerical Results

Let us first describe in some details an efficient implementation for scheme (4.5). For

simplicity, we denote L(0)
l (ρ) by Ll(ρ) and set

ψl(ρ) = Ll−1(ρ) −Ll(ρ), 1 ≤ l ≤ N,

and

φ1
lm(ρ, θ) = ψl(ρ) cosmθ, 1 ≤ l ≤ N, 0 ≤ m ≤M.

φ2
lm(ρ, θ) = ψl(ρ) sinmθ, 1 ≤ l ≤ N, 1 ≤ m ≤M.
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Since ψl(1) = 0, φlm can be used as basis functions for VNM . Hence, we can expand uN,M as

uN,M(ρ, θ) =

N
∑

l=1

(

M
∑

m=0

u1
lmφ

1
lm(ρ, θ) +

M
∑

m=1

u2
lmφ

2
lm(ρ, θ)

)

.

On the other hand, we write

f(ρ, θ) =

∞
∑

l=0

∞
∑

m=0

(f1
l,mLl(ρ) cosmθ + f2

l,mLl(ρ) sinmθ).

We note that in actual computation, the Fourier-Laguerre Gauss-Radau quadrature should be
used to approximate the values of {f q

k,n}.
Let us denote

ZM = {(q, n) : q = 1, n = 0, 1, · · · ,M ; q = 2, n = 1, 2, · · · ,M}.

Taking φ(ρ, θ) = φ
q
kn(ρ, θ) in (4.5) for (q, n) ∈ ZM , we derive by using the orthogonality of the

trigonometric functions that (4.5) is equivalent to the following 2M + 1 linear systems:

N
∑

l=1

(
∫

Λ

(ρ+ 1)2e−ρ∂ρψl∂ρψkdρ+

∫

Λ

e−ρ(β(ρ+ 1)2 + n2 − 1

4
ρ2 +

1

2
ρ+

1

2
)ψlψkdρ

)

u
q
ln

= g
q
k,n, 1 ≤ k ≤ N,

(5.1)
where gq

k,n = f
q
k−1,n − f

q
k,n, 1 ≤ k ≤ N.

Let us denote

x̄q
n = (uq

1,n, u
q
2,n, · · · , uq

N,n)T , ḡq
n = (gq

1,n, g
q
2,n, · · · , gq

N,n)T ,

alk =

∫

Λ

(ρ+ 1)2e−ρ∂ρψl(ρ)∂ρψk(ρ)dρ, A = (akl)k,l=1,2,··· ,N ,

blk =

∫

Λ

e−ρψl(ρ)ψk(ρ)dρ, B = (bkl)k,l=1,2,··· ,N ,

clk =

∫

Λ

ρe−ρψl(ρ)ψk(ρ)dρ, C = (ckl)k,l=1,2,··· ,N ,

dlk =

∫

Λ

ρ2e−ρψl(ρ)ψk(ρ)dρ, D = (dkl)k,l=1,2,··· ,N .

Then, (5.1) becomes

(A+ (β + n2 +
1

2
)B + (2β +

1

2
)C + (β − 1

4
)D)x̄q

n = ḡq
n, (q, n) ∈ ZM . (5.2)

Using the orthogonality relations of Laguerre polynomials, one can easily derive that

akl =















6k2 − 2k + 1, l = k,

−4k2 + 2k − 1 ± (1 − 4k), l = k ± 1,
k2 − k + 1± (2k − 1), l = k ± 2,
0, otherwise,

bkl =







2, l = k,

−1, l = k ± 1,
0, otherwise,
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Figure 5.1. Convergence rate for N = M2

ckl =















6k, l = k,

−2(2k ± 1), l = k ± 1,
k ± 1, l = k ± 2,
0, otherwise,

dkl =























4(5k2 + 1), l = k,

−(15k2 ± 15k + 6), l = k ± 1,
6(k ± 1)2, l = k ± 2,
−(k ± 1)(k ± 2), l = k ± 3,
0, otherwise.

Thus, the matrices in the linear system (5.2) are symmetric with five or seven non-zero diagonals.
Hence, the system (5.2) can be efficiently solved. Note that an efficient algorithm based on the
Laguerre functions was proposed in [18]. However, the corresponding linear system there,
although sparse, was not symmetric. Hence, the algorithm presented here is advantageous in
this regard.

We now present an illustrative numerical result. We take the exact solution of (4.3) to be

u(ρ, θ) =
ρ2

ρ+ 1.0
e−ρ sin θ

and use the scheme (4.5) to obtain the numerical solution uN,M . We set EN,M = ‖u −
uN,M‖L2

ω(Ω). It can be easily checked that ‖u‖Br,s is finite for any r, s > 0. Hence, Theo-
rem 4.3 indicates that EN,M converges to zero faster than any algebraic power.

Note that Theorem 4.3 indicates that at least for smooth functions, a proper relation between
N and M is: N ∼ M2. In Figure 1, we plot the convergence rates of the scheme (4.5) with
N = M2. The straight line in Figure 1 indicates that the error EN,M behaves like exp(−c

√
N),

i.e., it converges sub-geometrically.
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6. Concluding Remarks

In the first part of this paper, we studied the generalized Laguerre approximations and
established error estimates in the non-uniformly weighted spaces for various orthogonal projec-
tions. These estimates improve previously published results for the special case α = 0 and are
valid for the generalized Laguerre approximations with α > −1.

In the second part, we proposed a mixed Laguerre-Fourier spectral method for the Helmholtz
equation in a two dimensional exterior domain. We obtained sharp error estimates for the
proposed method by transforming the original system, which is not well-posed in the desired
weighted Sobolev spaces, to a system which is well-posed in a suitable functional space. We
have also constructed an efficient numerical algorithm and presented an illustrative numerical
result.

Note that in terms of numerical algorithm, the effect of the change of variable is equivalent to
using an approximation by Laguerre functions as in [18]. However, to carry out the analysis for
the approximation using Laguerre functions, one needs to develop corresponding approximation
results which are beyond the scope of this paper.

Although we only considered a simple model problem in this paper, but the results developed
here will be useful for the numerical analysis of more complicated equations in fluid dynamics
and electromagnetics.
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