
Journal of Computational Mathematics, Vol.23, No.1, 2005, 101–112.

ON LOCKING-FREE FINITE ELEMENT SCHEMES FOR

THREE-DIMENSIONAL ELASTICITY ∗1)

He Qi Lie-heng Wang Wei-ying Zheng
(LSEC, ICMSEC, Academy of Mathematics and System Sciences, Chinese Academy of Sciences,

Beijing 100080, China)

Abstract

In the present paper, the authors discuss the locking phenomenon of the finite element
method for three-dimensional elasticity as the Lamé constant λ → ∞. Three kinds of finite
elements are proposed and analyzed to approximate the three-dimensional elasticity with
pure displacement boundary condition. Optimal order error estimates which are uniform
with respect to λ ∈ (0, +∞) are obtained for three schemes. Furthermore, numerical results
are presented to show that, our schemes are locking-free and and the trilinear conforming
finite element scheme is locking.
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1. Introduction

For the linear isotropic elasticity, it is well known that many numerical methods suffer
deteriorations in performance as the Lame constant λ → ∞, i.e., as the material becomes
incompressible[1]. This is the so-called locking phenomenon. Many literatures concerning the
planar elasticity have appeared to be locking-free[2] [3] [9] [13] [14] [15]. In 1983, M. Vogelius [18]
considered conforming finite element approximations to the linear planar elasticity as λ → ∞.
He showed that the piecewise linear conforming finite element scheme did not converge any
more. For higher order conforming finite element schemes, optimal error estimates could not
be obtained. To overcome the locking, we need to construct some finite element schemes whose
optimal error estimates are uniform with respect to λ ∈ (0,∞). They are nonconforming
in general. In [2],[3],[14] and [15], some nonconforming finite finite elements are constructed
and analyzed, to be locking-free. The authors obtained optimal error estimates uniform for
λ ∈ (0,∞), by virtue of the variational formula of pure displacement boundary value problem,
based on the minimization of the energy functional. The pure traction boundary value problem
was considered in [9], [12] and [16] by triangular element approximations, in [21] by quadrilateral
element approximations and [13] by the NRQ1 element approximations following the argument
of [21] by the mixed finite element analysis.

To the best of our knowledge, no paper deals with the locking phenomenon of three-
dimensional elasticity by finite element methods. Since discrete variational formulas, based
on the minimization of the energy functional, are easier to be solved than the mixed formula,
we consider this formula with pure displacement boundary condition. In the present paper, the
three-dimensional Crouzeix-Raviart element is showed to be locking-free and the optimal error
estimate is obtain. We construct two kinds of nonconforming cuboidal finite elements showed
to be locking-free and obtain optimal error estimates of them. The order of one of our schemes
is the lowest. We also present some numerical experiments to show the locking phenomenon of

∗ Received June 2, 2003; July 6, 2004.
1) This work is supported by China Postdoctoral Science Foundation.



102 H. QI, L.H. WANG AND W.Y. ZHENG

the trilinear conforming finite element and the locking-free of our lowest order nonconforming
finite element. The conforming element converges well when λ is small, but loses convergency
when λ → ∞. Our lowest locking-free scheme converges very well and uniformly for λ ∈ (0,∞).

The paper is arranged as follows: In section 2, we present the preliminary consideration
of three-dimensional linear elasticity with pure displacement boundary condition, the locking
phenomenon of conforming finite element method and the construction of locking-free finite
element method. In section 3, we present the Crouziex-Raviart tetrahedral finite element and
construct two kinds of nonconforming cuboidal elements first, then show that they satisfy some
general conditions required to be locking-free. In section 4, three finite element schemes are
presented and showed to be locking-free; optimal error estimates of them are obtained, uniformly
for λ ∈ (0,∞). We end this paper with some numerical examples in the last section.

2. Preliminary

For isotropic and homogeneous materials, we consider the pure displacement boundary value
problem of three-dimensional linear elasticity. Let Ω ∈ R3 be a bounded convex polyhedron
with the boundary ∂Ω. The displacement ~u(x) = (u1(x), u2(x), u3(x))T satisfies the following
partial differential equation:

{

−div σ(~u) = ~f, in Ω,

~u = ~0, on ∂ Ω,
(2.1)

where ~f ∈ L2(Ω)3, and

σ(~u) = µ
(

∇~u + (∇~u)T
)

+ λ div~u I, div~u =
∂u1

∂x
+

∂u2

∂y
+

∂u3

∂z
,

and I is the identity. (2.1) is equivalent to the following boundary value problem
{

−µ∆~u − (µ + λ)∇(div~u) = ~f in Ω,
~u = 0 on ∂Ω,

(2.2)

whose equivalent weak form is
{

Find ~u ∈ V, such that

a(~u,~v) = (~f,~v) ∀~v ∈ V,
(2.3)

where V = H1
0 (Ω)3,

a(~u,~v) =

∫

Ω

{

µ

3
∑

i=1

∇ui · ∇vi + (µ + λ)(div~u)(div~v)
}

dx, (2.4)

(~f,~v) =

∫

Ω

~f · ~vdx, (2.5)

and λ ∈ (0,∞), µ ∈ [µ1, µ2], 0 < µ1 < µ2 are Lamé constants.
It is easy to see that the bilinear form in (2.4) is symmetric, coercive and continuous on V by

Poincáre’s inequality and the Lax-Milgram Theorem. So there exists a unique solution of (2.3).
To analyze the convergence of our finite element schemes, we need the following assumption:
Proposition 2.1. Assume Ω ⊂ R3 is a convex polyhedron. ~u is the solution of (2.1) or (2.2).
Then the following regularity of ~u is true:

‖~u‖2,Ω + λ‖div~u‖1,Ω ≤ C‖~f‖0,Ω, (2.6)

where C is a positive constant independent of λ.
Remark 2.2. Proposition 2.1 is true for the planar elasticity(see [2][3]). But as for the three-
dimensional case, we have not found the result to the best our knowledge. Since the proof of
(2.6) is far more difficult than that of the planar case and beyond the object of this paper, we
use it as an assumption and do not attempt to prove it. A rougher result is (see Theorem 6.3-6
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of [6], pp. 262): ~u ∈ H2(Ω)3 in the case of ∂Ω ∈ C2. Furthermore, we give a numerical example
in the last section to show our error estimate coincides with real computation very well.

Now we consider conforming finite element approximations to the problem (2.3). Let Th be
a regular subdivision of Ω and V c

h ⊂ V = H1
0 (Ω)3 be the conforming finite element space. Then

the approximation of (2.3) is
{

Find ~uh ∈ V c
h , such that

a(~uh, ~vh) = (~f,~vh), ∀~vh ∈ V c
h .

(2.7)

We can establish the following error estimate:
Theorem 2.3 (see [3] and [15]). Let ~u and ~uh are solutions of (2.3) and (2.7) respectively,
then

‖~u − ~uh‖1,Ω ≤ C
√

2µ + λ · h|~u|2,Ω, (2.8)

where C > 0 is a generic constant and independent of h and λ.
Remark 2.4. From Theorem 2.3, it can be seen that the solution ~uh of the conforming finite
element approximation (2.5) converges to the solution ~u of the problem (2.2), as h → 0, for
each fixed λ; but we can not say anything for convergency of ~uh when λ → ∞. In fact, in the
last section, we will show by numerical example that the trilinear conforming finite element
solution of (2.2) does not converge to the true solution any more. By (2.6) and the argument
of [15], we will bound

λ‖div(~u − Πh~u)‖2
0,Ω, (2.9)

by a quantity independent of λ to overcome the locking phenomenon. If we can construct a
finite element space Vh, and an interpolation operator Πh : H2(Ω)3 → Vh, such that

divΠh~u = γhdiv~u, (2.10)

where the operator γh : L2(Ω) → Wh and Wh is a piecewise polynomial space of lower order
than that of Vh; and the following error estimate is true:

‖div~u − γh(div~u)‖0,Ω ≤ Ch|div~u|1,Ω. (2.11)

Combining (2.6) and (2.9)-(2.11) gives an uniformly optimal error estimate with respect to
λ ∈ (0,∞).

This idea coincides with the Commuting diagram property:

U ⊂ H(div; Ω) div
−→ L2(Ω)

↓ Πh ↓ γh

Vh
div
−→ Wh

(2.12)

Following this, we introduce three kind of finite element interpolation operators giving our
desired locking-free schemes.

3. Locking-free Nonconforming Finite Element Schemes

We define nonconforming finite element spaces as follows:

Vh =

{

~vh ∈ L2(Ω)3 | ~vh ∈ PK ,

∫

F

~v+

h ds =

∫

F

~v−h ds, ∀F ⊂ ∂K+ ∩ ∂K−,

and F 6⊂ ∂Ω,

∫

F

~vhds = 0, ∀F ⊂ ∂Ω
}

, (3.1)

where PK are three kinds of shape function spaces defined in the rest of this section. We define
the discrete bilinear form and energy norm as

ah(~uh, ~vh) :=
∑

K∈Th

∫

K

{µ∇~uh · ∇~vh + (µ + λ)(div~uh)(div~vh)}dx, (3.2)

‖~u‖h :=
√

ah(~uh, ~uh). (3.3)
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Then the approximation of (2.3) is
{

Find ~uh ∈ Vh, such that

ah(~uh, ~vh) = (~f,~vh), ∀~vh ∈ Vh.
(3.4)

For the sake of simplicity in notation, we denote ΠK , γK , Πh and γh as the corresponding
finite element interpolation operators, in all the following three cases.

3.1 Crouzeix-Raviart Element Approximation
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Fig 3.1: A tetrahedral element. Fig 3.2: Adjacent tetrahedral elements.

Now we introduce the three-dimensional Crouzeix-Raviart finite element interpolation oper-
ators ΠK and Πh, and show that divΠK is in the form of (2.10). Let Th be a regular subdivision.
For any K ∈ Th, by notations in [7], the triple (K, ΣK , PK) is defined as follows:











K — tetrahedron;

ΣK =
{

1

|ei|

∫

ei
vjds, 1 ≤ j ≤ 3; 1 ≤ i ≤ 4

}

, ∀~v = (v1, v2, v3)
T ∈ PK ;

PK = P1(K) × P1(K) × P1(K).

(3.5)

Pk(K) is the polynomial space of order k on K. Choose a basis of P1(K) to be

p1 = 1 − 3λ1, p2 = 1 − 3λ2, p3 = 1 − 3λ3, p4 = 1− 3λ4. (3.6)

For any function v ∈ H1(K), define the interpolation operator on K as

ΠKv =
4
∑

i=1

1

|ei|

∫

ei

vds pi. (3.7)

For any vector-valued function ~u = (u1, u2, u3)
T , define the interpolation operators as: ΠK~u =

(ΠKu1, ΠKu2, ΠKu3)
T , Πh~u|K = ΠK~u, ∀K ∈ Th.

Lemma 3.1. For any ~v ∈ H1(Ω)3, Πh~v ∈ Vh.
Proof. In fact, for two adjacent elements K+ and K− with a common face F , by direct

calculation, we have
∫

F

ΠK+~vds =

∫

F

~vds =

∫

F

ΠK−~vds.

The proof is finished.
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Lemma 3.2. There exists a positive constant C independent of the mesh size h, such that

‖~v − Πh~v‖0,Ω + h|~v − Πh~v|1,Ω ≤ Ch2‖~v‖2,Ω, ∀~v ∈ H2(Ω)3. (3.8)

Proof. Since PK = (P1(K)3, Lemma 3.1 can be proved by the Bramble-Hilbert Theorem[5]
and the technique of affine transformation. The proof is finished.

We choose γh to be the simplest piecewise projection operator defined as follows. Let γK

be the L2-projection from L2(K) onto P0(K), i.e.

γK(div~v) =
1

|K|

∫

K

div~vdxdy, (3.9)

where |K| =
∫

K
1dxdy. Denote Wh as the piecewise constant space defined on Ω, i.e.

Wh = {w | w|K = Const., ∀K ∈ Th}. (3.10)

and γh : L2(Ω) → Wh defined as

γhw|K = γKw ∀w ∈ L2(Ω), ∀K ∈ Th. (3.11)

Lemma 3.3. There exists a constant C independent of the mesh size h, such that

divΠK~v = γKdiv~v, ∀K ∈ Th, ∀~v ∈ H1(Ω)3, (3.12)

‖w − γhw‖0,Ω ≤ Ch‖w‖1,Ω, ∀w ∈ H1(Ω). (3.13)

Proof. For any ~v ∈ H1(Ω)3 and K ∈ Th, by Green’s formula,

divΠK~v =
1

|K|

∫

K

divΠK~vdx =
1

|K|

4
∑

i=1

∫

ei

(ΠK~v) · ~nds

=
1

|K|

4
∑

i=1

∫

ei

~v · ~nds =
1

|K|

∫

K

div~vdx

= γK(div~v), (3.14)

where ~n is the outer normal of ∂K. By the definition of γh and the technique of affine trans-
formation, (3.11) can be easily gotten. The proof is finished.

3.2 Locking-free cuboidal finite element of the lowest order

Assume Ω ⊂ R3 be a cuboidal domain and Th be one of its cuboidal regular partition. h is
the mesh length. The triple (K̂, Σ̂, P̂ ) is defined as:



















K̂ := [−1, 1]3 ;

P̂ := span{~pi = (pi1, pi2, pi3), 1 ≤ i ≤ 6} ;

Σ̂ :=

{

1

|F̂i|

∫

F̂i

vjdŝ, 1 ≤ j ≤ 3; 1 ≤ i ≤ 6

}

, (v1, v2, v3)
T ∈ P̂ ,

(3.15)

where F̂i, 1 ≤ i ≤ 6 are faces of K̂ defined as

F̂1 = {(ξ, η, ζ) ∈ K̂ | ξ = 1}, F̂2 = {(ξ, η, ζ) ∈ K̂ | η = 1},

F̂3 = {(ξ, η, ζ) ∈ K̂ | ζ = 1}, F̂4 = {(ξ, η, ζ) ∈ K̂ | ξ = −1},

F̂5 = {(ξ, η, ζ) ∈ K̂ | η = −1}, F̂6 = {(ξ, η, ζ) ∈ K̂ | ζ = −1},
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and the basis of P̂ is defined as

p11 = 1 +
1

2
ξ −

3

4
η2 −

3

4
ζ2 p12 =

1

4
+

1

2
η −

3

4
η2 p13 = 1 −

1

2
ξ −

3

4
η2 −

3

4
ζ2

p14 = −
1

4
+

1

2
η +

3

4
η2 p15 =

1

4
+

1

2
ζ −

3

4
ζ2 p16 = −

1

4
−

1

2
ζ +

3

4
ζ2

p21 =
1

4
+

1

2
ξ −

3

4
ξ2 p22 = 1 +

1

2
η −

3

4
ξ2 −

3

4
ζ2 p23 = −

1

4
+

1

2
ξ +

3

4
ξ2

p24 = 1 −
1

2
η −

3

4
ξ2 −

3

4
ζ2 p25 = −

1

4
+

1

2
ζ +

3

4
ζ2 p26 = −

1

4
−

1

2
ζ +

3

4
ζ2

p31 = −
1

4
+

1

2
ξ +

3

4
ξ2 p32 = −

1

4
+

1

2
η +

3

4
η2 p33 = −

1

4
−

1

2
ξ +

3

4
ξ2

p34 = −
1

4
−

1

2
η +

3

4
η2 p35 = 1 +

1

2
ζ −

3

4
ξ2 −

3

4
η2 p36 = 1−

1

2
ζ −

3

4
ξ2 −

3

4
η2.

(3.16)

It is easy to show that every function in P̂ is uni-solvent with respect to Σ̂ and
∫

F̂i

pmj dŝ = δij , 1 ≤ m ≤ 3, 1 ≤ i, j ≤ 6. (3.17)
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Fig 3.3: A cuboidal element. Fig 3.4: Adjacent cuboidal elements.

We will define an 18-freedom cuboidal finite element interpolation operator for vector-valued
functions in the following. It has similar properties to the Crouzeix-Raviart interpolation op-
erator and divΠK satisfies the commuting diagram (2.1). In next section, we will show that it
is locking-free.

First we define Π̂ on the reference element as: for any v̂ = (v̂1, v̂2, v̂3) ∈ H1(K̂)3,

Π̂~v :=

(

6
∑

i=1

1

|F̂i|

∫

F̂i

v̂1 dŝ p1i,

6
∑

i=1

1

|F̂i|

∫

F̂i

v̂2 dŝ p2i,

6
∑

i=1

1

|F̂i|

∫

F̂i

v̂3 dŝ p3i

)T

. (3.18)

For any K ∈ Th, let (x0, y0, z0) be the center of K and h1K , h2K , h3K be edge lengths of K(see
fig 3.3). The affine transformation F−1

K : K → K̂ is defined as:

ξ =
x − x0

h1K

, η =
y − y0

h2K

, ζ =
z − z0

h3K

. (3.19)

For any ~v ∈ H1(K)3, Piola’s transformation(page 100 of [4]) reads

v̂ =





h2Kh3K 0 0
0 h1Kh3K 0
0 0 h1Kh2K



~v ◦ FK . (3.20)
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Hence the shape function space on K is

PK =
{

~v | (h2h3 v1 ◦ FK , h1h3 v2 ◦ FK , h1h2 v3 ◦ FK)T ∈ P̂
}

. (3.21)

For any ~v ∈ H1(Ω)3, the local and global finite element interpolation operators ΠK and Πh are
defined as

Π̂K~v = Π̂v̂, (Πh~v)|K = ΠK(~v|K) . (3.22)

Lemma 3.4. Π̂ is a bounded linear operator on H1(K̂)3. For any ~v ∈ H1(Ω)3, Πh~v ∈ Vh.
Proof. Thanks to (3.17), (3.18), and (3.20), the Lemma can be proved by means of scaling

techniques and the trace inequality.
The definitions of the L2-orthogonal projection γK , piecewise constant L2-projection γh,

and piecewise constant function space Wh are same to (3.9)–(3.11), but based on cuboidal
partitions of Ω. We have the following results by similar arguments in Lemma 3.2 and 3.3.
Lemma 3.5. There exists a positive constant C independent of h such that

divΠK~v = γKdiv~v, ∀K ∈ Th, ∀~v ∈ H1(Ω)3; (3.23)

‖w − γhw‖0,Ω ≤ Ch‖w‖1,Ω, ∀w ∈ H1(Ω); (3.24)

‖~v − Πh~v‖0,Ω + h|~v − Πh~v|1,Ω ≤ Ch2‖~v‖2,Ω, ∀~v ∈ H2(Ω)3. (3.25)

3.3 21-freedom interpolation operator
Let the cuboidal domain Ω and partition Th be defined same to those in §3.2. We define

reference finite element triple (K̂, Σ̂, P̂ ) as:


















































K̂ := [−1, 1]3;

P̂ := span{~pi, 1 ≤ i ≤ 21};

Σ̂ :=

{

1

|F̂i|

∫

F̂i

vj dŝ, 1 ≤ j ≤ 3; 1 ≤ i ≤ 6;

∫

K̂

div~v ξ dξdηdζ,

∫

K̂

div~v η dξdηdζ,

∫

K̂

div~v ζ dξdηdζ
}

:= {li(~v), 1 ≤ i ≤ 21}, ∀~v = (v1, v2, v3)
T ∈ P̂ .

(3.26)

where the basis functions ~pi are defined as

~p1 = (−
1

16
+

1

8
ξ +

3

16
ξ2, 0, −

3

8
ξζ)T , ~p2 = (−

3

8
ξη,

1

4
+

1

8
ξ −

3

16
η2 −

3

16
ζ2, 0)T ,

~p3 = (0, 0, −
1

16
+

1

8
ξ +

3

16
ξ2)T , ~p4 = (−

1

16
+

1

8
η +

3

16
η2, 0, 0)T ,

~p5 = (−
3

8
ξη, −

1

16
+

1

8
η +

3

16
η2, 0)T , ~p6 = (0,

3

8
ηζ,

1

4
+

1

8
η −

3

16
ξ2 −

3

16
ζ2)T ,

~p7 = (
1

4
+

1

8
ζ −

3

16
ξ2 −

3

16
η2, 0,

3

8
ξζ)T , ~p8 = (0, −

1

16
+

1

8
ζ +

3

16
ζ2, 0)T ,

~p9 = (0, −
3

8
ηζ, −

1

16
+

1

8
ζ +

3

16
ζ2)T , ~p10 = (−

1

16
−

1

8
ξ +

3

16
ξ2, 0, −

3

8
ξζ)T ,

~p11 = (
3

8
ξη,

1

4
−

1

8
ξ −

3

16
η2 −

3

16
ζ2, 0)T , ~p12 = (0, 0, −

1

16
−

1

8
ξ +

3

16
ξ2)T ,

~p13 = (−
1

16
−

1

8
η +

3

16
η2, 0, 0)T , ~p14 = (−

3

8
ξη, −

1

16
−

1

8
ζ +

3

16
ζ2, 0)T ,

~p15 = (0,
3

8
ηζ,

1

4
−

1

8
η −

3

16
ξ2 −

3

16
ζ2)T , ~p16 = (

1

4
−

1

8
ζ −

3

16
ξ2 −

3

16
η2, 0,

3

8
ξζ)T ,

~p17 = (0, −
1

16
−

1

8
ζ +

3

16
ζ2, 0)T , ~p18 = (0, −

3

8
ηζ, −

1

16
−

1

8
ζ +

3

16
ζ2)T ,

~p19 = (0, 0,
3

8
ξζ)T , ~p20 = (

3

8
ξη, 0, 0)T , ~p21 = (0,

3

8
ηζ, 0)T .
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By direct calculations, we get

li(~pj) = δij , 1 ≤ i, j ≤ 21. (3.27)

For any v̂ ∈ H1(K̂)3, we define the interpolation operator Π̂ as

Π̂v̂ =

21
∑

i=1

li(v̂)~pi. (3.28)

Lemma 3.6. Π̂ is a bounded operator over H1(K̂)3, and there exists a constant C, such that

‖Π̂~v − ~v‖
1,K̂ ≤ C|~v|

2,K̂ , ∀~v ∈ H2(K̂)3. (3.29)

Proof. By direct calculations, we have P1(K̂)3 ⊂ P̂ . Furthermore, in view of (3.28) and the
definition of li(v̂), it is easy to see that Π̂ is bounded by the trace theorem. Hence (3.29) is true
by the Bramble-Hilbert Theorem.
Lemma 3.7. The operator defined in (3.28) satisfies

∫

F̂i

Π̂v̂dŝ =

∫

F̂i

v̂dŝ, 1 ≤ i ≤ 6; (3.30)

∫

K̂

divΠ̂v̂ p dξdηdζ =

∫

K̂

divv̂ p dξdηdζ, ∀p ∈ P1(K̂). (3.31)

Proof. (3.30) is clearly true by (3.26) — (3.28). Denote dx̂ = dξdηdζ. Since div(Π̂v̂) ∈
P1(K̂), by Green’s Formula, we have

∫

K̂

divΠ̂~̂vdx̂ =

∫

∂ K̂

Π̂~̂v · ~ndŝ =

∫

∂ K̂

~̂v · ~ndŝ =

∫

K̂

div~̂vdx̂;

∫

K̂

divΠ̂~̂v p dx̂ =

∫

K̂

div~̂v p dx̂, p = ξ, η.

So (3.31) is true. The proof is completed.
We define γK to be the L2-projection from L2(K) onto P1(K), that is:

γKw =
1

|K|

∫

K

wdx′ +
3(x − x0)

|K|h2
1

∫

K

(x′ − x0)wdx′

+
3(y − y0)

|K|h2
2

∫

K

(y′ − y0)wdx′ +
3(z − z0)

|K|h2
3

∫

K

(z′ − z0)wdx′. (3.32)

The operator γh is defined by (3.11). The piecewise linear function space of lower order on Ω
is defined as

Wh = {w ∈ L2(Ω) | w|K ∈ P1(K), ∀K ∈ Th}. (3.33)

By similar argument in Lemma 3.2 and 3.3, we can prove the following results.
Lemma 3.8. There exists a constant C independent of the mesh size h such that

Πh~v ∈ Vh, ∀~v ∈ H1(Ω)3; (3.34)

divΠK~v = γKdiv~v, ∀K ∈ Th, ∀~v ∈ H1(Ω)3; (3.35)

‖w − γhw‖0,Ω ≤ Ch‖w‖1,Ω, ∀w ∈ H1(Ω); (3.36)

‖~v − Πh~v‖0,Ω + h|~v − Πh~v|1,Ω ≤ Ch2‖~v‖2,Ω, ∀~v ∈ H2(Ω)3. (3.37)

4. Error Estimates for the Locking-free Schemes

Based on the three kinds of finite element spaces, we consider the convergence analysis
of (3.4) in a general frame. Optimal error estimate is obtained uniformly with respect to
λ ∈ (0, +∞).
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Theorem 4.1. Assume that ~f ∈ L2(Ω)3, ~u ∈ H2(Ω)3 ∩ H1
0 (Ω)3 and ~uh are the solutions of

(2.3) and (3.4) respectively. Then there exists a positive constant C independent of λ and h,
such that

‖~u− ~uh‖h ≤ Ch‖~f‖0,Ω; (4.1)

‖~u− ~uh‖0,Ω ≤ Ch2‖~f‖0,Ω. (4.2)

Proof. By the second Strang lemma(page 210, Theorem 4.2.2 of [7]), we have

‖~u− ~uh‖h ≤ C

{

inf
~vh∈Vh

‖~u− ~vh‖h + sup
06=~wh∈Vh

|ah(~u, ~wh) − (~f, ~wh)|

‖~wh‖h

}

, (4.3)

where C = Const. > 0 independent of h and λ. So it is sufficient to estimate the approximate
error and nonconforming error. The nonconforming error can be estimated as follows: By
Green’s formula,

Eh(~u, ~wh) := ah(~u, ~wh) − (~f, ~wh)

=
∑

K∈Th

∫

K

{µ∇~u : ∇~wh + (µ + λ)div~u div ~wh}dx −

∫

Ω

~f · ~whdx

= −

∫

Ω

{µ∆~u + (µ + λ)∇(div~u)}~whdx −

∫

Ω

~f · ~whdx

+
∑

K∈Th

∫

∂K

{µ∂ν~u · ~wh + (µ + λ)div~u ~wh · ~ν}ds

= µ
∑

K∈Th

∫

∂K

∂ν~u · ~whds + (µ + λ)
∑

K∈Th

∫

∂K

div~u ~wh · ~ν ds. (4.4)

Assume K+ and K− are adjacent elements with a common face F . Denote ~w±
h = ~wh|K± . Then

∫

F
~w+

h ds=
∫

F
~w−

h ds. Since
∫

F
~whds = 0 for F ⊂ ∂Ω, by the error estimate of nonconforming

finite element (see [17] and [19]), let P K
0 (w) = 1/|K|

∫

K
wdx, then

|
∑

K∈Th

∫

∂K

∂ν~u · ~whds| ≤
∑

K∈Th

3
∑

i=1

‖∂i~u − pK
0 (∂i~u)‖0,∂K · ‖~wh − pK

0 (~wh)‖0,∂K

≤ Ch|~u|2.Ω · ‖~wh‖h, (4.5)

|
∑

K∈Th

∫

∂K

div~u · ~wh · ~νds| ≤
∑

K∈Th

‖div~u− pK
0 (div~u)‖0,∂K · ‖~wh − pK

0 (~wh)‖0,∂K

≤ Ch|div~u|1,Ω · ‖~wh‖h. (4.6)

Substituting (4.5) and (4.6) into (4.4), we have

|Eh(~u, ~wh)| ≤ Ch{|~u|2,Ω + λ|div~u|1,Ω} · ‖~wh‖h. (4.7)

The approximate error can be estimated as follows: By (2.6) and Lemma 3.2, 3.3, 3.5, and
3.8, we have

inf
~v∈Vh

‖~u− ~uh‖
2
h ≤ ‖~u− Πh~u‖2

h = ah(~u − Πh~u, ~u − Πh~u)

= µ
∑

K∈Th

|~u − ΠK~u|21,K + (µ + λ)
∑

K∈Th

‖div~u − divΠK~u‖2
0,K

≤ Ch2
∑

K∈Th

|~u|22,K + (µ + λ)
∑

K∈Th

‖div~u − rKdiv~u‖2
0,K

≤ Ch2{
∑

K∈Th

|~u|22,K + λ
∑

K∈Th

|div~u|21,K}

= Ch2{|~u|22,Ω + λ|div~u|21,Ω}. (4.8)
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Substituting (4.7) and (4.8) into (4.3), we obtain (4.1) by (2.6).
(4.2) can be proved by the dual technique of the standard nonconforming element error

estimate. The proof is completed.

5. Numerical experiments

To check the convergence of our finite element schemes as λ → +∞, we carry out a numerical
experiment in this section. We can see that the present schemes converges very well and
uniformly with respect to λ ∈ (0,∞); but the trilinear conforming element scheme converges
well for small λ and is locking when λ → ∞.

Let Ω = [0, 1]× [0, 1] × [0, 1], ~f = (f1, f2, f3)
T , where

f1 = −400µ(2y − 1)(2z − 1)[3(x2 − x)2(y2 − y + z2 − z)

+(1− 6x + 6x2)(y2 − y)(z2 − z)];

f2 = 200µ(2x− 1)(2z − 1)[3(y2 − y)2(x2 − x + z2 − z)

+(1− 6y + 6y2)(x2 − x)(z2 − z)];

f3 = 200µ(2x− 1)(2y − 1)[3(z2 − z)2(x2 − x + y2 − y)

+(1− 6z + 6z2)(x2 − x)(y2 − y)].

Then the exact solution ~u = {u1, u2, u3} of (2.2) is:

u1 = 200µ(x− x2)2(2y3 − 3y2 + y)(2z3 − 3z2 + z);

u2 = −100µ(y − y2)2(2x3 − 3x2 + x)(2z3 − 3z2 + z);

u3 = −100µ(z − z2)2(2y3 − 3y2 + y)(2x3 − 3x2 + x).

The domain Ω is divided into cubes uniformly. Let h be the edge length of each element.
In the following tables, we only list the numerical information of the finite element scheme
associated with the 18-freedom nonconforming finite element interpolation. The other schemes
are also numerically convergent uniformly with respect to λ ∈ (0, +∞).

The L2-norms of approximate solutions ~uh, the exact solution ~u and ~u − ~uh are listed in
the following tables. To show the coincidence of our theoretical analysis with the numerical
experiment, we also list theoretical convergence rates(TCR:=h2

1/h2
2) and numerical convergence

rates(NCR:=‖~u − ~uh2
‖0,Ω/‖~u − ~uh1

‖0,Ω) for comparison. h1 is the grid size of a coarser mesh
and h2 is that of the next refinement mesh.

The L2-norm of the exact solution of (2.2) is: ‖~u‖0,Ω = 0.04647143.

Table 1: λ = 1.0 (18-freedom FEM)

h ‖~uh‖0,Ω ‖~u − ~uh‖0,Ω
‖~u−~uh‖0,Ω

‖~u‖0,Ω
TCR NCR

1/4 0.05748045 0.01620755 0.348764

1/8 0.04959072 0.00452705 0.097416 0.25 0.27932

1/12 0.04789030 0.002095142 0.045085 0.4444 0.46281

Table 2: λ = 103 (18-freedom FEM)

h ‖~uh‖0,Ω ‖~u − ~uh‖0,Ω
‖~u−~uh‖0,Ω

‖~u‖0,Ω
TCR NCR

1/4 0.05756476 0.01637972 0.352469

1/8 0.04964923 0.00461481 0.099304 0.25 0.28174

1/12 0.04792085 0.00209539 0.045090 0.4444 0.45406

Table 3: λ = 106 (18-freedom FEM)

h ‖~uh‖0,Ω ‖~u − ~uh‖0,Ω
‖~u−~uh‖0,Ω

‖~u‖0,Ω
TCR NCR

1/4 0.05756504 0.01638037 0.352483

1/8 0.04964946 0.00461520 0.099313 0.25 0.28175

1/12 0.04792097 0.00209559 0.045094 0.4444 0.45406
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From the numerical results by the trilinear conforming finite element scheme, it can be found
that when λ → ∞, ‖ ~uh‖0,Ω → 0, ‖~u − ~uh‖0,Ω → ‖~u‖0,Ω. From table 4 – 6, the relative errors
are almost equal to 1 when λ � 1 even for very small h.

Table 4: λ = 1.0 (trilinear FEM)

h ‖~uh‖0,Ω ‖~u − ~uh‖0,Ω
‖~u−~uh‖0,Ω

‖~u‖0,Ω

1/4 0.03445655 0.01680566 0.362729

1/8 0.04361379 0.00440989 0.094895

1/12 0.04534260 0.0022540 0.048503

Table 5: λ = 103 (trilinear FEM)

h ‖~uh‖0,Ω ‖~u − ~uh‖0,Ω
‖~u−~uh‖0,Ω

‖~u‖0,Ω

1/4 0.0013457 0.0452041 0.972729

1/8 0.0060261 0.0407648 0.877201

1/12 0.0120302 0.035478 0.763437

Table 6: λ = 106 (trilinear FEM)

h ‖~uh‖0,Ω ‖~u − ~uh‖0,Ω
‖~u−~uh‖0,Ω

‖~u‖0,Ω

1/4 0.000001405 0.046470112 0.999972

1/8 0.000007222 0.046464663 0.999854

1/12 0.000007222 0.046464663 0.999854
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