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Abstract

The quasi-Newton equation has played a central role in the quasi-Newton methods for
solving systems of nonlinear equations and/or unconstrained optimization problems. In-
stead, Pan suggested a new equation, and showed that it is of the second order while the
traditional of the first order, in certain approximation sense [12]. In this paper, we make
a generalization of the two equations to include them as special cases. The generalized
equation is analyzed, and new updates are derived from it. A DFP-like new update out-
performed the traditional DFP update in computational experiments on a set of standard
test problems.
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1. Introduction

For solving the system of nonlinear equations F (x) = 0, where F : D ⊂ Rn → Rn, or the
unconstrained optimization problem min f(x) (with F (x) = ∇f(x)), the iteration form

xk+1 = xk − αkB−1
k F (xk), k = 0, 1, · · · (1.1)

is widely used, where {Bk} satisfies the quasi-Newton equation (also known as the quasi-Newton
condition):

Bk+1sk = yk, (1.2)

where

sk = xk+1 − xk, yk = F (xk+1) − F (xk).

A large number of formulae satisfying (1.2) have been proposed, among which the most fa-
mous two are BFGS (independently by Broyden(1969, 1970), Fletcher (1970), Goldfarb (1970),
Shanno (1970)) and DFP (independently by Davidon (1959), Fletcher and Powell (1963)). Be-
sides, there are also some modifications that do not satisfy (1.2) but generate sequences {xk}
linearly or superlinearly converging to x∗, a zero point of F (x). Powell, for instance, proposed
two formulae ([14], [15])

Bk+1 = Bk + θk

(yk − Bksk)sT
k

sT
k sk

, (1.3)
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Bk+1 = Bk + θk

sk(yk − Bksk)T + (yk − Bksk)sT
k

sT
k sk

− θ2
k

(yk − Bksk)T sksksT
k

(sT
k sk)2

, (1.4)

where θk ∈ R. Moré and Trangenstein ([10]) then proved that if F (x) = Gx − b, where G

is a nonsingular and symmetric matrix and αk = 1 (∀k), the generated sequence {xk} using
(1.3) or (1.4) can be globally and superlinearly convergent. All those not only imply that the
classical quasi-Newton equation (1.2) may be unnecessary for the iteration scheme (1.1), but
also encourage us to establish some other well-performed quasi-Newton-type formulae. In fact,
some recently reported works (e.g. [1], [8], [9], [16], [17], [19], [20]) also contributed to the so
called ”Modified Quasi-Newton Methods”. This is one of the motivations of this paper.

The direct elicitation, however, is the work of Pan ([12]). Introducing a function approxi-
mating F (x), he derived equation

Bk+1sk = 2yk − Bksk, (1.5)

and showed that the preceding is of a second order while (1.2) of a first order, in certain
approximation sense. Note that both (1.3) and (1.4) do not satisfy (1.5).

This paper is intended to make a generalization of the two equations to include them as
special cases. It is organized as follows. In section 2, we first generalize (1.5) by introducing
an extra matrix parameter Tk to Pan’s approximation function. Then, in section 3, we analyze
the generalized equation. In section 4, we derive associated updates. Finally, in section 5, we
report our computational experience with a DFP-like new update on a set of standard test
problems, demonstrating its superiority to the traditional DFP update.

2. The Generalized Quasi-Newton Equation

Let us drop subscript and consider two points x̂, x̃ (x̃ 6= x̂) in Rn. Assume we know the
values of F at them and the Jacobian F

′

(x̂) of F at x̂, and denote them respectively by

F̂ = F (x̂), F̃ = F (x̃), B = F
′

(x̂).

Introduce the notation

s = x̃ − x̂, y = F̃ − F̂ . (2.1)

We will derive an approximation B̃ to the Jacobian F
′

(x̃) of F at x̃. As was in [12], we define
a one-reduction matrix of s as follows.

Definition 2.1. Let s ∈ Rn. A ∈ Rn×n is called a one-reduction matrix of s if

sT As = 1. (2.2)

Refer to [12] for some examples and properties of the one-reduction matrix.
Based on Taylor’s theorem, the original approximate quadratic function in [12] is

Q(x) = F̂ + B(x − x̂) +
1

2
(x − x̂)T A(x − x̂)y −

1

2
(x − x̂)T A(x − x̂)Bs.

Taking into account of the last two terms, we see that the requirement of (2.2), however, po-
tentially limits the degree of approximation. For a better approximation, consider the following
quadratic mapping

Q(x) = F̂ + B(x − x̂) +
1

2
(x − x̂)T A(x − x̂)Ty −

1

2
(x − x̂)T A(x − x̂)TBs, (2.3)
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where A and A are any two one-reduction matrices of s and T = T (s, y) ∈ Rn×n. After some
manipulation, it follows that

Q(x) = [F̃ + (
T

2
− I)(y − Bs)] + [B +

1

2
TysT (A + AT ) −

1

2
TBssT (A + A

T
)](x − x̃)

+
1

2
(x − x̃)T A(x − x̃)Ty −

1

2
(x − x̃)T A(x − x̃)TBs. (2.4)

From (2.4), we get

Q(x̂) = F̂ , Q
′

(x̂) = B, Q(x̃) = F̃ + (
T

2
− I)(y − Bs).

Therefore, Q(x) may be regarded as an approximation to F (x), and hence, Q
′

(x̃) as an approx-
imation to F

′

(x̃), i.e.,

B̃ = Q
′

(x̃) = B +
1

2
TysT (A + AT ) −

1

2
TBssT (A + A

T
). (2.5)

Since both A and A are one-reduction matrices of s, postmultiplying by s the two sides of (2.5)
leads to

B̃s = Bs + T (y − Bs), (2.6)

which is referred to as generalized quasi-Newton equation. Two specific cases of it are given as
follows:

1. Setting T = I in (2.6) leads to the classical quasi-Newton equation B̃s = y. For the
associated approximation function, it holds that

Q(x̂) = F̂ , Q
′

(x̂) = B, (2.7)

but Q(x̃) = F̃ + 1
2 (Bs − y) is not equal to F̃ , in general.

2. Setting T = 2I in (2.6) yields Pan’s second order quasi-Newton equation B̃s = 2y − Bs

[12] (see (1.5)). In such case, the associated function not only satisfies (2.7) but also an

extra condition Q(x̃) = F̃ .

So, the function Q(x) associated with Pan’s quasi-Newton equation should be a better
approximation to F (x) near x̂ or x̃ than that associated with the classical one.

3. Analysis of the Generalized Quasi-Newton Equation

We analyze the generalized quasi-Newton equation (2.6) by examining to which extent Q(x)
approximates F (x) near x̃, under certain hypotheses on T (s, y). We will use ‖ · ‖ to denote the
l2 norm of a vector.

Theorem 3.1. Assume that F : D ⊂ Rn → Rn is Fréchet-differentiable at x̃ ∈ int(D) and
Q(x) is defined by (2.3). If lims→0 ‖T (s, y)‖ < ∞, then for any non-zero and sufficiently small
t ∈ R, it holds that

Q(x̃ + ts) − F (x̃ + ts) = E(t, s), (3.1)
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where

lim
s→0

E(t, s)

‖s‖
= 0, lim

t→0
E(t, s) = E(s), and lim

s→0

E(s)

‖s‖
= 0; (3.2)

i.e.,

E(t, s) = o(‖s‖), E(s) = o(‖s‖).

Proof. Using the second-order version of Taylor’s theorem yields

F (x̃ + ts) = F̃ + tF
′

(x̃)s +
1

2
F

′′

(x̃)(ts)(ts) − R1(ts), (3.3)

where F
′

(x) and F
′′

(x) denote the first and second Fréchet-derivatives at x ∈ int(D) respec-
tively, and

lim
ts→0

R1(ts)

(t‖s‖)2
= 0.

Taking t = −1 in (3.3) leads to

F̂ = F̃ − F
′

(x̃)s +
1

2
F

′′

(x̃)ss − R2(s), (3.4)

where

lim
s→0

R2(s)

‖s‖2
= 0.

The second-order Taylor’s expansion also leads to

F̃ = F̂ + Bs +
1

2
F

′′

(x̂)ss + R3(s), (3.5)

where

lim
s→0

R3(s)

‖s‖2
= 0.

By virtue of (2.4), (3.3), (3.4), (3.5), we have

E(t, s) = Q(x̃ + ts) − F (x̃ + ts)

= Bs − y + t(B − F
′

(x̃))s + (
T

2
+ tT + T

t2

2
)(y − Bs) −

t2

2
F

′′

(x̃)ss + R1(ts)

= −
1

2
F

′′

(x̂)ss − R3(s) + t(−
1

2
F

′′

(x̃)ss + R2(s) −
1

2
F

′′

(x̂)ss − R3(s))

+(
T

2
+ tT +

t2

2
T )(

1

2
F

′′

(x̂)ss + R3(s)) −
t2

2
F

′′

(x̃)ss + R1(ts)

=
t + t2

2
(
T

2
F

′′

(x̂)ss − F
′′

(x̃)ss) +
1

2
(
T

2
+

t

2
T − I − tI)F

′′

(x̂)ss

+R1(ts) + tR2(s) + (
T

2
+ tT +

t2

2
T − I − tI)R3(s). (3.6)
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Therefore,

‖E(t,s)‖
‖s‖ ≤|

t + t2

2
| ·
‖T

2 F
′′

(x̂)ss − F
′′

(x̃)ss‖

‖s‖

+
1

2

‖(T
2 − I + t

2T − tI)F
′′

(x̂)ss‖

‖s‖
+

‖R1(ts)‖

‖s‖
+

‖tR2(s)‖

‖s‖

+
‖(T

2 + tT + t2

2 T − I − tI)R3(s)‖

‖s‖
.

Under the assumption lims→0 ‖T (s, y)‖ < ∞, we have

lim
s→0

E(t, s)

‖s‖
= 0

and

lim
t→0

E(t, s) =
1

2
(
T

2
− I)F

′′

(x̂)ss + (
T

2
− I)R3(s) = E(s).

Apparently, lims→0
E(s)
‖s‖ = 0, and the proof is completed.

Note that the associated T (s, y) equals I for the classical quasi-Newton equation and the
T (s, y) equals 2I for Pan’s equation (see the last paragraphs of Section 2). By Theorem 3.1,
their associated Q(x) is at least a first order approximation to F (x) at x̃. Furthermore, we
come to a second order approximation by strengthening the condition on T (s, y):

Theorem 3.2. All assumptions are the same as those in Theorem 3.1 except for lims→0 ‖T (s, y)‖ <

∞ which is replaced by lims→0
T (s,y)

2 = I. Then for any non-zero and sufficiently small t ∈ R,
it holds that

Q(x̃ + ts) − F (x̃ + ts) = R(t, s),

where

lim
s→0

R(t, s)

‖s‖2
= 0, lim

t→0
R(t, s) = R(s), and lim

s→0

R(s)

‖s‖2
= 0;

i.e.,
R(t, s) = o(‖s‖2), R(s) = o(‖s‖2).

Proof. From (3.6), we have

R(t, s) =
t + t2

2
(
T

2
F

′′

(x̂)ss − F
′′

(x̃)ss) +
1

2
(
T

2
+

t

2
T − I − tI)F

′′

(x̂)ss

+R1(ts) + tR2(s) + (
T

2
+ tT +

t2

2
T − I − tI)R3(s).

The assumption lims→0
T (s,y)

2 = I ensures

lim
s→0

R(t, s)

‖s‖2
= 0,

and

lim
t→0

R(t, s) =
1

2
(
T

2
− I)F

′′

(x̂)ss + (
T

2
− I)R3(s) , R(s).

Therefore, lims→0
R(s)
‖s‖2 = 0, and we complete the proof.
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It is seen that for Q(x) associated with Pan’s equation B̃s = 2y − Bs, Theorem 3.2 holds,

since condition lims→0
T (s,y)

2 = I is fulfilled while this is not so for the classical quasi-Newton

equation B̃s = y. This coincides with [12], where the former equation is described as second
order while the latter as first order.

4. Associated Updates

A vast number of updating formulae could be derived from (2.5), satisfying (2.6). With
specific T ’s, we only present four families of updates as follows.
Family 1: T = I. (Classical)

• Setting in (2.5)

A = ϕ[
yT s + sT Bs

(yT s)3
yyT −

B

yT s
] + (1 − ϕ)

yyT

(yT s)2
, ϕADFP + (1 − ϕ)ABFGS ,

Ā = ϕ
yyT

(yT s)2
+ (1 − ϕ)

B

sT Bs
, ϕĀDFP + (1 − ϕ)ĀBFGS ,

gives the updates of Broyden Family in which ϕ = 1 corresponds to the DFP update, and
ϕ = 0 the BFGS.

• Setting A = A = ssT

(sT s)2 yields

B̃ = B +
(y − Bs)sT

sT s
. (4.1)

It is known that the iteration scheme (1.1) using this update locally and superlinearly
converges to x∗(see [5]).

• Setting A = A = (y−Bs)(y−Bs)T

((y−Bs)T s)2 , where (y − Bs)T s 6= 0, leads to

B̃ = B +
(y − Bs)(y − Bs)T

(y − Bs)T s
, (4.2)

which is the symmetric rank-one update, firstly published by Davidon (see [4]).

Family 2: T = θI. (θ ∈ R)

• Setting in (2.5)

A = ϕ[
yT s + sT Bs

(yT s)3
yyT −

B

yT s
] + (1 − ϕ)

yyT

(yT s)2
, ϕADFP + (1 − ϕ)ABFGS ,

Ā = ϕ
yyT

(yT s)2
+ (1 − ϕ)

B

sT Bs
, ϕĀDFP + (1 − ϕ)ĀBFGS ,

leads to a class of updates corresponding to the Broyden family. In particular, such
updates with θ = 2 may be termed as second-order Broyden Family, where ϕ = 1 and
θ = 2 together correspond to the second-order DFP update while ϕ = 0 and θ = 2, to the
second-order BFGS (see [12]).

• Setting A = A = ssT

(sT s)2 yields

B̃ = B + θ
(y − Bs)sT

sT s
, (4.3)
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which is known as the modification of Broyden family, proposed firstly by Powell [14].

• Setting A = A = (y−Bs)(y−Bs)T

((y−Bs)T s)2 , where (y − Bs)T s 6= 0, we come to

B̃ = B + θ
(y − Bs)(y − Bs)T

(y − Bs)T s
,

which can be viewed as a kind of the modification of Davidon’s symmetric rank-one
update.

Family 3: T = (ρy−Bs)cT

(y−Bs)T c
, where ρ ∈ R, c ∈ Rn, (y − Bs)T c 6= 0.

• This setting leads to
B̃s = ρy,

which corresponds to the equation satisfied by Huang Family ([7]).

Family 4: T = [θI + (θ − θ2) csT

cT s
]. (c ∈ Rn, cT s 6= 0)

• Setting c = s gives

B̃ = B + θ
s(y − Bs)T + (y − Bs)sT

sT s
− θ2 (y − Bs)T sssT

(sT s)2
. (4.4)

If θ ∈ (0, 2), then the preceding may be viewed as a modification of the PSB, appearing
originally in [15]. The local and superlinear convergence of the scheme (1.1) using update
(4.4) together with αk = 1 has been shown by Moré and Trangenstein [10]. Furthermore,
when F (x) is defined as F (x) = Gx− b, where G is a symmetric and nonsingular matrix,
the global and superlinear convergence can also be ensured. Besides, if θ = 2, it is easy
to verify its linear convergence.

• Setting c = y implies the following new update,

B̃ = B + θ
y(y − Bs)T + (y − Bs)yT

yT s
− θ2 (y − Bs)T syyT

(yT s)2
, (4.5)

which is referred to as DFP-like update because it becomes the DFP update when θ = 1.

It can be shown under appropriate assumptions that the preceding update and some
conventional ones (like DFP and BFGS) share properties such as the hereditary posi-
tive definiteness when θk ∈ [0, 2], the locally linear convergence when θk ∈ (0, 1] and

superlinear convergence when θk ∈ (1 −
√

1
3 , 1]. We will handle this topic separately in

[18].

5. Computational Results

We report in this section computational results obtained from our computational exper-
iments, showing that the DFP-like new update outperforms the DFP in terms of both the
convergence rate and stability.

We used the following algorithm model:
Algorithm 1. Let θ be given. Determine an initial point x0 and set B0 := I, k := 0, gk =
∇f(xk), sk := 0, yk := 0, and ε = 10E− 09.

step 1. If ‖gk‖ < ε, stop; otherwise, apply Cholesky decomposition to Bk to obtain Bk =
HkHT

k , and solve two triangular systems Hkz = gk, HT
k dk = z for the direction dk.
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step 2. Determine αk by Armijo-Goldstein rule (ρ = 0.4).
step 3. Set xk+1 := xk − αkdk, sk := −αkdk, yk := gk+1 − gk.
step 4. Update Bk by the DFP-like formula, i.e.,

Bk+1 := Bk + θ
yk(yk − Bksk)T + (yk − Bksk)yT

k

yT
k sk

− θ2 (yk − Bksk)T skykyT
k

(yT
k sk)2

. (5.1)

step 5. Set k := k + 1 and go to step 1.
Our computational tests involve four codes based on the preceding algorithm:
1. DFP: Algorithm 1 with θ = 1.

2. R-DPF-L: Algorithm 1 with θ taken as a random value in (1 −
√

1
3 , 1].

3. DFP-L1: Algorithm 1 with θ = 0.65.
4. DFP-L2: Algorithm 1 with θ = 0.85.
Our test set of problems involves the following 21 standard test problems, all of which are

of the form

min
x∈Rn

f(x), (5.2)

whose solution x∗ satisfies the first order necessary condition ▽f(x∗) , F (x∗) = 0:
Tf.1 Rosenbrock function, x0 = (−1.2, 1)T ;
Tf.2 Freudenstein and Roth function, x0 = (0.5,−2)T ;
Tf.3 Powell badly scaled function, x0 = (0, 1)T ;
Tf.4 Jennrich and Sampson function (n=2, m=2), x0 = (0.3, 0.4)T ;
Tf.5 Brown badly scaled function, x0 = (1, 1)T ;
Tf.6 Box three-dimensional function (n=m=3), x0 = (0, 10, 20)T ;
Tf.7 Variably dimensioned function ( n=2, m=4), x0 = (0.5, 0)T ;
Tf.8 Broyden tridiagonal function (n=m=2), x0 = (−1,−1)T ;
Tf.9 Wood function (n=4, m=6), x0 = (−3,−1,−3,−1)T ;
Tf.10 Penalty function (n=2, m=3), x0 = (1, 2)T ;
Tf.11 Brown almost-linear function (n=m=2), x0 = (0.5, 0.5)T ;
Tf.12 Discrete boundary value function (n=m=2), x0 = (2, 5)T ;
Tf.13 Linear function-rank-1 (n=m=2), x0 = (1, 1)T ;
Tf.14 Beale function, x0 = (1, 1)T ;
Tf.15 Trigonometric function, x0 = (0.5, 0.5)T ;
Tf.16 Penalty function II (n=2, m=4), x0 = (0.5, 0.5)T ;
Tf.17 Brown and Dennis function (n=4, m=4), x0 = (25, 5,−5,−1)T ;
Tf.18 Biggs EXP6 function, x0 = (1, 2, 1, 1, 1, 1)T ;
Tf.19 Gaussian function (n=3, m=15), x0 = (0.3, 1.3, 0)T ;
Tf.20 Watson function (n=2, m=31), x0 = (0, 0)T ;
Tf.21 Extended Rosenbrock function (n=4, m=4), x0 = (−1.2, 1,−1.2, 1)T ;

All tests were conducted on a P2 personal computer with machine precision 10E − 16. The
three new codes were tested, and compared with the traditional DFP code. Iteration counts
required to solve each problem by them are listed in Table 1.
Note: Each of the test problems was solved 20 times with R-DFP-L. In the table, listed is only the

smallest number of iterations required by it. In addition, ”25;206” implies that two local minimums

were found; the same to ”31;72;64;91”.

This table tells how differently the DFP-like performs with different values of θ. Overall,
DFP-L2 (θ = 0.85) outperformed DFP in terms of both convergence rate and stability. Also,
results obtained with ”R-DFP-L” suggest that it would be advantageous to use some kind of
self-scaling technique with respect to θ.
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Table 1. Iteration counts
Problem DFP R-DFP-L DFP-L1 DFP-L2

Tf.1 2263 131 211 345
Tf.2 28 25;206 26 27
Tf.3 601 216 273 389
Tf.4 57 39 46 54
Tf.5 60 55 65 60
Tf.6 13 31;72;64;91 288 67
Tf.7 8 8 14 11
Tf.8 21 15 17 20
Tf.9 - 7720 - -
Tf.10 6 6 11 7
Tf.11 20 13 20 20
Tf.12 16 13 15 16
Tf.13 20 19 19 20
Tf.14 46 24 34 41
Tf.15 35 11 14 13
Tf.16 18 15 18 18
Tf.17 614 188 3728 736
Tf.18 - - - -
Tf.19 31 31 31 31
Tf.20 21 21 21 21
Tf.21 - 550 2900 7834

Total 3277 735 4578 1507

6. Concluding Remarks

We made a generalization of the quasi-Newton equation, analyzed it, and derived some
updates from it. While most of the updates are analogues to some existing ones, there might
still be some updates unknown—the Broyden-lie ones for example—that are better than those
derived in this paper. In particular, the DFP-like update (4.5) appears to be very promising,
and deserves further investigation.
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