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Abstract

Newton’s polynomial interpolation may be the favourite linear interpolation in the sense
that it is built up by means of the divided differences which can be calculated recursively
and produce useful intermediate results. However Newton interpolation is in fact point
based interpolation since a new interpolating polynomial with one more degree is obtained
by adding a new support point into the current set of support points once at a time. In this
paper we extend the point based interpolation to the block based interpolation. Inspired by
the idea of the modern architectural design, we first divide the original set of support points
into some subsets (blocks), then construct each block by using whatever interpolation
means, linear or rational and finally assemble these blocks by Newton’s method to shape
the whole interpolation scheme. Clearly our method offers many flexible interpolation
schemes for choices which include the classical Newton’s polynomial interpolation as its
special case. A bivariate analogy is also discussed and numerical examples are given to
show the effectiveness of our method.

Mathematics subject classification: 41A20, 65D05.
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1. Introduction

Denote by Πn the set of all real or complex polynomials p(x) with degree not exceeding
n. Let Sn = {(xi, fi), i = 0, 1, . . . , n} be a set of support points, where the support abscissae
xi, i = 0, 1, . . . , n, do not have to be distinct from one another. Then an interpolating polynomial
Pn(x) in Πn can be uniquely determined by Sn. Suppose the support ordinates fi, i = 0, 1, . . . , n,
are the values of a given function f(x) which is defined on the set I(I ⊃ Xn), here Xn = {xi, i =
0, 1, . . . , n}. Then Pn(x) satisfying Pn(xi) = f(xi), i = 0, 1, . . . , n, possesses the following
Newton representation ([6])

Pn(x) = f [x0] + f [x0, x1](x − x0) + · · ·

+ f [x0, x1, . . . , xn](x − x0)(x − x1) · · · (x − xn−1),

where f [x0, x1, . . . , xi] are the divided differences of f(x) at support abscissae x0, x1, . . . , xi,
which are defined by the recursions

f [xi1 ] = f(xi1),
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f [xi1 , xi2 ] =
f(xi1 ) − f(xi2 )

xi1 − xi2

,

f [xi1 , xi2 , . . . , xik
] =

f [xi1 , . . . , xik−2
, xik

] − f [xi1 , . . . , xik−2
, xik−1

]

xik
− xik−1

.

We want to mention that Newton interpolating polynomials have their nonlinear counterparts,
the Thiele’s interpolating continued fractions, which are built up on the basis of the inverse dif-
ferences. The Thiele’s continued fraction interpolating the support points Sn is of the following
form

Rn(x) = f(x0) +
x − x0

a1
+

x − x1

a2
+ · · · +

x − xn−1

an

,

where for i = 1, 2, . . . , n,

ai = φ[x0, x1, . . . , xi]

is the inverse difference of f(x) at x0, x1, . . . , xi, which can be computed recursively as follows

φ[xi] = f(xi), i = 0, 1, . . . , n,

φ[xi, xj ] =
xi − xj

f(xi) − f(xj)
,

φ[xi, xj , xk] =
xk − xj

φ[xi, xk] − φ[xi, xj ]
,

φ[xi, . . . , xj , xk, xl] =
xl − xk

φ[xi, . . . , xj , xl] − φ[xi, . . . , xj , xk]
.

It is easy to verify that Rn(x) is a rational function with degrees of numerator and denominator
polynomials bounded by [(n+1)/2] and [n/2] respectively, where [x] denotes the greatest integer
not exceeding x, and Rn(x) satisfies

Rn(xi) = f(xi), i = 0, 1, . . . , n.

One of the authors ([10]) established an extraordinary variety of rational interpolants by apply-
ing the Neville’s algorithm to continued fractions. One may say that Newton interpolation is
point based interpolation since a new interpolating polynomial with one more degree is obtained
by adding a new support point into the current set of support points once at a time. In this
paper we try to extend the point based interpolation to the block based one. The idea can be
summarized into three steps: first we divide the original set of support points into some subsets
(blocks), then construct each block by using whatever interpolation means, linear or rational
and finally assemble these blocks by Newton’s method to shape the whole interpolation scheme.

2. Block Blending Interpolation

As we see, the classical Newton’s polynomial interpolation is a point based interpolation.
Undoubtedly the Newton’s interpolating polynomial established on the whole set Xn largely
reduces the flexibility of the interpolation and lacks interactivity in the sense that the interpolant
is completely dominated by the original set of supporting points. To obtain a flexible blending
rational interpolation, we extend the point based interpolation to the block based one.

2.1 Basic idea

We divide the set Xn into u + 1 subsets:

{xc0
, xc0+1,...,xd0

}, . . . , {xcu
, xcu+1,...,xdu

}.
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These subsets may be obtained by reordering the interpolation points if necessary. Obviously,
we have

u∑

s=0

(ds − cs + 1) = n + 1.

Let us consider the following function with Newton-like formation:

T (x) = I0(x) + I1(x)ω0(x) + · · · + Iu(x)ω0(x) · · ·ωu−1(x), (1)

where

ωs(x) =

ds∏

i=cs

(x − xi), s = 0, 1, . . . , u − 1, (2)

and Is(x)(s = 0, 1, . . . , u) are polynomials or rational interpolating functions on the subsets
{xcs

, xcs+1, . . . , xds
}(s = 0, 1, . . . , u).

If the above Is(x)(s = 0, 1, . . . , u) are chosen so that

T (xi) = f(xi), xi ∈ Xn, (3)

then T (x) defined by (1) and (2) is called the block based Newton-like blending interpolant to
f(x).

2.2 Block based divided differences

Suppose Xn ⊂ I ⊂ R, and let f(x) be a real function defined on I such that

f(xi) = fi, i = 0, 1, . . . , n. (4)

We introduce the following notations:

f0
i = fi, i = 0, 1, . . . , n (5)

and for s = 1, 2, . . . , u,

fs
i =

fs−1
i − Is−1(xi)

ωs−1(xi)
, i = cs, cs + 1, . . . , n, (6)

where Is(x)(s = 0, 1, . . . , u) are interpolating polynomials or rational interpolating functions on
the subsets {xcs

, xcs+1, . . . , xds
}(s = 0, 1, . . . , u), which satisfy

Is(xi) = fs
i , i = cs, cs + 1, . . . , ds; s = 0, 1, . . . , u. (7)

If all these fs
i exist, they are called the sth block based divided differences for function f(x).

Theorem 1. If all the above interpolants Is(x) which satisfy (7) exist, then

T (xi) = fi, i = 0, 1, . . . , n.

Proof. For each i ∈ {0, 1, . . . , n}, there is a certain s ∈ {0, 1, . . . , u} which satisfies cs ≤ i ≤
ds. By (1), we have

T (xi) = I0(xi) + I1(xi)ω0(xi) + · · · + Is(xi)ω0(xi) · · ·ωs−1(xi).
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According to (7) and (6), we obtain

Is(xi)ω0(xi) · · ·ωs−1(xi) = fs
i ω0(xi) · · ·ωs−1(xi)

=
fs−1

i − Is−1(xi)

ωs−1(xi)
ω0(xi) · · ·ωs−1(xi)

= (fs−1
i − Is−1(xi))ω0(xi) · · ·ωs−2(xi).

Then we recursively get

T (xi) = I0(xi) + I1(xi)ω0(xi) + · · · + Is(xi)ω0(xi) · · ·ωs−1(xi)

= I0(xi) + I1(xi)ω0(xi) + · · · + (fs−1
i − Is−1(xi))ω0(xi) · · ·ωs−2(xi)

= I0(xi) + I1(xi)ω0(xi) + · · · + fs−1
i ω0(xi) · · ·ωs−2(xi)

= · · · = f0
i = fi.

2.3 Special cases

Case 1. If all the Is(x)(s = 0, 1, . . . , u) are the interpolating polynomials Ps(x) on the subsets
{xcs

, xcs+1, . . . , xds
}(s = 0, 1, . . . , u), then the block based Newton-like blending interpolant

becomes the classical interpolating polynomial on the whole set Xn:

T (x) = P0(x) + P1(x)ω0(x) + · · · + Pu(x)ω0(x) · · ·ωu−1(x). (8)

It is easy to verify (see [11])
∂Pu(x) = du − cu,

∂ωs(x) = ds − cs + 1, (s = 0, 1, . . . , u − 1),

and

∂T (x) =
u∑

s=0

(ds − cs + 1) − 1 = n,

where ∂F (x) denotes the degree of the polynomial F (x).
Obviously we have

T (x) = Pn(x),

where the Pn(x) is the Newton interpolating polynomial on the whole set Xn.
Case 2. If all the Is(x)(s = 0, 1, . . . , u) are the Thiele-type interpolating continued fractions
Rs(x) on the subsets {xcs

, xcs+1, . . . , xds
}(s = 0, 1, . . . , u), then we obtain

T (x) = R0(x) + R1(x)ω0(x) + · · · + Ru(x)ω0(x) · · ·ωu−1(x). (9)

In particular case when u = n, i.e., each subset contains only one point, all the block based
divided differences become the classical divided differences and the block based Newton-like
blending interpolant also becomes the classical Newton interpolating polynomial on the whole
set Xn.
Especially when u = 0, the whole set Xn is a unique subset.Then we have

T (x) = R0(x), (10)

where R0(x) is the Thiele-type interpolating continued fraction on the whole set Xn, which
means that the classical Thiele-type continued fraction interpolation is also a special case of
the block based Newton-like blending interpolation when the whole set Xn is a unique subset.

2.4 Error estimation
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We turn now to a discussion of the error in the approximation of a function f(x) by its
block based Newton-like blending interpolants.
Theorem 2. Suppose [a, b] is the smallest interval containing Xn = {x0, x1, . . . , xn} and f(x)
is differentiable in [a, b] up to (n + 1) times. Let

T (x) = I0(x) + I1(x)ω0(x) + · · · + Iu(x)ω0(x) · · ·ωu−1(x) =
P (x)

Q(x)
. (11)

Then for each x ∈ [a, b] there exists a point ξ ∈ (a, b) such that

f(x) − T (x) =
ω(x)

Q(x)
·
[f(x)Q(x) − P (x)]

(n+1)
x=ξ

(n + 1)!
, (12)

where ω(x) =
∏n

i=0(x − xi).
Proof. Let E(x) = f(x)Q(x) − P (x). Then from Theorem 1 and (11) it follows

E(xi) = 0, (i = 0, 1, . . . , n).

Using the Newton interpolation formula (see [11]), we have

E(x) =

n∑

i=0

E[x0, x1, . . . , xi](x − x0) · · · (x − xi−1)

+ (x − x0) · · · (x − xn) ·
E(n+1)(ξ)

(n + 1)!

=
ω(x)E(n+1)(ξ)

(n + 1)!
,

where ξ ∈ (a, b).
It is easy to verify

f(x) − T (x) =
E(x)

Q(x)
=

ω(x)E(n+1)(ξ)

Q(x)(n + 1)!

=
ω(x)

Q(x)
·
[f(x)Q(x) − P (x)]

(n+1)
x=ξ

(n + 1)!
.

2.5 Numerical examples

In this section, we take a simple example to show the flexibility and the effectiveness of our
method.
Example 1. Let X5 = {0, 1, 2, 3, 4, 5} and {f0, f1, f2, f3, f4, f5} = {1, 2, 2, 0, 1, 2}.
According to the block based Newton-like blending interpolation method illustrated in the
preceding sections, one can yield the following schemes for interpolants.

Scheme 1: By the case 1 in section 2.3 and considering that the whole set X5 is a unique
subset, we have

T (x) = 1 + x −
x(x − 1)

2
−

x(x − 1)(x − 2)

6

+
x(x − 1)(x − 2)(x − 3)

4
−

7x(x − 1)(x − 2)(x − 3)(x − 4)

60

= 1 −
47x

15
+

103

12
x2 −

23

4
x3 +

17

12
x4 −

7

60
x5,
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and it is easy to verify
T (xi) = fi, i = 0, 1, 2, 3, 4, 5.

Scheme 2: We divide X5 into two subsets X0
5 = {0, 1, 2} and X1

5 = {3, 4, 5}.
Let I0(x) be the Newton interpolating polynomial and I1(x) be the Thiele-type interpolating
continued fraction. Then one has

T (x) = 1 + x −
x(x − 1)

2
+

5x − 16

42x − 120
x(x − 1)(x − 2)

=
−120 − 170x + 181x2 − 52x3 + 5x4

42x − 120
.

It is easy to verify
T (xi) = fi, i = 0, 1, 2, 3, 4, 5.

Scheme 3: We divide X5 into two subsets X0
5 = {0, 1, 2, 3} and X1

5 = {4, 5}.
Let I0(x) be the Thiele-type interpolating continued fraction and I1(x) be the Newton interpo-
lating polynomial. Then we have

T (x) =
180 − 294x + 954x2 − 730x3 + 215x4 − 26x5 + x6

180 − 30x

and it is easy to verify
T (xi) = fi, i = 0, 1, 2, 3, 4, 5.

3. Multivariate Case

3.1 Basic idea

The block based Newton-like blending interpolation method can be generalized to the mul-
tivariate case.
Given a set of two dimensional points Πmn = {(xi, yj) | i = 0, 1, . . . , m; j = 0, 1, . . . , n}. Sup-
pose Πmn ⊂ D ⊂ R2, and let f(x, y) be a real function defined on D such that

f(xi, yj) = fij , i = 0, 1, . . . , m; j = 0, 1, . . . , n. (13)

We divide Πmn into (u + 1) × (v + 1) subsets:
Πst

mn = {(xi, yj) | cs ≤ i ≤ ds; ht ≤ j ≤ rt}(s = 0, 1, . . . , u; t = 0, 1, . . . , v).
Let us consider the following function with bivariate Newton-like formation:

T (x, y) = Z0(x, y) + Z1(x, y)ω0(x) + · · · + Zu(x, y)ω0(x) · · ·ωu−1(x), (14)

where for s = 0, 1, . . . , u,

Zs(x, y) = Is0(x, y) + Is1(x, y)ω∗

0(y) + · · · + Isv(x, y)ω∗

0(y) · · ·ω∗

v−1(y), (15)

ωs(x) =

ds∏

i=cs

(x − xi), s = 0, 1, . . . , u − 1,

ω∗

t (y) =

rt∏

j=ht

(y − yj), t = 0, 1, . . . , v − 1,

and Ist(x, y)(s = 0, 1, . . . , u; t = 0, 1, . . . , v) are bivariate polynomials or rational interpolants
on the subsets Πst

mn.
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To obtain a block based bivariate Newton-like blending interpolant on the whole set Πmn, one
has to compute Ist(x, y)(s = 0, 1, . . . , u; t = 0, 1, . . . , v) so that the function (14) satisfies:

T (xi, yj) = fij , i = 0, 1, . . . , m; j = 0, 1, . . . , n. (16)

3.2 Block based bivariate partial divided differences

We introduce the following notations:

f00
ij = fij , i = 0, 1, . . . , m; j = 0, 1, . . . , n. (17)

For t = 1, 2, · · ·, v,

f0t
ij =

f0,t−1
ij − I0,t−1(xi, yj)

ω∗

t−1(yj)
, (i = 0, 1, . . . , m; j = ht, ht + 1, . . . , n), (18)

where I0t(x, y)(t = 0, 1, . . . , v) are bivariate polynomials or rational interpolants on the subsets
Π0t

mn, namely

I0t(xi, yj) = f0t
ij , (c0 ≤ i ≤ d0, ht ≤ j ≤ rt, t = 0, 1, . . . , v). (19)

For s = 1, 2, . . . , u,

fs0
ij =

fs−1,0
ij − Zs−1(xi, yj)

ωs−1(xi)
, (i = cs, cs + 1, . . . , m; j = 0, 1, . . . , n). (20)

For s = 1, 2, . . . , u and t = 1, 2, . . . , v,

fst
ij =

fs,t−1
ij − Is,t−1(xi, yj)

ω∗

t−1(yj)
, (i = cs, cs + 1, . . . , m; j = ht, ht + 1, . . . , n),

(21)

where Ist(x, y)(s = 1, 2, . . . , u; t = 0, 1, . . . , v) are bivariate polynomials or rational interpolants
on the subsets Πst

mn, namely

Ist(xi, yj) = fst
ij , ( cs ≤ i ≤ ds, ht ≤ j ≤ rt;

s = 1, 2, . . . , u; t = 0, 1, . . . , v). (22)

If all fst
ij exist, fst

ij are called the (s, t)th block based bivariate partial divided differences for
function f(x, y).
Theorem 3. If all the above interpolants Ist(x, y) satisfying (19) and (22) exist, then

T (xi, yj) = fij , i = 0, 1, . . . , m; j = 0, 1, . . . , n.

Proof. Suppose cs ≤ i ≤ ds, and ht ≤ j ≤ rt. By (14) and (22), we have

T (xi, yj) = Z0(xi, yj) + Z1(xi, yj)ω0(xi) + · · · + Zs(xi, yj)ω0(xi) · · ·ωs−1(xi)

and

Zs(xi, yj) = Is0(xi, yj) + Is1(xi, yj)ω
∗

0(yj) + · · · + Ist(xi, yj) ·

ω∗

0(yj) · · ·ω
∗

t−1(yj).
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From (22) and (21), it follows

Ist(xi, yj)ω
∗

0(yj) · · ·ω
∗

t−1(yj)

= fst
ij ω∗

0(yj) · · ·ω
∗

t−1(yj)

= (fs,t−1
ij − Is,t−1(xi, yj))ω

∗

0(yj) · · ·ω
∗

t−2(yj).

Then we recursively obtain

Zs(xi, yj) = Is0(xi, yj) + Is1(xi, yj)ω
∗

0(yj) + · · · + Ist(xi, yj) ·

ω∗

0(yj) · · ·ω
∗

t−1(yj)

= Is0(xi, yj) + Is1(xi, yj)ω
∗

0(yj) + · · · + (fs,t−1
ij − Is,t−1(xi, yj)) ·

ω∗

0(yj) · · ·ω
∗

t−2(yj)

= Is0(xi, yj) + Is1(xi, yj)ω
∗

0(yj) + · · · + fs,t−1
ij ω∗

0(yj) · · ·ω
∗

t−2(yj)

= · · · = fs0
ij .

From (20), it follows

fs0
ij ω0(xi) · · ·ωs−1(xi) = (fs−1,0

ij − Zs−1(xi, yj))ω0(xi) · · ·ωs−2(xi).

It is easy to obtain recursively

T (xi, yj) = Z0(xi, yj) + Z1(xi, yj)ω0(xi) + · · · + Zs(xi, yj) ·

ω0(xi) · · ·ωs−1(xi)

= Z0(xi, yj) + Z1(xi, yj)ω0(xi) + · · · + fs0
ij ω0(xi) · · ·ωs−1(xi)

= Z0(xi, yj) + Z1(xi, yj)ω0(xi) + · · · + (fs−1,0
ij − Zs−1(xi, yj)) ·

ω0(xi) · · ·ωs−2(xi)

= Z0(xi, yj) + Z1(xi, yj)ω0(xi) + · · · + fs−1,0
ij ω0(xi) · · ·ωs−2(xi)

= · · · = f00
ij = fij.

3.3 Error estimation

We turn now to a discussion of the error in the approximation of a function f(x, y) by its
block based bivariate Newton-like blending interpolants.
It is easy to verify the following Theorem 4 in terms of bivariate Newton interpolation formula
(see[11]).
Theorem 4. Suppose D = [a, b]× [c, d] is a rectangular domain containing Πmn and f(x, y) ∈
C(m+n+2)(D). Let

T (x, y) = Z0(x, y) + Z1(x, y)ω0(x) + · · · + Zu(x, y)ω0(x) · · ·ωu−1(x) = P (x,y)
Q(x,y)

be the block based bivariate Newton-like blending interpolant on Πmn. Then ∀(x, y) ∈ D we
have

f(x, y) − T (x, y) =
ω(x)

Q(x, y)
·

∂m+1

∂xm+1 [fQ − P ]x=ξ

(m + 1)!

+
ω∗(y)

Q(x, y)
·

∂n+1

∂yn+1 [fQ − P ]y=η

(n + 1)!

−
ω(x)ω∗(y)

Q(x, y)
·

∂n+m+2

∂xm+1∂yn+1 [fQ − P ]x=ξ,y=η

(m + 1)!(n + 1)!
, (23)
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with ξ, ξ ∈ (a, b) and η, η ∈ (c, d),
where

ω(x) = (x − x0)(x − x1) · · · (x − xm),

ω∗(y) = (y − y0)(y − y1) · · · (y − yn).

3.4 Numerical examples

In this section, we take a simple example to show how the algorithms are implemented and
how flexible our method is.
Example 2. Suppose the interpolating points and the prescribed values of f(x, y) at the
support abscissas (xi, yj) are given in the following table

y0 = 0 y1 = 1 y2 = 2 y3 = 3
x0 = 0 4 5 -1 6
x1 = 1 3 7 2 0
x2 = 2 5 3 1 2
x3 = 3 1 2 -1 4

For convenience, we merely present a few schemes. Let

c0 = 0, d0 = 2, c1 = d1 = 3; h0 = 0, r0 = 2, h1 = r1 = 3.

i.e.,
∏

33 is divided into the following 4 subsets Π00
33, Π01

33,Π
10
33 and Π11

33

(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

Scheme 1: Suppose I00(x, y) is the bivariate Thiele-type branched continued fraction inter-
polant R00(x, y) on the subset Π00

33, I01(x, y) is the bivariate Newton interpolating polynomial
P01(x, y) on the subset Π01

33, I10(x, y) is the bivariate Newton interpolating polynomial P10(x, y)
on the subset Π10

33 and I11(x, y) is also the bivariate Newton interpolating polynomial P11(x, y)
on the subset Π11

33. Then we have

T (x, y) = 4 +
y

− 7
5y + 12

5

+
x

−1 + y
5
6
y− 1

6

+ x−1
1
3
+ 7y

19y−26

+ (
11269

10068
x2 −

4535

1678
x +

11

18
)y(y − 1)(y − 2)

+ x(x − 1)(x − 2)[(−
3

20
y2 +

9

20
y −

3

5
) −

2880061

9000792
y(y − 1)(y − 2)].

It is easy to see
T (xi, yj) = fij , i, j = 0, 1, 2, 3.

Scheme 2: Suppose I00(x, y) is the bivariate Newton interpolating polynomial P00(x, y) on
the subset Π00

33, I01(x, y) is the Thiele-type branched continued fraction interpolant R01(x, y)
on the subset Π01

33, I10(x, y) is the bivariate Newton interpolating polynomial P10(x, y) on the
subset Π10

33 and I11(x, y) is also the bivariate Newton interpolating polynomial P11(x, y) on the
subset Π11

33. Then we have

T (x, y) = 4 − x + y + 3xy +
3

2
x(x − 1) −

7

2
y(y − 1) −

9

2
x(x − 1)y
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−xy(y − 1) +
11

4
x(x − 1)y(y − 1) +

26x − 60

x − 18
y(y − 1)(y − 2)

+[−
3

2
+ 5y − 2y2 +

8

15
y(y − 1)(y − 2)]x(x − 1)(x − 2)

=
P (x, y)

Q(x, y)
,

where

P (x, y) = −4320 + 6180x− 12060y + 408xy3 + 14580y2 − 6810x2

−21864xy + 6936xy2 + 28889x2y − 15291x2y2 − 672x3y3

+4701x3y2 − 8079x3y − 3600y3 + 1980x3 − 90x4 + 1792x2y3

+32x4y3 − 216x4y2 + 364x4y,

Q(x, y) = 60x− 1080,

and it is easy to see

T (xi, yj) = fij , i, j = 0, 1, 2, 3.

Scheme 3: Suppose I00(x, y) is the bivariate Newton interpolating polynomial P00(x, y)
on the subset Π00

33, I01(x, y) is the bivariate Newton interpolating polynomial P01(x, y) on the
subset Π01

33, I10(x, y) is the Thiele-type branched continued fraction interpolant R10(x, y) on
the subset Π10

33 and I11(x, y) is the bivariate Newton interpolating polynomial P11(x, y) on the
subset Π11

33. Then we have

T (x, y) = 4 − x + y + 3xy +
3

2
x(x − 1) −

7

2
y(y − 1) −

9

2
x(x − 1)y

−xy(y − 1) +
11

4
x(x − 1)y(y − 1)

+(
10

3
−

5

4
x −

1

12
x2)y(y − 1)(y − 2)

+[
3

4y − 2
−

49

180
y(y − 1)(y − 2)]x(x − 1)(x − 2)

=
P (x, y)

Q(x, y)
,

where

P (x, y) = 720 − 990x + 570y − 911xy3 − 6450y2 + 1080x2 + 2279xy

−2464xy2 − 1581x2y + 2181x2y2 − 264x2y4 + 98x3y4

−343x3y3 + 343x3y2 − 98x3y + 646xy4

+5460y3 − 270x3 − 1200y4 − 66x2y3,

Q(x, y) = 180 − 360y,

and it is easy to verify

T (xi, yj) = fij , i, j = 0, 1, 2, 3.

Scheme 4: Suppose I00(x, y) is the bivariate Newton interpolating polynomial P00(x, y) on
the subset Π00

33, I01(x, y) is the Thiele-type branched continued fraction interpolant R01(x, y)
on the subset Π01

33, I10(x, y) is the Thiele-type branched continued fraction interpolant R10(x, y)
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on the subset Π10
33 and I11(x, y) is the bivariate Newton interpolating polynomial P11(x, y) on

the subset Π11
33. Then we have

T (x, y) = 4 − x + y + 3xy +
3

2
x(x − 1) −

7

2
y(y − 1) −

9

2
x(x − 1)y

−xy(y − 1) +
11

4
x(x − 1)y(y − 1)

+
26x − 60

x − 18
y(y − 1)(y − 2)

+[
3

4y − 2
−

4

15
y(y − 1)(y − 2)]x(x − 1)(x − 2)

=
P (x, y)

Q(x, y)
,

where

P (x, y) = −4320 + 6180x− 3420y + 7272xy3 + 38700y2 − 6810x2

−13488xy + 12648xy2 + 10253x2y − 13933x2y2 + 1792x2y4

−672x3y4 + 2022x3y3 − 1317x3y2 + 57x3y − 4272xy4

−32760y3 + 1980x3 + 7200y4 − 90x4 + 118x2y3 + 32x4y4

−112x4y3 + 112x4y2 − 32x4y,

Q(x, y) = −120xy + 60x + 2160y − 1080,

and it is easy to show
T (xi, yj) = fij , i, j = 0, 1, 2, 3.

4. Conclusion and Future Work

In this paper we present a new kind of block based Newton-like blending interpolants which
can be obtained by the Newton’s method. There is no doubt that the above method provides us
with flexible interpolation schemes for choices which include the classical Newton’s polynomial
interpolation as its special case. We give a brief discussion of block based Newton-like blending
interpolation algorithm, its recursive characteristic properties and error estimation. A bivariate
analogy is also discussed. Our future work will be focused on the following aspects:
• How to divide the set Xn and how to choose interpolation method on the every subset to
obtain better approximation.
• How to generalize the above block based interpolation to other formation to obtain better
approximation.
• Applications of block based interpolation in image processing.
We conclude this paper by pointing out that it is not difficult to generalize the block based
Newton-like blending interpolation method to vector-valued case or matrix-valued case ([4, 8,
12]).
Acknowledgement. The authors would like to thank the referees for their helpful suggestions.
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