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Abstract

In this paper, a fundamental fact that Nambu mechanics is source free was proved.
Based on this property, and via the idea of prolongation, finite dimensional Nambu system
was prolonged to difference jet bundle. Structure preserving numerical methods of Nambu
equations were established. Numerical experiments were presented at last to demonstrate
advantages of the structure preserving schemes.
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1. Introduction

Nambu proposed an intriguing generalization of classical Hamiltonian mechanics [1], the
idea was to extend the original Poisson bracket formulation of two function defined on R2 to
bracket of three functions h, f , g of w = (x, y, z) ∈ R3, as

{f, g, h} =
∂(f, g, h)

∂(x, y, z)
,

where ∂(f,g,h)
∂(x,y,z) is Jacobian. The equations of motion corresponding to f and g were written as

ẇ = ∇f ×∇g. (1)

Easy to see that for arbitrary function h(x, y, z),

dh

dt
= {f, g, h}. (2)

Recent interest in this topic is due to Takhtajan [2] studied in particular the consistency
requirement one should place on the generalization . Hietarinta [3] express the consistency
conditions via Nambu tensor.

Briefly speeking, let f1, f2, · · · , fn be n functions defined on

Rn = {(x1, x2, · · · , xn) = w},

Nambu bracket is defined as following

{f1, f2, · · · , fn} =
∂(f1, f2, · · · , fn)

∂(x1, x2, · · · , xn)
. (3)

It is easy to see that the bracket satisfys the following condition [2]:
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1 Skew symmetry

{f1, f2, · · · , fn} = (−1)ǫ(σ){fσ(1), · · · , fσ(n)},

where σ is a permutation of 1, · · · , n and ε(σ) is its parity.

2 The Leibnitz rule

{f1g, f2, · · · , fn} = g{f1, f2, · · · , fn} + f1{g, f2, · · · , fn}.

1. Generalised Jacobi identity

{{g1, · · · , gn−1, f1}, f2, · · · , fn} + {f1, {g1, · · · , gn−1, f2}, · · · , fn}

+{f1, f2, · · · , {g1, · · · , gn−1, fn}}

= {g1, · · · , gn−1, {f1, f2, · · · , fn}}.

For given functions f1, f2, · · · , fn−1, we use f to denote the vector valued function
(f1, f2, · · · , fn−1)

T , the corresponding equations of motion are then



















ẋ1 = {f1, f2, · · · , fn−1, x1} = N(f1, f2, · · · , fn−1)1 = N(f)1
ẋ2 = {f1, f2, · · · , fn−1, x2} = N(f1, f2, · · · , fn−1)2 = N(f)2
...
ẋn = {f1, f2, · · · , fn−1, xn} = N(f1, f2, · · · , fn−1)n = N(f)n

(4)

here we useN(f1, f2, · · · , fn−1) == N(f) to denote Nambu vector fields generated by f1, f2, · · · ,
fn−1.

It will be proved in next section that the phase flow of (4) preserving ωn = dx1 ∧ dx2 ∧
· · · ∧ dxn. This make us construct structure preserving schemes: preserving ωn, called volume
preserving. Feng [4] proposed this idea for source free system, and established a systematic
technique to design it via vector field splitting methods. Unfortunately this methods are un-
practical, especially for large n, because it need first to split vector field to a sum of 2n vector
fields, the existence of such vector fields only be proved theoretically, then solve all the 2n

systems of differential equations numerically, the amount of calculation is as much as 2n times
of original one. There is until now no volume preserving schemes of source free systems have
been found which is independent on the dimension of space and for arbitrary right term, only
for special kind of systems, some first order methods have been designed out explicitly [4, 5].
By the technique of lift (4) to difference jet bundle, we established a systematical methods to
design multi-step structure preserving schemes for Nambu mechanics. Numerical experiments
have been made at last.

2. Phase Flow of Nambu System

In this section, we will mainly prove that phase flow of Nambu system preserves n− form

ωn = dx1 ∧ dx2 ∧ · · · ∧ dxn.

It is well known that the phase flow of source free system preserves ωn, so we only need to
prove (4) is source free, i.e.,

∂

∂x1
N(f)1 +

∂

∂x2
N(f)2 + · · · +

∂

∂xn

N(f)n = 0.

Theorem 1. Nambu system (4) is a source free system
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proof. From definition of N(f)i we know

N(f)i = (−1)i−1
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By the expression of M j
i , we have M j

i = (−1)i−j−1M i
j . Therefor

∂

∂x1
N(f)1 +

∂

∂x2
N(f)2 + · · · +

∂

∂xn

N(f)n

=

n
∑

i,j=1,i6=j

(−1)i−1M j
i =

n
∑

i�j

(−1)i−1M j
i +

n
∑

i�j

(−1)i−1M j
i

=

n
∑

i�j

(−1)i−1M j
i +

n
∑

i�j

(−1)i−1+i−j−1M i
j = 0.

This end the proof.

3. Jet Nambu Mechanics

In [6], the author introduced difference jet manifold and their prolongation. Consider simple
fibre bundle (R ⊗ Rn, π, R), π is projection, π : R ⊗ Rn 7→ R, π(t, x1, · · · , xn) = t. E is
translation transformation defined on R by Et = t + h, where h is some constant called step
size. Naturally its inverse E−1 is defined as E−1t = t − h. Denote Θ as all section of bundle
(R⊗Rn, π, R), that is Θ = {Ψ : R 7→ Rn}. Two elements ψ1, ψ2 of Θ are said to be equivalent
in respect to fixed t, and denoted by ψ1 ∼t ψ2, if

ψ1(t+ ih) = ψ2(t+ ih) i = 0,±1,±2, · · · .

J∞ = ∪t∈RΘ/ ∼t is called infinite difference jet bundle and easy to see

J∞ ≃ ⊗+∞
−∞R

n ⊗R.

Use (t, w = w0, w±1, · · · ) to denote general coordinates of ⊗+∞
−∞R

n ⊗R, projection from J∞ to
R, or to ⊗m

l R
n ⊗R. is as usual.
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As special case of prolongation of vector fields, we now prolong Nambu vector field to J∞.
Introduce t direction, and note that w±i = (x±i

1 , · · ·x±i
n ), Nambu vector field corresponding to

Nambu vector valued function (or briefly Nambu function) f(w) is cast into

∂/∂t+

n
∑

i=1

N(f)i

∂

∂xi

=
∂

∂t
+N(f)

∂

∂w
.

The prolonged vector field is

∂/∂t+
∞
∑

j=−∞

N̂(f̂)j ∂

∂wj
,

where

f̂ =

∞
∑

j=−∞

f(wj)

is the prolongation of Nambu function f , and

N̂(f̂)j
i = N(f)i(w

j).

The prolongation of ωn is

ω̂n =

∞
∑

j=−∞

dxj
1 ∧ dx

j
2 ∧ · · · ∧ dxj

n.

We can now see that N̂(f̂) is Nambu-Hamilton vector field of f̂ corresponding to prolonged n−
form ω̂n. In other words, the prolonged vector field is































...

ẇ1 = N̂(f̂)1

ẇ0 = N̂(f̂)0

ẇ−1 = N̂(f̂)−1

...

(5)

Equations (5) is infinity dimensional Nambu-Hamiltonian system, called jet Nambu-Hamiltonian
mechanics.

Figure 1: Example1 calculated by Nambu scheme
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Figure 2: Example1 calculated by non-Nambu scheme

Figure 3: Example2 calculated by Nambu scheme

Figure 4: Example2 calculated by non-Nambu scheme

4. Nambu Schemes

It is easy to prove that the phase flow of (5) preserves ω̂n. As in finite dimensional case
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[10, 11], We define difference scheme of (5) as jet Nambu-Hamiltonian scheme if it preserves
n−form ω̂n. Via the jet Nambu-Hamiltonian scheme, Nambu difference scheme can be defined
as following:

Definition. A difference scheme of (3) is called Nambu scheme if its prolongation is a jet

Nambu-Hamilton scheme of (5).
As examples, we show some Nambu scheme below. The proof of its structure-preserving is

straightforward, only need to calculation carefully.
Here is a family of two step schemes

wn+1 = 2wn − wn−1 + ∆t(αN(f, g)(wn+1) −

(β + α)N(f, g)(wn) + βN(f, g)(wn−1)). (6)

In general, all the schemes in this family are first order. When α − β = 1, they are second
order, and the scheme for α = 0.5, β = −0.5 is third order.

The following are three step methods:

wn+2 = (1 − a)wn+1 + (2a+ 1)wn − (a+ 1)wn−1

+∆t(−αN(f, g)(wn+2) + (α − β)N(f, g)(wn+1)

+(β − γ)N(f, g)(wn) + γN(f, g)(wn−1)). (7)

Second order condition is
α+ β + γ + a = −2.

When the remain parameters satisfy the additional condition:

3α+ β − γ = −2,

the family become third order. Similarly β + 8α = −4 is fourth order condition and the only
one fifth order scheme is for α = −1/3.

On the other aspect, a = −2, γ = −α = −β are the reversible condition, we see that the
schemes are at most of first order in this case.

Analogously we can construct four step schemes, five steps schemes, and so on. We have
constructed a table of such structure preserving schemes, it will appear any where.

5. Numerical Experiment

In order to demonstrate advantages of the schemes which preserving the structure we give
above, We used (6) with α = 0.5 and β = −0.5 to calculate following Nambu systems.
Example1.







dx
dt

= zsin(y) − ysin(z)
dy
dt

= xsin(z) − zsin(x)
dz
dt

= ysin(x) − xsin(y)

We calculated example1 by Nambu scheme(fig1)(20000 steps) and non-Nambu scheme (fig2)
(10000000 steps) respectively, with initial point(0.9, 0.7, 0.5) and stepsize 0.1.
Example2.







dx
dt

= −cos(y)cos(z)sin(x) − 4cos(x)cos(z)sin(y)
dy
dt

= −cos(x)cos(z)sin(y) + 4cos(y)cos(z)sin(x)
dz
dt

= 2cos(y)cos(x)sin(z)

We calculated example2 by Nambu scheme(fig3) (10000 steps) and non-Nambu scheme(fig4)
(10000000 steps) respectively, with initial point(0.9, 0.7, 0.5) and stepsize 0.1.
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