
Journal of Computational Mathematics, Vol.25, No.5, 2007, 583–594.

FAST PARALLELIZABLE METHODS FOR COMPUTING
INVARIANT SUBSPACES OF HERMITIAN MATRICES *

Zhenyue Zhang

(Department of Mathematics, Zhejiang University, Hangzhou, China

Email: zyzhang@zju.edu.cn)

Hongyuan Zha

(College of Computing, Georgia Institute of Technology Atlanta, GA 30332, USA

Email: zha@cc.gatech.edu)

Wenlong Ying

(Department of Mathematics, Zhejiang University, Hangzhou, China)

Abstract

We propose a quadratically convergent algorithm for computing the invariant subspaces

of an Hermitian matrix. Each iteration of the algorithm consists of one matrix-matrix

multiplication and one QR decomposition. We present an accurate convergence analysis

of the algorithm without using the big O notation. We also propose a general framework

based on implicit rational transformations which allows us to make connections with several

existing algorithms and to derive classes of extensions to our basic algorithm with faster

convergence rates. Several numerical examples are given which compare some aspects of

the existing algorithms and the new algorithms.

Mathematics subject classification: 15A18, 65F05, 65F35.

Key words: Eigenvalue, Invariant subspace, Hermitian matrix, QR method, Parallelizable

method.

1. Introduction

In [15] we proposed a cubically convergent algorithm for computing the two invariant sub-

spaces of an Hermitian matrix A corresponding to the eigenvalues of A inside and outside the

unit interval [−1, 1], respectively. There we also presented a detailed convergence analysis which

proved the cubic convergence of the algorithm. The derivation of the algorithm is inspired by

the work in [1, 2, 3, 4, 6, 10, 11, 12] and the algorithm only uses matrix-matrix multiplications

and QR decompositions as building blocks which are highly parallelizable primitive operations

in libraries such as ScalaPack [14]. In this paper, we continue along the same line of research

and concentrate on deriving new algorithms that can substantially reduce the amount of storage

and the number of matrix-matrix multiplications. By exploiting the symmetry of the eigen-

value problem, we succeeded in deriving a new algorithm that employs only one matrix-matrix

multiplication and one QR decomposition in each iteration. The presentation of the algorithm

is the topic of Section 2. The structure of the new algorithm is extremely simple which allows

us to give a much refined convergence analysis of the algorithm in Section 3. In particular, we

were able to remove all of the big O expressions which were heavily used in [15]. The resulting

bounds are cleaner and more concise. In Section 4, we analyze our proposed algorithm from the

point of view of implicit rational transformations. This approach allows us to propose classes

* Received December 15, 2005; final revised September 1, 2006; accepted October 1, 2006.



584 Z.Y. ZHANG, H.Y. ZHA AND W.L. YING

of extensions of our basic algorithm which have higher convergence rates. To test the power of

the implicit rational transformation framework, we will derive a simple version of the matrix

sign function scheme from the general framework. We then discuss the relations of our new

algorithms with Algorithm ISDA proposed in [1, 3, 10] and Algorithm Cubic proposed in [15].

We focus on the accuracy of the invariant subspaces that are computed by those algorithms for

a variety of numerical examples.

Remark. We want to emphasize that when the matrix A is non-Hermitian, then all the

algorithms proposed in the sequel can be converted into algorithms for computing the singular

subspaces of A.

2. The Algorithms

Our focus is to derive new algorithms which use as few matrix-matrix multiplications as

possible in each iteration for computing an invariant subspace V(a,b) of an Hermitian matrix

A ∈ Cn×n corresponding to the eigenvalues inside a preassigned interval (a, b).2)

Theoretically, such an invariant subspace of A can be obtained by the following three steps.

First, construct a function f that maps the complement of interval [a, b] to zero and keep the

image of [a, b] far from zero. Second, compute the matrix function f(A). Finally, compute the

range space of f(A) using QR algorithm column-pivoting to obtain the invariant subspace as

required.

However, it is difficult to design such a function explicitly A feasible approach is to construct

a function that has such properties approximately. We consider a sequence of functions {fk}
that converges to an ideal f . One of the approaches for designing fk is that we use a multiple

composite of a fixed function g together with a scaling function ℓ,

fk = g ◦ · · · ◦ g
︸ ︷︷ ︸

k times

◦ℓ ≡ g(k) ◦ ℓ with g(k) = g ◦ · · · ◦ g
︸ ︷︷ ︸

k times

, (2.1)

where the iterative function g should be chosen such that 1) it has two invariant intervals I1
and I2 that cover the real space, i.e., R = I1 ∪ I2, and 2) it shrinks one of the intervals, say I1,

as k increases, i.e., g(k)(I1) → {α} as k → ∞. The scaling function ℓ maps the inside of (a, b)

into I2 and the outside to I1. This approach leads to an iterative method for computing the

invariant subspace as follows.

Basic Iteration for Computing an Invariant Subspace.

1. Initial scaling. Set B0 = ℓ(A).

2. Iteration. For k = 0, . . . , compute Bk+1 = g(Bk) until convergence.

3. Column-pivoting QR. Compute an orthogonal basis matrix of the range space of Bp

for a convergent iterator Bp.

Obviously, Bk = fk(A) with fk defined in (2.1). For ease of computation, the iterative

function g should be chosen such that the matrix function g(A) can be computed easily. In

2) We assume that a and b are not eigenvalues of A.



Fast Parallelizable Methods for Computing Invariant Subspaces of Hermitian Matrices 585

[10], a normalized incomplete Beta function βi is used as the iterative function g.

βi(x) =

∫ x

0
ti(1 − t)idt

∫ 1

0
ti(1 − t)idt

=
i∑

j=0

(
2i+ 1

i− j

)(
i+ j

j

)

(−1)jxi+j+1,

where
(

k
j

)

= k!
j!(k−j)! . Indeed, only β1 and β2 are suggested, because the computational costs

of βi(A) increase substantially for large i. A Beta function maps [0, 1
2 ) → [0, 1

2 ), (1
2 , 1] → (1

2 , 1],

and βi(
1
2 ) = 1

2 . Moreover,

lim
k→∞

β
(k)
i (x)

{
0 x ∈ [0, 1

2 )

1 x ∈ (1
2 , 1]

.

To determine a linear scaling function ℓ, an estimated interval (ω,Ω) is required to bound the

eigenvalues λj(A) of A, ω ≤ λj(A) ≤ Ω. ℓ is then chosen to be a linear function such that

ℓ([ω, α]) ⊂ [0,
1

2
], ℓ([α,Ω]) ⊂ [

1

2
, 1]

for a given α ∈ (ω,Ω). Here we assume that α is not an eigenvalue of A. This method named as

ISDA in [10] should be applied twice for computing the invariant subspace V(a,b) corresponding

to eigenvalues in the interval (a, b) if (a, b) ⊂ (ω, Ω). We remark that ISDA can be applied for

computing an invariant subspace of a real diagonalizable matrix [10] as well.

In this paper, we consider the following rational function as an iterative function g,

φ(x) =
x2

x2 + (1 − x)2
. (2.2)

Similar to βi, φ has two invariant intervals [0, 1
2 ) and (1

2 , 1]. Note that 1
2 is a fixed point of φ.

Furthermore, φ(k)([0, 1
2 )) → {0} and φ(k)((1

2 , 1]) → {1} as k → ∞. The scaling function ℓ can

be a rational function such that it maps (a, b) into (1
2 , 1] and maps its complement set [a, b]c

to [0, 1
2 ). It is not difficult to verify that such an ℓ can be chosen as the following:

ℓ(x) =
c21

c21 + (x − c2)2
, c1 =

b− a

2
, c2 =

b+ a

2
.

Here ℓ and φ have similar representations. A question follows immediately: How can we compute

the rational matrix function ℓ(A) or φ(B) for a given matrix A or B?

For an Hermitian matrix B, the matrix function φ(B) can be represented in the form

φ(B)
(
B(B2 + (I −B)2)−1/2

)(
B(B2 + (I −B)2)−1/2

)H
.

Notice that B(B2 + (I −B)2)−1/2 is the top block of the normalized long matrix
[

B

I −B

]

(B2 + (I −B)2)−1/2

that is an orthogonal basis matrix of the range space of
[

B
I−B

]

. Obviously, it can be obtained

by the QR decomposition of
[

B
I−B

]

within an orthogonal transformation. In practice, let
[

B
I−B

]

= QR =
[

Q1

Q2

]

R be the QR decomposition. Then there is an orthogonal matrix M such

that [
B

I −B

]

(B2 + (I −B)2)−1/2 = QM =

[
Q1

Q2

]

M,



586 Z.Y. ZHANG, H.Y. ZHA AND W.L. YING

It gives that B(B2 + (I −B)2)−1/2 = Q1M and hence φ(B) = Q1Q
H
1 .

This observation motivates us to use QR decomposition for computing the matrix function

φ(B) for an Hermitian matrix B. Similarly, let

[
c1I

A− c2I

]

= QR =

[
Q1

Q2

]

R

be the QR decomposition of
[

c1I
A−c2I

]

. We have ℓ(A) = Q1Q
H
1 . The discussion above leads to

the following algorithm for computing the invariant subspace V(a,b) of A with eigenvalues in

(a, b).

Algorithm Quad.

1. Initialization. B0 = b−a
2 I, Z0 = A− a+b

2 I.

2. Iteration. For k = 0, 1, 2, . . . , until convergence

2.1 Compute QR decomposition

[
Bk

Zk

] [

Q
(k)
1

Q
(k)
2

]

R(k).

2.2 Update Bk+1 = Q
(k)
1 (Q

(k)
1 )H , Zk+1 = I −Bk+1.

2.3 If ‖Bk+1 −Bk‖F ≤ tol, set p = k + 1 and terminate the iterations.

3. Compute the QR decomposition with column pivoting BpΠ = QR. The subspace

spanned by the first r columns of Q is an approximate of V(a,b) as required.

Here tol is a user supplied tolerance which will influence the accuracy of the computed

approximate invariant subspace, r is the number of the largest diagonal entries of R far from the

other diagonal elements. We have the following proposition that will be used in our convergence

analysis proposed in the next section.

Proposition 2.1. Denote C = 1
c1

(A− c2I). Using the notation in Algorithm Quad, we have

that for k ≥ 1, Bk = (I + C2k

)−1 and there are unitary matrices Mk such that

Q
(k)
1 = (I + C2k+1

)−1/2Mk, Q
(k)
2 = C2k

(I + C2k+1

)−1/2Mk, k = 0, 1, . . . . (2.3)

Proof. We prove the proposition using induction. Since both

[
Q

(0)
1

Q
(0)
2

]

and
[

I
C

]

(I + C2)−1/2

are orthogonal basis matrices of the column space of
[

c1I
A−c2I

]

, there exists a unitary matrix M0

such that [

Q
(0)
1

Q
(0)
2

]

=

[
I

C

]

(I + C2)−1/2M0.

Hence (2.3) holds for k = 0. By definition, B1 = Q
(0)
1 (Q

(0)
1 )H .

In general, if Bk = (I + C2k

)−1 for some k = m ≥ 1, then
[

Bm

I−Bm

]

Therefore, both

[
Q

(m)
1

Q
(m)
2

]

and
[

I
C2m

]

(I + C2m+1

)−1/2 are orthogonal basis matrices of the column space of
[

Bm

I−Bm

]

. It



Fast Parallelizable Methods for Computing Invariant Subspaces of Hermitian Matrices 587

follows that there is a unitary matrix Mm such that

[

Q
(m)
1

Q
(m)
2

]

=

[
I

C2m

]

(I + C2m+1

)−1/2Mm,

which implies Bm+1 = Q
(m)
1 (Q

(m)
1 )H = (I + C2m+1

)−1. By induction, the proposition holds.

3. Convergence Analysis

There are some interesting properties for the quantities in Algorithm Quad. For example,

Bk is an approximation of the orthogonal projection on to the invariant subspace V(a,b) and

Mk in Proposition 1 and R(k) approximate the identity matrix I. In this section we provide a

detailed convergence analysis of Algorithm Quad. All the quantities in Algorithm Quad are

carefully analyzed and rigorous bounds are given.

The eigenvalue decomposition of A is denoted by A = QΛQH , where Λ = diag(λ1, · · · , λn)

with the first r eigenvalues inside (a, b) and the others outside [a, b]. We assume throughout

the paper that a and b are not eigenvalues of A. Denote α(λ) = 1
c1

(λ − c2). Then C = α(A)

and it has the eigen-decomposition C = QDQH with

D = diag(d1, . . . , dn), di = α(λi), i = 1, . . . , n.

Obviously, |di| < 1 for i ≤ r and |dj | > 1 if j > r. Partition Λ = diag(Λ1,Λ2) and D =

diag(D1, D2) with Di = α(Λi) if required. It gives ‖D1‖2 < 1 and ‖D−1
2 ‖2 < 1.

Theorem 3.1. Let P(a,b) be the orthogonal projection onto the invariant subspace V(a,b). If a

and b are not eigenvalues of A, then

‖Bk − P(a,b)‖ ≤ η2k

,

where η = max
{

|α(λi)|, |α(λj)|−1
∣
∣λi ∈ (a, b), λj /∈ [a, b]

}

< 1. Moreover, if η2k ≤ 0.16, then

‖Bk+1 −Bk‖ ≤ ‖Bk − P(a,b)‖ < ‖Bk+1 −Bk‖ + 2‖Bk+1 −Bk‖2.

Proof. By Proposition 2.1, Bk = (I + C2k

)−1 = Q(I +D2k

)−1QH . It follows that

‖Bk − P(a,b)‖2 = ‖(I +D2k

)−1 − diag(Ir, 0)‖2

= max

{

d2k

i

1 + d2k

i

,
d−2k

j

1 + d−2k

j

∣
∣
∣ i ≤ r < j

}

(3.1)

≤ max{d2k

i , d−2k

j | i ≤ r < j} = η2k

.

Furthermore, we have

‖Bk+1 −Bk‖2 = ‖(I +D2k+1

)−1 − (I +D2k

)−1‖2

= max

{

d2k

i (1 − d2k

i )

(1 + d2k

i )(1 + d2k+1

i )
,

d−2k

j (1 − d−2k

j )

(1 + d−2k

j )(1 + d−2k+1

j )

∣
∣
∣
∣
∣
i ≤ r < j

}

.(3.2)



588 Z.Y. ZHANG, H.Y. ZHA AND W.L. YING

Comparing (3.1) and (3.2), we obtain that ‖Bk+1 −Bk‖2 ≤ ‖Bk −P(a,.b)‖2. To show the upper

bound of ‖Bk − P(a,.b)‖2, let us denote t = ǫ(1−ǫ)
(1+ǫ)(1+ǫ2) and we write

ǫ

1 + ǫ
= t

1 + ǫ2

1 − ǫ
= t(1 +

ǫ(1 + ǫ)

1 − ǫ
) = t

(

1 + t

(
1 + ǫ

1 − ǫ

)2

(1 + ǫ2)

)

.

It is not difficult to verify that for ǫ ∈ [0, 0.16],
(

1+ǫ
1−ǫ

)2

(1 + ǫ2) < 2. Thus ǫ
1+ǫ < t(1 + 2t).

Setting ǫ = λ2k

i and ǫ = (λ−1
j )2

k

for i ≤ r < j, respectively, and comparing (3.1) and (3.2)

again yields

‖Bk − P(a,b)‖2 < ‖Bk+1 −Bk‖2(1 + 2‖Bk+1 −Bk‖2),

which completes the proof.

The above theorem gives a rigorous upper and lower bound for the approximation error

‖Bk − P(a,b)‖2. It justifies the use of ‖Bk+1 − Bk‖2 as the stopping criterion in Algorithm

Quad. (Actually, ‖Bk+1 −Bk‖F is used in the algorithm.)

In the next theorem we examine the block-diagonalization aspect of Algorithm Quad.

Theorem 3.2. Let Λ1 and Λ2 be the diagonal matrices of the eigenvalues of A inside (a, b)

and outside [a, b], respectively, and BkΠk = QkRk be QR decompositions with column pivoting

of Bk. Then, there exist two unitary matrices U1 ∈ Cr×r and U2 ∈ C(n−r)×(n−r) such that

‖QH
k AQk − diag(UH

1 Λ1U1, UH
2 Λ2U2)‖ ≤ 4‖A‖2

σmin(R
(k)
11 )

η2k

2 , (3.3)

where R
(k)
11 is the leading principal submatrix of Rk of order r and η2 = maxj{|α(λj)|−1, λj /∈

[a, b]}.

Proof. Let A = Qdiag(Λ1,Λ2)Q
H be the eigenvalue decomposition of A. Partition

QHQk =

[
Q11 Q12

Q21 Q22

]

.

We can write

Q11 = U1 + ∆U1, Q22 = U2 + ∆U2,

where Ui is an optimal unitary matrix approximation of Qii, i = 1, 2. It is not difficult to verify

that [7]

‖∆U1‖2 = max
i

|σi(Q11) − 1| = ‖(QH
11Q11)

−1/2 − I‖2 = ‖(I −QH
21Q21)

−1/2 − I‖2 ≤ ‖Q21‖2.

Similarly, ‖∆U2‖2 ≤ ‖Q12‖2 = ‖Q21‖2. The last equality holds because QHQk is unitary. So

we have

QHQk

[
U1 0

0 U2

]

+

[
∆U1 Q12

Q21 ∆U2

]

≡ U + ∆U,

and

‖∆U‖2 ≤
∥
∥
∥
∥

[
∆U1 0

0 ∆U2

]∥
∥
∥
∥

2

+

∥
∥
∥
∥

[
0 Q12

Q21 0

]∥
∥
∥
∥

2

≤ 2‖Q21‖2.

Substituting the splitting above into QH
k AQk = QH

k QΛQHQk gives

QH
k AQk = UHΛU + UHΛ∆U + ∆UHΛQHQk.



Fast Parallelizable Methods for Computing Invariant Subspaces of Hermitian Matrices 589

Therefore,

‖QH
k AQk − UHΛU‖2 = ‖UHΛ∆U + ∆UHΛQHQk‖2 ≤ 2‖A‖2‖∆U‖2 ≤ 4‖A‖2‖Q21‖2. (3.4)

To estimate ‖Q21‖2, we use Proposition 2.1 again,

QHQkRk = QHBkΠk = QH(I + C2k

)−1Πk = (I +D2k

)−1QHΠk.

Partition D = diag(D1, D2) and Rk =

[

R
(k)
11 R

(k)
12

0 R
(k)
22

]

with R11 ∈ Cr×r. The equality for the

(2, 1)-block reads

Q21R
(k)
11 = (I +D2k

2 )−1(QHΠk)21.

Hence ‖Q21R
(k)
11 ‖ ≤ ‖(I +D2k

2 )−1‖ < η2k

2 , where (QHΠk)21 denotes the (2,1)-block of QHΠk.

It follows that

‖Q21‖2 ≤ ‖Q21R
(k)
11 ‖‖(R(k)

11 )−1‖ < η2k

2 /σmin(R
(k)
11 ). (3.5)

Substituting (3.5) into (3.4), we obtain the bound (3.3).

Remark. The minimal singular value σmin(R11) depends on the particular pivoting strategy

used in computing the QR decomposition of Bk. Instead of using QR decomposition with

column pivoting, we may also use some of the variants of the so-called rank-revealing QR

decompositions or even the more general two-sided orthogonal decompositions.

The results given in the following theorem analyze the structures of the matrices R(k) and

Mk. In particular we can show that both of them converge to the identity matrix quadratically.

Theorem 3.3. Let R(k) be the upper triangular matrix in Algorithm Quad and Mk be the

unitary matrix in Proposition 2.1. Then, using the notation of Theorem 3.2, we have

MkR
(k) = I +QEkQ

H ,

where Ek = diag(γ
(k)
1 , . . . , γ

(k)
n ) with |γ(k)

i | ≤ η2k

. Furthermore, if all the diagonal elements of

R(k) are nonnegative, we have

‖R(k) − I‖2 ≤ (4 log2 n+ 8)η2k

,

‖Mk − I‖2 ≤ (4 log2 n+ 9)η2k

.

Proof. Algorithm Quad gives Bk = Q
(k)
1 R(k). Substituting the representations of Q

(k)
1 and

Bk given in Proposition 2.1 into the equality above and using the decomposition of C = QDQH ,

we have that

Q(I +D2k

)−1QH = Q(I +D2k+1

)−1/2QHMkR
(k),

which implies that

MkR
(k) = Q(I +D2k+1

)1/2(I +D2k

)−1QH ≡ Q(I + Ek)QHI +QEkQ
H , (3.6)

where Ek = (I +D2k+1

)1/2(I +D2k

)−1 − I = diag(γ
(k)
1 , . . . , γ

(k)
n ) and

γ
(k)
i =

√

1 + d2k+1

i

1 + d2k

i

− 1 = − 2d2k

i

(1 + d2k

i )(1 + d2k

i +
√

1 + d2k+1

i )
.



590 Z.Y. ZHANG, H.Y. ZHA AND W.L. YING

It is easy to see that for i ≤ r, |γ(k)
i | ≤ d2k

i ≤ η2k

. For i > r, we can write

γ
(k)
i = − 2d−2k

i

(1 + d−2k

i )(1 + d−2k

i +

√

1 + d−2k+1

i )
,

giving |γ(k)
i | ≤ d−2k

i ≤ η2k

. Hence we have that ‖Ek‖2 ≤ η2k

.

Now let ∆k = 2QEk(I + Ek)QH . The representation (3.6) gives

(R(k))HR(k) = Q(I + Ek)2QH = Q(I + 2Ek(I + Ek))QH = I + ∆k,

the Cholesky decomposition of I + ∆k, a perturbation of the identity matrix. By the pertur-

bation theory derived in [5], we get the error bound

‖R(k) − I‖2 ≤ (2 log2 n+ 4)‖∆k‖2 ≤ 4(log2 n+ 2)η2k

.

Here we have used the bound ‖∆k‖2 ≤ η2k

that can be easily obtained. Finally, by (3.6),

‖Mk − I‖2 = ‖MH
k − I‖2 = ‖R(k) − I +QEkQ

HMH
k ‖ ≤ 4(log2 n+ 2)η2k

+ η2k

,

completing the proof.

As a consequence of Theorem 3.3, the following corollary shows that Q
(k)
1 can also be an

approximation of the orthogonal projection on to the invariant subspace. The proof is similar

and hence is omitted.

Corollary 3.1. Using the notation in Algorithm Quad, we have

‖Q(k)
1 − P(a,b)‖2 ≤ ωk + (4 log2 n+ 9)η2k

,

where ωk = max{ 1
2 |α(λi)|2

k+1

, |α(λj)|−2k | i ≤ r < j} < 1.

Remark. The block diagonalizing unitary matrix Q in the last step of Algorithm Quad

does not have to come from the matrix Bp. Corollary 3.1 shows that it can be obtained by the

QR decompositions with column pivoting of Q
(k)
1 . We omit the further analysis.

4. Acceleration

The above discussion opens up many possible avenues for accelerating Algorithm Quad,

and we discuss several possibilities in this section. First we can replace the two matrices Bk

and I −Bk in Step 2.1 by their powers, i.e., Step 2.1. becomes

[
Bm

k

(I −Bk)m

] [

Q
(k)
1

Q
(k)
2

]

R(k),

and Step 2.2. becomes Bk+1 = Q
(k)
1 (Q

(k)
1 )H . This gives other rational iterations for {Bk} as

Bk+1 = φm(Bk), k = 1, 2, . . . ,

with φm(x) = x2m

x2m+(1−x)2m that has the properties φm([0, 1/2]) = [0, 1/2] and φm((1/2, 1]) =

(1/2, 1]. An interesting observation is the following nested iteration relation among those ra-

tional functions:

φ2 = φ ◦ φ = φ(2), φ2s = φ ◦ · · · ◦ φ
︸ ︷︷ ︸

(s+1) times

= φ(s+1)(x).



Fast Parallelizable Methods for Computing Invariant Subspaces of Hermitian Matrices 591

It is easy to see that the larger m is the faster the convergence.3) However, we should also

pay attention to the possibility that Bm
k may overflow for large m. On the other hand forming

Bm
k and (I − Bk)m involves extra matrix-matrix multiplications. The best compromise seems

to be for m = 2 where we can get away with just one extra matrix-matrix multiplication and

two matrix additions. This is because we can write (I −Bk)2 = I − 2Bk +B2
k. We summarize

the above in the following algorithm.

Algorithm Quart.

1. Initialization. B0 = b−a
2 I, Z0 = A− a+b

2 I.

2. For k = 0, 1, 2, . . . , until convergence

2.1 Compute QR decomposition

[
Bk

Zk

] [

Q
(k)
1

Q
(k)
2

]

R(k).

2.2 Update Yk = Q
(k)
1 (Q

(k)
1 )H , Bk+1 = Y 2

k , and Zk+1 = I − 2Yk +Bk+1.

2.3 If ‖Bk+1 −Bk‖F ≤ tol, then set p = k + 1 and terminate.

3. Compute the column pivoting QR decomposition of BpΠ = QR.

4. Compute QHAQ as QHAQ =

[

Â11 E12

E21 Â22

]

, with Â11 ∈ Cr×r, r = rank(R).

Another possibility for devising acceleration schemes is to use
[

p(Bk)
q(I−Bk)

]

=

[
Q

(k)
1

Q
(k)
2

]

R(k),

and Bk+1 = Q
(k)
1 (Q

(k)
1 )H , where p(x) and q(x) are two polynomials. This gives the rational

transformation of Bk as

Bk+1 = ψ(Bk)

with ψ(x) = p(x)2

p(x)2+(q(1−x))2 . We can tailor the polynomials p and q to accommodate the

computation of eigenvalues in other regions in the real line.

5. Comparisons

5.1 Comparison with ISDA

As we mentioned, ISDA uses the incomplete Beta function β1(x) = x2(3−2x) as the iteration

function [1, 3, 10]. Two matrix-matrix multiplications are needed in each iteration. The Beta

function β2(x) = 10x3 − 15x4 + 6x5 is suggested for acceleration [1, 3, 10]. It requires at least

three matrix-matrix multiplications for computing β2(B).

In this section we compare several properties of the functions φ = φ1 or φ2 with β1 and β2

used as the iteration functions in ISDA. Notice that the eigenvalues of A will be first transformed

to the interval [0, 1] by the scaling transformation B = ℓ(A).4) The convergence of iteration

3) The convergence rate of φm is 2m now.
4) As a side issue, this step can be accomplished using the QR decomposition of [I, A]H instead of explicitly

estimating the largest and smallest eigenvalues of A using some version of the Geeshgorin Circle Theorem and

resorting to a linear transformation as is done in [1, 3].



592 Z.Y. ZHANG, H.Y. ZHA AND W.L. YING

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration Functions

β
1

φ
s

β
2

φ
1

0 0.5 1
0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07
Ratios

r
1

r
2

Fig. 5.1. (left) The functions β1 ≈ φs with s = 1
2

3
√

4 and β2 ≈ φ2. (right) The rations r1 = (φs −
1
2
)/(β1 − 1

2
) and r2 = (φ1 −

1
2
)/(β2 − 1

2
).

B̂ = φi(B) or B̂ = βi(B) depends on the distance mini |λi(B) − 1
2 | of the eigenvalues of B

to the middle point 1
2 of the interval [0, 1]. The larger the distance is, the faster the iteration

converges. φ1(x) seems to have a slight edge over β1(x) around 1/2 since

φ1(x) − 1
2

β1(x) − 1
2

=
4

3
− 32

4
(x− 1

2
)2 + o((x − 1

2
)2),

implying that φ1(x) expels away any point close to 1/2 about 4/3 as fast as β1(x).

We now compare the function φ2(x) and the iterated version of β1(x) and found that for a

not too small x ∈ (0, 1],

φ2(x) ≈ (β1 ◦ β1 ◦ β1)(x) ≡ β
(3)
1 (x).

This implies that β1 is approximately equal to φs with s = 1
2

3
√

4 ≈ 0.7937 and the convergence

rate of ISDA using β1 is about 3
√

4 ≈ 1.5874. The accelerated iteration of ISDA using β2 seems

to be quadratically convergent, because β2(x) ≈ φ1(x) for not small x in (0, 1). Figure 5.1 plots

the graphs of φ1, φs with s = 1
2

3
√

4, β1, and φ2 on the left and the ratios r1 = (φs − 1
2 )/(β1− 1

2 )

and r2 = (φ1 − 1
2 )/(β2 − 1

2 ) on the right. For numerical examples, see Example 2 and Example

3 below. For our test cases we can conclude that Algorithm Quart is about three times as fast

as ISDA and also gives comparable or better accuracy for the computed invariant subspaces.

5.2 Comparison with Algorithm

In this section we compare the accuracy and convergence behavior of the two algorithms:

Algorithm 5.2 and Algorithm Quad. For a detailed discussion of Algorithm Cubic, the reader

is referred to [15]. The main difference between the two algorithms is in Step 2, where the

matrices Bk and Zk are constructed. For Algorithm Cubic, Step 2 has the following form:5)

2.1 Compute QR decomposition

[
Wk

Zk

][

Q
(k)
1

Q
(k)
2

]

R(k).

2.2 Update Wk+1 = Q
(k)
1 Wk(Q

(k)
1 )H , Zk+1 = Q

(k)
2 Zk(Q

(k)
2 )H .

5) Actually, Algorithm Cubic used a different but equivalent form as is presented here. The form presented

here is used to make the comparison with Algorithm Quad easier.



Fast Parallelizable Methods for Computing Invariant Subspaces of Hermitian Matrices 593

The initial values are the same as in Algorithm Quad. It requires 4 matrix-matrix multiplica-

tions. The following table shows the essential characteristics of the algorithms.6)

Algorithms Storage Matrix-matrix QR Convergence rate

Quad 3n2 1 1 2

Cubic 5n2 4 1 3

Quart 3n2 2 1 4

ISDA (β1) 3n2 2 0 ≈ 1.59

ISDA (β2) 4n2 3 0 ≈ 2

6. Numerical Experiments

In this section, we show some numerical results to illustrate the efficiency of our proposed

algorithms for computing an invariant subspace V(a,b) for the given interval (a, b). We use

synthetic test matrices.

Example 1. We construct the test matrix A as follows (in MATLAB notation).

n = 500;

[Q,temp] = qr(1-2*rand(n));

d = sort(1-2*rand(n,1));

A = Q*diag(d)*Q’;

We compute the invariant subspace corresponding to the right half-eigenvalues, i.e., setting

a = 1
n tr(A) and b = Ω where Ω is the estimated bound of the eigenvalues of A using Geeshgorin

Circle Theorem. Notice that ISDA is convenient for computing an invariant subspace corre-

sponding to extreme eigenvalues. As we have shown in the last section, the iteration number

of ISDA with β1 is about three times of that for Algorithm Quart, while ISDA with β2 and

Algorithm Quad has almost the same number of iterations. However, since ISDA requires

additional two matrix-matrix multipliers than Quad and two matrix-matrix multiplications

cost much more than on QR decomposition, ISDA with β2 is generally slower than Quad. In

the following table, we list the experimental results, where err1, err2, and err3 denote the

block-diagonalizing error, the approximate error of the computed eigenvalues in (a, b), and the

distance between the compute invariant subspace span(Q̂1) and the true one V(a,b)span(Q1),

respectively,

err1 = ‖Q̂T
2AQ̂1‖, err2 = ‖λ(a,b)(A) − λ(Q̂T

1 AQ̂1)‖, err3 = ‖Q̂1 −Q1‖.

n = 500 CPU time (s) iter err1 err2 err3 Flops/n3

Quad 19.89 19 1.09e-14 2.10e-14 3.06e-14 194

Quart 14.61 11 9.50e-15 2.31e-14 2.84e-14 135

ISDA (β1) 20.02 30 1.84e-14 2.39e-14 4.18e-14 183

ISDA (β2) 21.92 20 5.77e-14 2.17e-14 5.08e-14 203

Example 2. In this test, we show the efficiency of our methods for computing an invariant

subspace associate the middle eigenvalues of A. We set

a =
1

2
(λ100 + λ101), b =

1

2
(λ200 + λ201).

6) When we count the number of matrix-matrix multiplications and the amount of storage, we do not take

into account of the symmetry of some of the quantities. This is mainly because it is still not very clear how to

handle symmetry in a parallel environment.



594 Z.Y. ZHANG, H.Y. ZHA AND W.L. YING

For ISDA, if a linear transformation is used for the initial scaling ℓ, it requires that one applies

ISDA twice, one for the invariant subspace Va,Ω) of A and the other for the invariant subspace

Va,b) of the truncated matrix QT
1 AQ1. In the following table, we show the CPU times and

iteration numbers, respectively.

n = 500 CPU time (s) iter err1 err2 err3 Flops/n3

Quad 11.75 11 3.56e-15 9.53e-15 2.56e-14 113

Quart 9.08 7 3.58e-15 8.15e-15 2.53e-14 87

ISDA (β1) 27.73+18.16 27+26 8.57e-15 1.19e-14 9.19e-14 251

ISDA (β2) 29.98+19.80 18+17 2.00e-14 9.12e-15 8.54e-14 276

Acknowledgments. The work of the first author was supported in part by NSFC project

60372033. The work of the second author was supported in part by NSF grant CCR-9619452.

References

[1] L. Auslander and A. Tsao, On parallelizable eigensolvers, Adv. Appl. Math., 13 (1992), 253-261.

[2] Z. Bai, J. Demmel and M. Gu, Inverse free parallel spectral divide and conquer algorithms for non-

symmetric eigenproblems, Technical report CSD-94-793, Computer Science Division, University

of California at Berkeley, 1994.

[3] C. Bischof, S. Huss-Lederman, X. Sun, A. Tsao and T. Turnbull, Parallel studies of the invariant

subspace decomposition approach for banded symmetric matrices, Seventh SIAM Conference on

Parallel Processing for Scientific Computing, San Francisco, 1995.

[4] A.Y. Bulgakov and S.K. Godunov, Circular dichotomy of the spectrum of a matrix, Siberian

Math. J., 29 (1988), 734-744.

[5] A. Edelman and W. Mascarenhas, On Parlett’s matrix norm inequality for the Cholesky decom-

position, Numer. Linear Algebra Appl., 2 (1995), 243-250.

[6] S.K. Godunov, Problem of the dichotomy of the spectrum of a matrix, Siberian Math. J., 27

(1986), 649-660.

[7] G.H. Golub and C.F. Van Loan, Matrix Computations, 2nd edition, Johns Hopkins University

Press, Baltimore, Maryland, 1989.

[8] N.J. Higham, The matrix sign decomposition and its relation to the polar decomposition, Linear

Algebra Appl., 212/213 (1994), 3-20.

[9] J. Howland, The sign matrix and the separation of matrix eigenvalues, Linear Algebra Appl., 49

(1983), 221-232.

[10] S. Huss-Lederman, A. Tsao and T. Turnbull, A parallelizable eigensolver for real diagonalizable

matrices with real eigenvalues, SIAM J. Sci. Comput., 18(3) (1997), 869-885.

[11] A. Malyshev, Computing the invariant subspaces of a regular linear pencil of matrices, Siberian

Math. J., 30 (1989), 559-567.

[12] A. Malyshev, Parallel algorithm for solving some spectral problems of linear algebra, Linear

Algebra Appl., 188/189 (1993), 489-520.

[13] P. Pandey, C. Kenney and A. Laub, A parallel algorithm for the matrix sign function, Int. J.

High Speed Comput., 2 (1990), 181-191.

[14] ScaLAPACK, http://www.netlib.org/scalapack/index.html.

[15] H. Zha and Z. Zhang, A cubically convergent parallelizable method for the Hermitian eigenvalue

problem, SIAM J. Matrix Anal. Appl., 19 (1998), 468-486.

[16] H. Zha, Z. Zhang and W. Ying, A parallelizable quadratically convergent QR-like method without

shifts for Hermitian eigenvalue problem, Linear Algebra Appl., 417 (2006), 478-495.

[17] Z. Zhang and O. Tianwei, Computing eigenvectors of symmetric matrices using simple inverse

iterations, J. Comput. Math., 21(5) (2003), 657-670.


