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Abstract

Based on the generalized minimal residual (GMRES) principle, Hu and Reichel pro-

posed a minimal residual algorithm for the Sylvester equation. The algorithm requires the

solution of a structured least squares problem. They form the normal equations of the least

squares problem and then solve it by a direct solver, so it is susceptible to instability. In

this paper, by exploiting the special structure of the least squares problem and working on

the problem directly, a numerically stable QR decomposition based algorithm is presented

for the problem. The new algorithm is more stable than the normal equations algorithm

of Hu and Reichel. Numerical experiments are reported to confirm the superior stability

of the new algorithm.
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1. Introduction

Consider the numerical solution of the Sylvester equation

AX − XB = C, (1.1)

where A ∈ Rn1×n1 , B ∈ Rn2×n2 and C ∈ Rn1×n2 are given matrices, and X is the solution

matrix. Such kind of problems arise in various settings, and there are many methods for solving

them [1, 2, 3, 4, 9, 10]. For large and sparse problems, based on the GMRES algorithm [8]

for large unsymmetric linear systems, Hu and Reichel [6] present a minimal residual Krylov

subspace method. In this case, a least squares problem of Kronecker product form must be

solved, and a similar problem also sees [7]. In [6] they first form the normal equations system

of the least squares problem and then solve it by a direct solver. Their algorithm is susceptible

to instability and the computed solution may have poor accuracy due to the possibly high

ill-conditioning of the normal equations system. In this paper we propose a new algorithm for

solving the least squares problem. It is based on stable QR decompositions and fully exploit

the special structure of the problem. Thus, it is more stable than a normal equations based

solver. We also compare the cost of our algorithm with that of Hu and Reichel, showing that

ours is a little bit more expensive than theirs but both are negligible, compared to the overall

cost of the minimal residual method. This indicates that our improvement is significant.

In Section 2 we review the least squares problem to be solved in the minimal residual

method. In Section 3 we show how to develop a stable QR decomposition based algorithm

* Received December 15, 2005; final revised September 1, 2006; accepted October 1, 2006.
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for the resulting special least squares problem. Meanwhile, we compare the costs of our new

algorithm and theirs. In Section 4 we report some numerical examples to show the stability

and higher accuracy of our algorithm.

Some notations to be used in the paper are introduced. Denote by the superscript T the

transpose of a vector or a matrix, by A+ the generalized inverse of A, by ‖ · ‖2 the spectral

norm, by κ2(A) = ‖A‖2‖A+‖2 the condition number of A, by Rm the set of m-dimensional

vectors, by Rm×n the set of m×n matrices. Throughout the paper, I is an identity with order

clear in the context, ei is the ith row of I, and Ĩ is the same as the identity matrix I with an

additional zero row.

2. The Least Squares Problem

The minimal residual method [6] given by Hu and Reichel replaces the subspace Km(I ⊗
A − BT ⊗ I, r0) by another subspace of the form Km(BT , g) ⊗ Km(A, f) for certain vectors

f, g ∈ Rn. It is seen from Algorithm 5.2 of [6] that the construction of f, g needs O(n1n2)

flops. We should point out that usually the two subspaces are different. Hu and Reichel then

use the Arnoldi process to generate the Hessenberg matrices H̃A, H̃B and the orthonormal

bases Wm and Vm of Km(BT , g) and Km(A, f), respectively. The process uses 2n1m
2 flops +

m matrix A by vector products and 2n2m
2 flops + m matrix BT by vector products. Then

one solves a least squares problem of the form

min
ym∈Rm

2

‖r̃0 − (Ĩ ⊗ H̃A − H̃B ⊗ Ĩ)ym‖2, (2.1)

where Ĩ is defined as before and H̃A, H̃B are (m + 1) × m Hessenberg matrices. Assume

HA = QARAQT
A, HB = QBRBQT

B

to be the Schur decompositions of HA and HB, where HA and HB are the first m rows of H̃A

and H̃B , and define the unitary matrices

Q̃A =

(

QA

1

)

, Q̃B =

(

QB

1

)

and the matrices

R̃A = Q̃T
AH̃AQA, R̃B = Q̃T

BH̃BQB.

Then the leading m×m principal submatrix of R̃A is RA, and the (m+1)st row of R̃A is given

by

eT
m+1R̃Aej = eT

m+1H̃AemeT
mQAej , 1 ≤ j ≤ m.

A similar result holds for R̃B .

Let r′0 = (Q̃B ⊗ Q̃A)T r̃0 and y′
m = (QB ⊗ QA)T ym. Then (2.1) is equivalent to

min
ym∈Rm

2

‖r′0 − (Im+1,m ⊗ R̃A − R̃B ⊗ Im+1,m)y′
m‖2. (2.2)

The (m + 1)2 × m2 matrix in (2.2) has m2 rows in common with the upper triangular matrix

R = (I ⊗RA −RB ⊗ I). Let the remaining rows define the (2m + 1)×m2 matrix S. Thus, for
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an appropriate permutation matrix P , (2.2) can be written as

min
y′

m
∈Rm

2

∥

∥

∥

∥

Pr′0 −
(

R

S

)

y′
m

∥

∥

∥

∥

2

, (2.3)

Hu and Reichel [6] determine the solution of this least squares problem by first solving the

mathematically equivalent normal equations

(

I + (SR−1)T (SR−1)
)

y′′
m =

(

I, (SR−1)T
)

Pr′0 (2.4)

and then computing y′
m from Ry′

m = y′′
m.

The linear system (2.4) can be solved by an application of the Sherman-Morrison-Woodbury

formula [5]. We now count flops (floating point operations) of each step for solving (2.4).

The first step is to construct the matrix U = SR−1. The construction of SR−1 is equivalent

to the solution of the matrix equation

LUT = ST

for UT , where L = RT is a m2×m2 lower triangular matrix. The matrix L is a lower triangular

matrix, whose diagonal blocks have the form RA + RB(i, i)I and the non-blocks have the form

RB(i, j)I. Using the method in [5, p.91], we can solve the linear equation LuT
j = sT

j with about
3
2m3 flops, where uT

j and sT
j are the jth columns of UT and ST . Therefore, the flops for solving

all the 2m columns of ST is about 3m4 without taking the structure of ST into account. It is

seen from above that the matrix U = SR−1 can be computed using fewer than 3m4 flops.

Now (2.4) becomes
(

I + UT U
)

y′′
m =

(

I, UT
)

Pr′0. (2.5)

In the second step we get y′′
m with an application of the Sherman-Morrison-Woodbury formula:

y′′
m =

(

I + UT (I + UUT )−1U
) (

I, UT
)

Pr′0. (2.6)

Since U is a (2m + 1) × m2 matrix, it costs 8m4 flops to construct the matrix UUT without

considering its structure, and the inverse matrix in (2.6) is (2m + 1) × (2m + 1) instead of

m2 × m2. The cost of the Cholesky factorization of (I + UUT ) is 1
3 (2m + 1)3 flops. Then we

can get the matrix X = (I + (UUT ))−1U using roughly 8m4 flops. By the special structure of

U , the matrix multiplication UT X costs

2m2 · m · m2 + 2m
m
∑

k=1

k · m2 ≈ 3m5

flops and the rest cost of (2.6) is approximately m4 flops. So the total cost of (2.6) is approxi-

mately 3m5 flops and the total cost of the normal equations solver is 3m5 flops. Recall the cost

of the Arnoldi process for (1.1). We see that if matrix by vector products are not dominant

and m3 is of order max{n1, n2} then the cost of the normal equations solver is comparable to

that of the Arnoldi process.

Note that relative error of the computed solution x̃LS to a general least squares problem

min ‖b − Ax‖2 by a normal equations solver is a moderate multiple of κ2(A)2ǫ = ‖A‖2
2‖A+‖2

2ǫ,

while the relative error of the computed solution obtained by a stable QR decomposition for

solving the LS problem directly is a moderate multiple of
(

κ2(A) +
ρLS

‖b‖ κ2(A)2
)

ǫ, (2.7)
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where

ρLS = ‖(I − AA+)b‖2 (2.8)

and ǫ is the machine precision; see [5]. It is clearly seen that a normal equations solver may pro-

duce a much poorer computed solution than the QR decomposition solver does when ρLS/‖b|| is
small and κ2(A) is large. Only when ρLS/‖b|| ≈ 1 both solvers have roughly the same condition

numbers and may produce computed solutions with comparable accuracy. However, even in this

worst case, a direct based Cholesky factorization solver may break down when κ2(A) = O(1/
√

ǫ)

but a direct LS QR decomposition based solver can only do so when κ2(A) = O(1/ǫ). So gen-

erally a stable LS solver should be preferable for accuracy and robustness. In the next section,

by exploiting the special structure of the problem under consideration, we develop a direct

LS solver based on a sequence of stable QR decompositions and present a stable algorithm

for solving (2.1), whose cost is comparable to that of the normal equations solver of Hu and

Reichel.

3. A QR Decomposition Based Solver

Without considering the structure of (2.1), if it were solved by a standard QR decomposition

directly, the cost would be 4
3m6 flops [5, p. 263]. This way would destroy the special block H̃B

i,j Ĩ,

and the cost would be basically 1
4m times of that of the previous normal equations solver. We

now propose a stable QR decomposition based solver by fully exploiting the special structure

of problem (2.1), so that we can get a more accurate solution. We also show that the cost of

our algorithm is comparable to that of Hu and Reichel.

The (m + 1)2 × m2 coefficient matrix K = Ĩ ⊗ H̃A − H̃B ⊗ Ĩ in the least squares problem

(2.1) has the structure

K =























H̃A − H
(B)
1,1 Ĩ −H

(B)
1,2 Ĩ · · · −H

(B)
1,mĨ

−H
(B)
2,1 Ĩ H̃A − H

(B)
22 Ĩ · · · −H

(B)
2,mĨ

−H
(B)
3,2 Ĩ

. . .
...

−H
(B)
m,m−1Ĩ H̃A − H

(B)
m,mĨ

−H
(B)
m+1,mĨ























,

which is a structured matrix and is in block upper Hessenberg form. We can fully make use of

the special structure of K to develop a stable QR decomposition of it and then solve the least

squares problem (2.1) by the QR decomposition in a standard way.

Write K(0) = K and r̃
(0)
0 = r̃0. The first step we do is to annihilate the last row of

H̃A −H
(B)
11 Ĩ and −H

(B)
21 Ĩ in K so that the first block column of K is in upper triangular form.

We proceed as follows: Let
(

H̃A − H
(B)
1,1 Ĩ

−H
(B)
2,1 Ĩ

)

= Q1R1 = Q1

(

R̃1

0

)

be a full QR decomposition of the first block column of K, where Q1 is an 2(m + 1)× 2(m +1)

orthogonal matrix and R̃1 is an m×m upper triangular matrix. Define the (m+1)2× (m+1)2

orthogonal matrix

Q̃1 =

(

QT
1

I

)
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and premultiply K(0) and r̃0 by Q̃1. This transformation only changes the first two block rows

of K(0) and the first 2m + 2 entries of r̃0. Then the transformed matrix is

K(1) = Q̃1K
(0) =



















R̃1 × · · · ×
0 × · · · ×

−H
(B)
3,2 Ĩ

. . .
...

. . . H̃A − H
(B)
m,mĨ

−H
(B)
m+1,mĨ



















and the transformed vector is Q̃1r̃
(0)
0 = r̃

(1)
0 . Next we deal with the second block column of

K(1), which has 3m + 3 rows and is of the form











× × . . . ×
k

(1)
m+1,m+1 k

(1)
m+1,m+2 . . . k

(1)
m+1,2m

QT
1 (:, m + 2 : 2m + 2)(H̃A − H

(B)
2,2 Ĩ)

−H
(B)
3,2 Ĩ











(

× × · · · ×
B2

)

, (3.1)

in which QT
1 (:, m+2 : 2m+2) denotes the matrix consisting of the (m+2)-nd to the (2m+2)-nd

columns of QT
1 and the × block row on both sides has m rows. Now we only need to deal with

the last 2m + 3 rows

B2 =







k
(1)
m+1,m+1 k

(1)
m+1,m+2 . . . k

(1)
m+1,2m

QT
1 (:, m + 2 : 2m + 2)(H̃A − H

(B)
2,2 Ĩ)

−H
(B)
3,2 Ĩ






.

Suppose

B2 = Q2R2 = Q2

(

R̃2

0

)

be a full QR decomposition of B2, where Q2 is an (2m + 3) × (2m + 3) orthogonal matrix and

R̃2 is an m×m upper triangular matrix. Define the (m + 1)2 × (m + 1)2 orthogonal matrix Q̃2

by

Q̃2 =





I1

QT
2

I2



 ,

where I1 is the identity matrix of order m and I2 the identity matrix of order (m+1)2−(3m+3).

Then it is seen that in K(2) = Q̃2K
(1) and r̃

(2)
0 = Q̃2r̃

(1)
0 only the (m+1)-th to the (3m+3)-th

rows of K(1) and r̃
(1)
0 are premultiplied by QT

2 and the rest rows remain unchanged. Therefore,

the first two block rows and columns of K(2) are already in upper triangular form.

At the i-th step we already have the matrices K(i−1) and Q̃i−1. The first i−1 block columns

of K(i−1) is already in upper triangular form

















R̃1 × · · · ×
R̃2 · · · ×

. . .
...

R̃i−1

0
















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and the i-th block column is














×
⋆

Q̂T
i−1(:, (m + 1)(i − 1) + 1 : (m + 1)i)(H̃A − H

(B)
i,i Ĩ)

−H
(B)
i+1,iĨ

0



















×
Bi

0



 ,

where the × block row has m(i − 1) rows and the ⋆ block row has i − 1 rows. So Bi is

2(m + 1) + (i − 1) by m. We make a full QR decomposition

Bi = QiRi = Qi

(

R̃i

0

)

,

where Qi is an (2(m + 1) + i − 1) × (2(m + 1) + i − 1) orthogonal matrix and R̃2 is an m × m

upper triangular matrix.

Now we form the (m + 1)2 × (m + 1)2 orthogonal matrix Q̃i by

Q̃i =





I1

QT
i

I2



 ,

where I1 is the identity matrix of order m(i− 1) and I2 the identity matrix of order (m + 1)2 −
(3m + i + 1).

Premultiply K(i−1) and r̃
(i−1)
0 by Q̃i to define K(i) and r̃

(i)
0 , in which only the m(i− 1)+ 1-

th to the (m + 1)(i + 1)-th rows of K(i−1) and r̃
(i−1)
0 are premultiplied by QT

i and the rest

rows remain unchanged. Then the first i block columns of K(i) will be in upper triangular

form. At the end, at the m-th step we compute a full QR decomposition of the last 3m + 1

rows of the m-th block column of K(m−1) and get Qm and R̃m. We then define Q̃m and form

K(m) = Q̃mK(m−1) and r̃
(m)
0 = Q̃mr̃

(m−1)
0 .

The above procedure can be written as

Q̃mQ̃m−1 · · · Q̃1K =

(

R̃

0

)

=

















R̃1 × × ×
R̃2 × ×

. . .
...

R̃m

0

















(3.2)

and Q̃mQ̃m−1 · · · Q̃1r̃0r̃
(m)
0 . Define the (m+1)2×(m+1)2 orthogonal matrix Q = (Q̃m−1 · · · Q̃1)

T .

Consequently, we achieve a QR decomposition:

K = Q

(

R̃

0

)

. (3.3)

Now the structured least squares problem (2.1) reduces to

min
ym∈Rm

2

∥

∥

∥

∥

r̃
(m)
0 −

(

R̃

0

)

ym

∥

∥

∥

∥

2

. (3.4)

This can be solved by a conventional back substitution.
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Two comments are in order. First, we obtain a stable QR decomposition of K if we compute

a stable QR decomposition at each step in the above process. This can be done if we use

Householder transformations to achieve a QR decomposition. Second, it is unnecessary to

explicitly form the orthogonal matrix Q. We only need to update r̃0 step by step. So we can

save a lot of computational cost. Therefore, we have now proposed a stable QR decomposition

based solver for (2.1).

Now we count the computational cost of our new solver. As described above, there are the

following two main sources of the cost:

1. The cost of the total QR decomposition

Note that for an m × n matrix the cost of the full QR decomposition using Householder

transformations is 2n2(m − n
3 ) without explicitly forming Q [5, p. 225]. Then the total

cost of our solver for the QR decomposition is

m
∑

i=1

2m2(2m + i + 1 − m

3
) ≈ 13

3
m4.

2. The cost of successively getting R̃ and r̃
(m)
0

The cost of premultiplying an n×q matrix by r Householder transformations is 2qr(2n−r)

flops [5, p. 213]. At the i-th step, we have r = m, n = 2m + i + 1, q = m(m − i) + 1. So

the total cost of successively getting R̃ and r̃
(m)
0 is

m−1
∑

i=1

2m(m2 − mi + 1)(3m + 2i + 2) + 2m(5m + 2)

= 2m

m−1
∑

i=1

[3m3 − m2i − 2mi2 + 2m2 − 2mi + 3m + 2i + 2] + 10m2 + 4m

= 11
3 m5 − m4 + O(m3).

The least squares problem (3.4) can be solved using only m4 flops. Therefore, the cost of the

minimal solution by our QR decomposition based solver is basically 11
3 m5. Recall that the

normal equations solver of Hu and Reichel costs 3m5 flops. So our algorithm is a little bit more

expensive but is comparable to theirs. Recall the cost of the Arnoldi process for (1.1). We see

that if matrix by vector products are not dominant and m3 is of order max{n1, n2} then the

cost of our solver is comparable to that of the Arnoldi process, similar to the normal equations

solver.

4. Numerical Experiments

In this section we report on some numerical results to show the sharp stability of our new

algorithm. All the experiments presented in this section were performed on an Intel Pentium(R)

IV with CPU 2.8 GHz and 512 MB RAM using Matlab 7.0.1.

In order to compare the accuracy and stability of the two algorithms, we need to know the

exact solution of (2.1). At the same time, we need to know r̃0. Unlike the linear system Ax = b,

we could trivially construct the unique right-hand side b by b = Ax∗ once the exact solution
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Table 4.1: Condition numbers and relative errors.

ρLS The new solver The normal equations solver

‖r̃0‖ residual CPU-time total CPU time residual CPU-time total CPU time

4.75e-13 4.21e-8 0.08 2.31 2.81 0.06 2.30

4.75e-8 3.42e-6 0.08 2.30 1.72 0.05 2.29

4.75e-5 3.40e-3 0.08 2.29 1.74 0.05 2.29

Table 4.2: Condition numbers of H̃A,H̃B and K.

k, j k = 2, j = 2 k = 4, j = 4 k = 6, j = 6 k = 8, j = 8 k = 10, j = 10

κ(H̃A) 1.00e2 1.24e4 1.00e6 1.00e8 9.83e9

κ(H̃B) 1.06e3 1.01e4 1.43e3 7.5e2 1.51e2

κ(K) 1.10e2 1.00e4 1.00e6 1.00e8 9.80e9

x∗ is given. For the least squares problem min
ym∈Rm

2 ‖r̃0 − Kym‖2, the situation becomes

nontrivial and complicated. Assume that the vector y∗ is the exact solution. Then we have

r̃0 = r + Ky∗, where r is the residual and satisfies KT r = 0, that is, r⊥Ky∗. Therefore, given

K and y∗, there are infinitely many right-hand sides r̃0 such that min
ym∈Rm

2 ‖r̃0−Kym‖2 have

the same exact solution y∗.

Given y∗, we can construct various r̃0 in such a way: Choose a vector c and orthogonalize it

against the columns of K by the Gram-Schmidt procedure with iterative refinements. Then the

resulting vector is orthogonal to the columns of K to working precision. We then just take it

to be r. In this and the following examples, we take all y∗ = (1, 1, . . . , 1)T and c = (1, . . . , 1)T .

Furthermore, since ‖r‖2 = ρLS, we can vary ρLS by scaling r and y∗.

Example 1. We first tested a problem similar to Example 7.3 in [6], where the matrices A,

B and C are 63 × 63 and the maximal Arnoldi steps m = 20. Here we constructed the same

type matrices, but they were 3000 × 3000. We took m = 20 and generated the orthonormal

bases Vm+1 and Wm+1 of Km+1(A, f) and Km+1(B
T , g), respectively, as done in [6]. At the

same time, we got two (m + 1)×m matrices H̃A and H̃B. Here note that if we constructed the

right-hand vector r̃0 from matrix C, we would have to construct the matrix Wm ⊗ Vm of order

30002 × 202, which would use 3600MB main memory and be too large to be stored. So instead

we constructed the vectors y∗ and r̃0 in the way described above. Additionally, we computed

the condition number of K.

For this example, we should keep in mind that (i) the flops of the normal equations solver

and our solver are both comparable to the Arnoldi process for m = 20 and (ii) the cost of

constructing f and g is O(n2) flops, several times bigger than that of the Arnoldi process for

m = 20. So the construction of f and g dominated the CPU timings of the two algorithms, as

also seen from experiments.

Table 4.1 shows the behavior of the two algorithms, where the CPU-time denoted the CPU

timings of the whole algorithms in which the least squares problems were solved either by

the normal equations solver of Hu and Reichel [6] or by the QR decomposition based solver

proposed and the total CPU time denoted the total CPU timings for solving the large Sylvester

equation (1.1) by the algorithm of Hu and Reichel and our modified variant. Since the condition

number of K is 3.84 × 109, the normal equations solver delivers solutions with no accuracy, as

expected. The normal equations solver uses a little less CPU-time, but the new solver gives
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Fig. 4.1. Example 2: the relative errors with different condition numbers and ρLS/‖r̃0‖. (a) All ρLS/‖r̃0‖ are

O(e−7), and (b) All ρLS/‖r̃0‖ are O(e−1).

much more accurate solutions. Furthermore, the CPU timings consumed by the two algorithms

for solving (1.1) were almost equal, while the CPU timings used by the two solvers for the least

squares problem both were negligible, compared with the total CPU timings in each algorithm

for solving (1.1).

The new solver gave poorer solutions as ρLS/‖r̃0‖ became bigger. This was consistent with

our previous analysis. The numerical experiments shows that although the new solver is a little

bit more expensive than the normal equations solver, the cost of both solvers were negligible

compared to the overall cost of the whole algorithm. So our solver is significant as it can

compute solutions to much more accuracy than the normal equations solver did.

Example 2. Since we are only concerned with solving the least squares problem (2.1) and

compare accuracy and stability of the normal equations solver and our new solver, it suffices

to construct Hessenberg matrices H̃A and H̃B themselves. Let D1 = diag(1 : 9, 10j) and
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Fig. 4.2. Example 3: the relative errors with different κ(K). (a) All ρLS/‖r̃0‖ are O(e−7), and (b) All ρLS/‖r̃0‖

are O(e−1).

D2 = diag(10−k,−9 : −1). Here we adapted Matlab notations. Then we first used a random

orthogonal matrix Q to get two full matrices D̃1 = QT D1Q, D̃2 = QT D2Q and transformed

D̃1 and D̃2 to the Hessenberg matrices HA and HB by orthogonal similarity transformations.

We then added an appropriate row to HA and HB to get two 11 × 10 Hessenberg matrices

H̃A = [HA; zeros(1, 9), 10] and H̃B = [HB ; zeros(1, 9), 10] in the standard Matlab format.

Then the matrix K = (Ĩ ⊗ H̃A − H̃B ⊗ Ĩ) of the least squares problem was 121× 100. We can

vary j, k to get different D1, D2 and thus different K.

Table 4.2 shows the condition numbers of H̃A, H̃B and K, and Table 4.3 lists the relative

errors. Fig. 4.1 shows the behavior of the two algorithms with different condition numbers and

ρLS/‖r̃0‖, in which the points “stars” are the values of ρLS/‖r̃0‖.
It is observed from both Table 4.3 and Fig. 4.1 that as the condition numbers of K became

bigger both algorithms obtained poorer computed solutions. But the relative errors obtained

by our algorithm were much smaller than those by the normal equations solver. In particular, if
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Table 4.3: Relative errors with different ρLS/‖r̃0‖’s.

ρLS/‖r̃0‖ 0.24 0.92 1 − 10−4 1 − 10−10 1

κ(K) The normal equations solver 3.75e-10 2.02e-10 1.18e-8 2.44e-6 3.79e-4

= 1e4 The new solver 7.31e-14 1.17e-12 1.92e-11 4.26e-9 6.01e-6

ρLS/‖r̃0‖ 0.35 0.92 1 − 10−4 1 − 10−9 1

κ(K) The normal equations solver 3.00e-3 4.74e-2 1.84e-2 98.10 1.41e4

= 8e8 The new solver 7.60e-10 1.78e-8 1.23e-7 1.01e-5 3.67e-3

Table 4.4: Condition numbers of H̃A, H̃B and K.

k, j k = 2, j = 2 k = 4, j = 3 k = 6, j = 7 k = 8, j = 5

κ(H̃A) 1.11e2 1.00e4 1.00e6 1.00e8

κ(H̃B) 1.10e2 1.00e3 1.00e7 1.00e5

κ(K) 1.00e2 5.50e3 5.55e6 5.00e7

Table 4.5: Relative errors with different ρLS/‖r̃0‖’s.

ρLS/‖r̃0‖ 0.19 1 − 10−4 1 − 1−10 1

κ(K) The normal equations solver 5.36e-11 8.33e-10 1.18e-6 1.78e-4

= 5.5e3 The new solver 9.46e-14 6.85e-12 6.11e-9 9.82e-6

ρLS/‖r̃0‖ 0.17 0.93 1 − 10−6 1 − 10−11

κ(K) The normal equations solver 2.57e-3 1.11e-3 0.67 1.08e3

= 5e7 The new solver 6.06e-10 7.37e-9 9.90e-7 6.90e-4

the condition number of K reached 108, then the normal equations solver delivered a very poor

computed solution; even worse, if κ(K) ≈ 1010, the computed solution had no accuracy at all.

Actually, the relative errors of the computed solutions by the normal equations solver increased

by a multiple of κ2(K). In contrast, our algorithm got much more accurate computed solutions.

All these confirm our previous analysis and indicate the sharp stability of our algorithm.

Fig. 4.1 also shows the influence of ρLS/‖r̃0‖. We observe from Fig. 4.1 that the accuracy

of computed solutions by our algorithm became a little poorer as ρLS/‖r̃0‖ grew but was not

very near one. This illustrates that the term ρLS/‖r̃0‖κ2(K) played a role in the computed

accuracy but the effect was not considerable when ρLS/‖r̃0‖ was far from zero but not near

one. However, this term was sudden to have had strong influence when ρLS/‖r̃0‖ very near one,

as was seen from Table 4.3. This indicates that the bound of (2.7) was very conservative when

ρLS/‖r̃0‖ was not near one and became quite sharp when it was very near one. On the other

hand, we found from Table 4.3 that our new algorithm was considerably more stable than the

normal equations solver even when ρLS/‖r̃0‖ was near one.

Example 3. In this example we let D1 = diag(1 : 19, 10k) and D2 = diag(−10j,−19 : −1).

As for example 1, we construct two 21×20 matrices H̃A, H̃B. Then the matrix K = (Ĩ ⊗ H̃A −
H̃B ⊗ Ĩ) of the least squares problem is 441 × 400.

Table 4.4 gives condition numbers of H̃A, H̃B and K. Table 4.5 shows the influence of

ρLS/‖r̃0‖. Fig. 4.2 describes the behavior of the two algorithms.

Fig. 4.2 clearly shows that the relative errors of the computed solutions obtained by the

two solvers became bigger when the condition numbers were increasingly bigger. The relative
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errors of the computed solutions by the direct normal equations solver were proportional to

κ2(K), while those of our new algorithm grew linearly with respect to κ(K) if ρLS/‖r̃0‖ was

not close to one. Particularly, as κ(K) was as large as 109, the direct normal equations solver

delivered a solution with no accuracy, but the computed solution by our new solver was satis-

factory. If ρLS/‖r̃0‖ was very close to one, the relative errors obtained by our solver were found

proportional to κ2(K). They were, however, much smaller than those obtained by the normal

equations solver.
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