
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 5, No. 4, pp. 595-606

DOI: 10.4208/aamm.13-13S10
August 2013

A New Composite Quadrature Rule

Weiwei Sun1,∗ and Qian Zhang2

1 Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong
2 College of Mathematics and Computational Science, Shenzhen University,
Shenzhen 518060, Guangdong, China

Received 13 June 2012; Accepted (in revised version) 8 September 2012

Available online 7 June 2013

Dedicated to Professor Graeme Fairweather on the occasion of his 70th birthday.

Abstract. We present a new composite quadrature rule which is exact for polynomials
of degree 2N+K−1 with N abscissas at each subinterval and K boundary conditions.
The corresponding orthogonal polynomials are introduced and the analytic formulae
for abscissas and weight functions are presented. Numerical results show that the new
quadrature rule is more efficient, compared with classical ones.
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1 Introduction

The Gaussian quadrature rule is an interpolatory quadrature rule on zeros of certain or-
thogonal polynomials. A general form can be given by

∫ 1

−1
f (x)dx=

N

∑
j=1

ωj f (xj)+R f

and its composite rule is

∫ b

a
f (t)dt=

M−1

∑
i=0

h
( N

∑
j=1

ωj f
(

ti+
h

2
+xj

h

2

))

+O(h2N) (1.1)

for a uniform partition (h= ti+1−ti). The Gaussian quadrature rule is exact for polyno-
mials of degree no larger than 2N−1. The composite Gaussian quadrature rule is one of

∗Corresponding author.
Email: maweiw@math.cityu.edu.hk (W. Sun), zhangq1118@yahoo.com.cn (Q. Zhang)

http://www.global-sci.org/aamm 595 c©2013 Global Science Press



596 W. Sun and Q. Zhang / Adv. Appl. Math. Mech., 5 (2013), pp. 595-606

most efficient and commonly used methods for numerical integration [2, 4, 7, 8, 13], par-
ticularly for problems in which the integrand is defined piecewisely. The computational
complexity of Gauss-type rules depends upon the number of points where the integrand
is evaluated. The composite Gaussian quadrature rule needs to evaluate the integrand
f (x) at NM points.

Here we propose a new quadrature rule of the form

∫ 1

−1
f (x)dx≈

N

∑
j=1

ωj f (xj)+
K

∑
i=1

βi( f (i−1)(1)− f (i−1)(−1)), (1.2)

where ωj, xj and βi are to be determined so that the formula is exact for any polynomials
of degree no larger than 2N+K−1. The corresponding composite rule is given by

∫ b

a
f (t)dt=

M−1

∑
i=0

( N

∑
j=1

h

2
ωj f

(

ti+
h

2
+xj

h

2

))

+
K

∑
i=1

(h

2

)i
βi( f (i−1)(b)− f (i−1)(a))+R f (1.3)

with R f =O(h2N+K) in general.
There are several interesting applications. For K=1, (1.3) becomes

∫ b

a
f (x)dx=

M−1

∑
i=0

( N

∑
j=1

h

2
ωj f

(

ti+
h

2
+xj

h

2

))

+
h

2
β1( f (b)− f (a))+O(h2N+1). (1.4)

This composite quadrature rule only needs two extra evaluations of the integrand at end-
points. The error of this rule is one order higher than the classical one. The new rule is
more significant for those small N, which are often used in practical computations. We
shall show that the weight ωj >0 and the new rule is stable although it is not a positive
Gaussian quadrature.

When the integrand f (t) satisfies some periodic conditions

f (k−1)(b)= f (k−1)(a), k=1,2,··· ,K, (1.5)

we have
∫ b

a
f (t)dt≈

M−1

∑
i=0

( N

∑
j=1

αj f
(

ti+
h

2
+xj

h

2

))

+O(h2N+K). (1.6)

For more general case, one can use the classical sigmoidal transformation or IMI trans-
formation [2,3], which changes the integrand f (x) into one satisfying some periodic con-
ditions in (1.5).

A similar quadrature formula is the Gaussian-Lobatto rule, see [3] given in the form
of

∫ 1

−1
f (x)dx=

N

∑
j=1

ωj f (xj)+
K

∑
i=1

βi

(

f (i−1)(1)+(−1)i f (i−1)(−1)
)

+R f .
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No corresponding composite rule can be obtained due to some symmetry in the second
summation.

A related work is the expansion of the error of classical quadrature rules in terms of
the Euler-Machaurin summation. A well-known formula for trapezoidal rule is

∫ 1

−1
f (x)dx= f (1)+ f (−1)−

m

∑
i=1

22i−1

(2i)!
B2i

(

f (2i−1)(1)− f (2i−1)(−1)
)

+Rm( f ),

where B2i is the Bernoulli number. The corresponding composite formula is

∫ b

a
f (t)dt=

N

∑
j=1

h f (tj)+
h

2

(

f (a)+ f (b)
)

−
m

∑
i=1

B2i

(2i)!
h2i

(

f (2i−1)(b)− f (2i−1)(a)
)

+ R̃m( f ).

Formulae for more general Newton-Cotes quadrature rule were given in [10] and the
formulae for some Gaussian quadrature rules were discussed in [2]. The quadrature rule
developed in this paper is different from those in [2] in general since the weight βi in our
formulas is obtained so that the method is exact for higher-order polynomial. For N=1
and K being even, we can show that x1=0, ω1=2 and βi =0 for odd i and (1.2) becomes

∫ b

a
f (t)dt=

M−1

∑
i=0

h f (ti+1/2)+
K/2

∑
i=1

(h

2

)2i
β2i

(

f (2i−1)(b)− f (2i−1)(a)
)

+O(hK+2), (1.7)

which corresponds to the midpoint rule with the Euler-Machaurin summation.

2 Analysis

In this section, we show the existence and uniqueness of the abscissas and the weights
for K=1,2. Let PN be the space of polynomials of degree no larger than N, Pα

N :=Pα,α
N be

the Jacobi polynomial with respect to the weight function ω(x)=(1−x2)α, which satisfies
the recurrence relation [11]

(1−x2)
d

dx
Pα

N(x)=
N+2α+1

2
(1−x2)Pα

N−1(x)=APα
N−1(x)+CPα

N+1(x),

where

A=
(N+α)(N+2α+1)

2N+2α+1
, C=− 2N(N++1)(N+2α+1)

(2N+2α+1)(2N+2α+2)
,

and the following basic formulas

Pα
N(1)=

(

N+α

N

)

, Pα
N(−1)=(−1)N

(

N+α

N

)

,

∫ 1

−1
P1

N(x)dx=
4δN

N+2
,

∫ 1

−1
xP1

N(x)dx=
4δN+1

N+2
,
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∫ 1

−1
P2

N(x)dx=
4(N+2)δN

N+4
,

∫ 1

−1
xP2

N(x)dx=
4(N+2)δN+1

N+4
,

∫ 1

−1
(1−x2)P2

N(x)dx=
16δN

(N+3)(N+4)
,

∫ 1

−1
(1−x2)xP2

N(x)dx=
16δN+1

(N+3)(N+4)
,

d

dx
Pα

N(x)=
N+2α+1

2
Pα+1

N−1(x),

where δN =(1+(−1)N))/2.

Theorem 2.1. For K=1,2, there exist unique abscissas and weights {xj,ωj,β1} with ωj>0 such
that the quadrature rule (1.2) is exact for f (x)∈P2N+K−1.

We prove the theorem below for K=1 and K=2, respectively.

2.1 K=1

Let
l(x)= c0(x−x1)(x−x2)···(x−xN)= c1P1

N−1(x)+c2P1
N(x). (2.1)

Comparing the leading terms in (2.1),

c0=
1

2N

(

2(N+2)
N

)

.

We assume that the quadrature rule (1.3) is exact for f (x) ∈ P2N . Taking f (x) =
l(x),xl(x), respectively, in (1.3), we obtain

4δN

N+1
c1+

4δN

N+2
=2β1

(

NδN+1c1+(N+1)δN+1

)

,

4δN+1

N+1
c1+

4δN+1

N+2
=2β1

(

NδNc1+(N+1)δN

)

.

Solving the above system gives

β1=± 2

(N+1)
√

N(N+2)
(2.2)

and

c1=± N+1
√

N(N+2)
c2. (2.3)

Since

sign
(

c1P1
N−1(±1)+P1

N(±1)
)

=sign
( (−1)N−1N(N+1)

√

N(N+2)
sign(c1)+(−1)N(N+1)

)

=(±1)N ,
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the polynomial c1P1
N−1(x)+P1

N(x) always has N distinct zeros in (−1,1). We take zeros
of this polynomial as the abscissas xj. Taking f (x)= lj(x)(1−x2)/(1−x2

j ), j= 1,2,··· ,N,

respectively, where lj(x)= l(x)/l′(xj), we obtain

ωj=
∫ 1

−1
lj(x)

1−x2

1−x2
j

dx, j=1,2,··· ,N. (2.4)

Now we prove that the quadrature rule (1.3) with the abscissas and weights is exact
for f (x)∈P2N . In fact, we have shown that the quadrature rule (1.3) is exact for f (x)=
l(x),xl(x),(1−x2)lj(x), j = 1,2,··· ,N, so it is exact for f (x) ∈ PN+1. For f (x) ∈ P2N , we
always have

f (x)= l(x)(1−x2)pN−2+pN+1,

where pN−2∈PN−2, pN+1∈PN+1. We see that

f (xj)= pN+1(xj)

and by noting the orthogonality of Jacobi polynomials,

∫ 1

−1
f (x)dx=

∫ 1

−1
(1−x2)l(x)pN−2dx+

∫ 1

−1
pN+1dx

=
N

∑
j=0

ωj pN+1(xj)+β1(pN+1(1)−pN+1(−1))

=
N

∑
j=0

ωj f (xj)+β1( f (1)− f (−1)),

which implies that the rule (1.3) is exact for f (x)∈P2N

Finally, taking f (x)=(1−x2)(lj(x))2, j=1,2,··· ,N, respectively, in (1.3) gives

ωj=
∫ 1

−1
(1−x2)(lj(x))2dx>0, j=1,2,··· ,N.

We complete the proof for K=1.

2.2 K=2

Here we take an analogous approach. Let

l(x)= c0(x−x1)(x−x2)···(x−xN)= c2P2
N−2(x)+c1P2

N−1(x)+c0P2
N(x).

We assume that the quadrature rule (1.3) is exact for f (x)∈P2N+1. Taking f (x)=xl(x)l(−x)
in (1.3), we have

0=
∫ 1

−1
xl(x)l(−x)dx=2β1 l(1)l(−1),
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which leads to
β1=0, (2.5)

if l(1)l(−1) 6=0. Since
P2

N(x)=(−1)N P2
N(−x),

taking f (x)= l(x)(1−x2)P2
N−1,l(x)P2

N−1 in (1.3) results in

c1

∫ 1

−1
(1−x2)(P2

N−1(x))2dx=−β2

(

l(1)P2
N−1(1)+l(−1)P2

N−1(−1)
)

=−4β2c1(P2
N−1(1))

2,

c1

∫ 1

−1
(P2

N−1(x))2dx=2β2c1P2
N−1(1)P2′

N−1(1),

where we have noted that P2
N−1(x)P2

N(x), P2
N+1(x)P2

N(x) are odd. It follows that

c1=0

and therefore, the abscissas are symmetric, i.e.,

xN−j+1= xj.

For N being even, again taking f (x)= l(x),(1−x2)l(x), respectively, in (1.3), we have

c2

∫ 1

−1
P2

N−2(x)dx+
∫ 1

−1
P2

N(x)dx=2β2

(

c2P2′
N−2(1)+P2′

N (1)
)

,

c2

∫ 1

−1
(1−x2)P2

N−2(x)dx+
∫ 1

−1
(1−x2)P2

N(x)dx=−4β2

(

c2P2
N−2(1)+P2

N(1)
)

,

since f (x) is even. By those classical formulas, the system becomes

c2
4N

N+2
+

4(N+2)

N+4
=β2

(

c2
(N+3)N(N−1)(N−2)

6
+
(N−5)(N(N+1)(N+2))

6

)

, (2.6a)

c2
16

(N+1)(N+2)
+

16

(N+3)(N+4)
=−2β2

(

c2N(N−1)+(N+1)(N+2)
)

, (2.6b)

and moreover, c2 satisfies the following quadratic equation

a2c2
2+a1c2+a0=0, (2.7)

where

a2=
2N(N−1)(2N2+2N−3)

3(N+1)(N+2)
,

a1=
4N(2N2+6N+7)

3(N+4)
,

a2=
2(N+1)(N+2)(2N2+10N+9)

3(N+3)(N+4)
.
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A straightforward calculation shows that the equation has two negative roots and one is
in (−1,0) given by

c2=
−N(N+3)(2N2+6N−7)+2(3+2N)

√

3N(N2+3N−1)(N+3)

(N+1)(N+2)(2N2+10N+9)
. (2.8)

Therefore,

β2 =−
8c2

(N+1)(N+2)
+ 8

(N+3)(N+4)

c2N(N−1)+(N+1)(N+2)
>0. (2.9)

Since xl(x) and x(1−x2)l(x) are odd when N is even, the quadrature rule (1.3) is exact
for f (x)= xl(x),x(1−x2)l(x).

For N being odd, we take f (x)=xl(x),x(1−x2)l(x), respectively, in (1.3) and we have

c2

∫ 1

−1
xP2

N−2(x)dx+
∫ 1

−1
xP2

N(x)dx=2β2

(

c2(P2′
N−2(1)+P2

N−2(1))+P2′
N (1)+P2

N(1)
)

,

c2

∫ 1

−1
x(1−x2)P2

N−2(x)dx+
∫ 1

−1
x(1−x2)P2

N(x)dx=−4β2

(

c2P2
N−2(1))+P2

N(1)
)

,

or equivalently

c2
4(N−1)

N+1
+

4(N+1)

N+3
=β2

(

c2
N2(N−1)(N+1)

6
+
(N+2)2(N+1)(N+3)

6

)

,

c2
16

(N+1)(N+2)
+

16

(N+3)(N+4)
=−2β2

(

c2N(N−1)+(N+1)(N+2)
)

.

We can verify that c2 satisfies the Eq. (2.7). Hence c2 and β2 are same as in the case of N
being even and given in (2.8) and (2.9), respectively. Since l(x) and (1−x2)l(x) are odd
for N being odd, the quadrature rule (1.3) is exact for f (x)= l(x),(1−x2)l(x) in this case.

Moreover, since −1< c2<0, the polynomial c2P2
N−2(x)+P2

N(x) always has N distinct
zeros in (−1,1) [1]. For N>1, taking f (x)= lj(x)(1−x2)2/(1−x2

j )
2, j=1,2,··· ,N, respec-

tively, in (1.3), we obtain

ωj=
∫ 1

−1
lj(x)

(1−x2)2

(1−x2
j )

2
dx, j=1,2,··· ,N. (2.10)

For N=1, taking f (x)=1,

ω1=2. (2.11)

We have shown that the quadrature rule (1.3) is exact for f (x)=l(x),xl(x),(1−x2)l(x),
(1−x2)xl(x) and f (x)=(1−x2)2lj(x), j=1,2,··· ,N, for N>1 and f (x)=1 for N=1, so it
is exact for f (x)∈PN+3. For any f (x)∈P2N+1, we always have

f (x)= l(x)(1−x2)2pN−3+pN+3,
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where pN−3∈PN3
and pN+3∈PN+3. We see that

f (xj)= pN+3(xj), f ′(±1)= p′N+3(±1),

and by noting the orthogonality of the Jacobi polynomials,
∫ 1

−1
f (x)dx=

∫ 1

−1
(1−x2)2l(x)pN−3dx+

∫ 1

−1
pN+3dx

=
N

∑
j=0

ωj pN+3(xj)+β1

(

p′N+3(1)−p′N+3(−1)
)

N

∑
j=0

ωj f (xj)+β2( f ′(1)− f ′(−1)),

which implies that the rule (1.3) is exact for f (x)∈P2N+1.
Also taking f (x)=(1−x2)(lj(x))2/(1−x2

j ), j=1,2,··· ,N, respectively, in (1.3) leads to

ωj=
∫ 1

−1

(1−x2)(lj(x))2

1−x2
j

dx+
4β2 l2

j (1)

1−x2
j

>0, j=1,2,··· ,N.

We complete the proof of the theorem.

2.3 Some other cases

In Theorem 2.1, we have proved the existence and uniqueness of the weight and the ab-
scissas for the quadrature rule (1.3) in the case of K=1,2, where the abscissas are zeros of
a quasi-orthogonal polynomial, a linear combination of classical Jacobi polynomials. Our
numerical results show the existence in more general case although we cannot provide a
theoretical analysis. For K=3,4, it is possible to obtain a system of equations for ci by an
analogous approach with

l(x)=P3
N+c1P3

N−1+c2P3
N−2+c3P3

N3

and
l(x)=P4

N+c1P4
N−1+c2P4

N−2+c3P4
N3
+c4,P4

N4
,

respectively. The zeros of such quasi-orthogonal polynomials were studied by several
authors [1, 15]. However, the existence of N real and distinct zeros in a certain interval
for more general linear combination remains open.

Finally we consider a special case of N=1. In this case, we always have ω1=2. For K
being even, we take x1 =0 and f (x)= x/2,x3/2,··· ,xK−1/2 in (1.3) and we obtain βk =0,
k=1,3,··· ,K−1. The quadrature rule (1.3) holds also for f (x)= xK+1/2. Again by taking
f (x)= x2/2.x4/2,··· ,xK/2, respectively, in (1.3), we obtain β2=1/6 and

β2j =
1

(2j+1)!

j−1

∑
i=1

β2i

(2j−2i+1)!
, j=2,3,··· ,K/2.

In this case, the quadrature rule (1.3) reduces to (1.7), the midpoint rule with Euler-
Machaurin summation.

We list the abscissas and weights (xj,ωj,βi) for K=1,2 in Table 1.
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Table 1: (xj,ωj,βi) with K=1,2.

(N,K) Abscissas Weight ωj; βi

(1,1) −1/
√

3 2; 1/
√

3

(2,1) ∓
√

7
5 −

√
2

5 1∓ 1
3
√

14
;

√
2

6

(3,1) -8.941766561414513D-01 5.172041525280592D-01
-2.204556838379386e-01 8.033886116698080D-01
5.613490048068953e-01 6.794072358021326D-01

1.290994448735810D-01
(4,1) -9.322489257468869D-01 3.324811385435277D-01

-4.767128611431370D-01 5.753963247291207D-01
1.499209030642403D-01 6.366909814459927D-01
7.147098298739979D-01 4.554315552813591D-01

-8.1649658092769565-02
(5,1) -9.529409172376568D-01 2.314519143323961D-01

-6.271934369898662D-01 4.235907382812989D-01
-1.400946289004881D-01 5.284695787860465D-01
3.822706409793550D-01 4.923078787702703D-01
8.001329073213428D-01 3.241798898299884D-01

-5.634361698189862D-02
(1,2) 0 2; 0, 1/6

(2,2) ∓
√

1−
√

8
15 1, 1; 0, 1

2

√

8
15− 1

3

(3,2) -7.114370355674900D-01 6.171982912016719D-01
0.0 7.656034175966561D-01

7.114370355674900D-01 6.171982912016719D-01

0.0
1.047147560344837D-02

(4,2) -8.072338280399707D-01 4.180212114502936D-01
-2.989538511730900D-01 5.819787885497064D-01
2.989538511730900D-01 5.819787885497064D-01
8.072338280399707D-01 4.180212114502936D-01

0.0
4.463113967589422D-03

3 Numerical examples

In this section, we present our numerical results to confirm the advantage of the proposed
quadrature rule. We test the proposed rule against five examples, E21, E35, E29, E41 and
E42, of 50 functions given in [2, 7], compared with classical Gauss-Legendre rules.

The integrands in the first two examples are smooth, the last two have a singularity
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Table 2: Numerical results and comparison with classical Gaussian quadrature (N=1,2,3, K=1,2).
∫ b

a
f (x)dx methods M=3 M=6 M=12 hα

∫ 1
0 e−xdx G-L (N=1) 2.917D-3 7.310D-4 1.829D-4 h2.00

(E21) new (1,1) 1.890D-4 2.356D-5 2.940D-6 h3.00

new (1,2) 9.456D-6 5.923D-7 3.704D-8 h4.00

G-L (N=2) 1.800D-6 1.128D-7 7.055D-9 h4.00

new (2,1) 5.114D-8 1.599D-9 4.994D-11 h5.00

new (2,2) 1.269D-9 1.987D-11 3.109D-13 h6.00

G-L (N=3) 4.285D-10 6.714D-12 1.050D-13 h6.00

new (3,1) 7.545D-12 5.909D-14 5.121D-16 h6.85

new (3,2) 1.223D-13 2.220D-16 7.930D-19 h8.13

∫ 1
0

1
1+x dx G-L (N=1) 3.392D-3 8.628D-4 2.167D-4 h1.99

(E35) new (1,1) 5.170D-4 6.537D-5 8.165D-6 h3.00

new (1,2) 7.973D-5 5.196D-6 3.284D-7 h3.98

G-L (N=2) 1.501D-5 9.866D-7 6.250D-8 h3.98

new (2,1) 1.740D-6 5.786D-8 1.833D-9 h4.98

new (2,2) 2.080D-7 3.584D-9 5.754D-11 h5.96

G-L (N=3) 6.964D-8 1.208D-9 1.943D-11 h5.96

new (3,1) 7.202D-9 6.392D-11 5.166D-13 h6.95

new (3,2) 7.701D-10 3.569D-12 1.464D-14 h7.93

∫ b
a f (x)dx methods M=60 M=120 M=240 hα

∫ 2π

0 xsin(30x)cos(x)dx G-L (N=1) 1.198D-1 2.320D-2 5.482D-3 h2.08

(E29) new (1,1) 6.768D-3 3.212D-4 1.888D-5 h4.09

new (1,2) 3.364D-2 1.664D-3 9.879D-5 h4.07

G-L (N=2) 6.768D-3 3.212D-4 1.888D-5 h4.09

new (2,1) 7.766D-5 9.148D-7 1.342D-8 h6.09

new (2,2) 4.282D-4 5.068D-6 7.445D-8 h6.09

G-L (N=3) 1.479D-4 1.722D-6 2.519D-8 h6.10

new (3,1) 6.022D-7 1.734D-9 6.370D-12 h8.09

new (3,2) 3.8222D-6 1.107D-8 4.045D-11 h8.10

M=30 M=60 M=120 hα

∫ 1
0 |x2−0.25|1/2dx G-L (N=1) 6.877D-4 2.487D-4 8.930D-5 h1.48

(E40) new (1,1) 8.541D-5 3.077D-5 1.099D-5 h1.49

new (1,2) 6.681D-4 2.438D-4 8.807D-5 h1.47

G-L (N=2) 8.876D-5 3.138D-5 1.110D-5 h1.50

new (2,1) 2.401D-5 8.530D-6 3.027D-6 h1.49

new (2,2) 2.078D-4 7.493D-5 2.685D-5 h1.48

G-L (N=3) 3.061D-5 1.083D-5 3.833D-6 h1.50

new (3,1) 9.912D-6 3.527D-6 1.250D-6 h1.50

new (3,2) 9.295D-5 3.334D-5 1.191D-5 h1.49

∫ 1
0
|x2−0.25|3/2dx G-L (N=1) 1.136D-4 2.889D-5 7.309D-6 h1.98

(E42) new (1,1) 1.563D-6 1.736D-7 1.735D-8 h3.32

new (1,2) 8.817D-5 2.253D-5 5.720D-6 h1.98

G-L (N=2) 5.310D-7 9.370D-8 1.655D-8 h2.50

new (2,1) 4.710D-8 8.840D-9 1.608D-9 h2.46

new (2,2) 1.734D-5 4.390D-6 1.108D-6 h1.99

G-L (N=3) 7.631D-8 1.349D-8 2.384D-9 h2.50

new (3,1) 1.112D-8 2.011D-9 3.594D-10 h2.48

new (3,2) 5.773D-6 1.457D-6 3.666D-7 h1.99
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at x=0.5, and the integrand in E29 is highly oscillatory. We present our numerical results
in Table 2, compared with the results obtained by the corresponding Gauss-Legendre
quadrature rule (G-L). Some observation can be made. For smooth integrands (E21 and
E35), we take M=3,6,12, respectively. Numerical results show that the accuracy of Gauss-
Legendre quadrature rule and the new quadrature rule is O(h2N) and O(h2N+K) (K =
1,2), respectively, which is in good agreement with theoretical analysis and the new one
is K-order higher than the classical one. For the highly oscillatory example E29, more
subintervals are needed for both Gauss-Legendre rule and the new quadrature rule. Here
we present numerical results with M= 60, M= 120 and M= 240, respectively. One can
see that new rule has better performance. In particular, the new rule with K=1 shows its
superconvergence for this example. For these two singular problems, the new quadrature
rule does not give much improvement as given in the first three examples. It is known
that the accuracy of a quadrature rule depends upon the regularity of integrand and high-
order methods cannot give a high-order accuracy when the integrand is non-smooth.
Clearly our numerical results illustrate that the new composite rule is more efficient than
classical Gauss quadrature rules in general.

4 Conclusions

We have presented a class of quadrature rules for numerical integration in a finite interval
and proved the existence and uniqueness of the weight and the abscissas for K = 1,2.
The rule proposed in the paper is of higher order accuracy than classical ones when the
integrand is smooth, and has almost the same computational complexity, which have
been confirmed by our numerical results.
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