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Abstract

This paper is concerned with stable solutions of time domain integral equation (TDIE)

methods for transient scattering problems with 3D conducting objects. We use the quadratic

B-spline function as temporal basis functions, which permits both the induced currents and

induced charges to be properly approximated in terms of completeness. Because the B-

spline function has the least support width among all polynomial basis functions of the

same order, the resulting system matrices seem to be the sparsest. The TDIE formula-

tions using induced electric polarizations as unknown function are adopted and justified.

Numerical results demonstrate that the proposed approach is accurate and efficient, and

no late-time instability is observed.
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1. Introduction

Time domain integral equation (TDIE) methods have received much attention in several

aspects in recent years, including stability, efficiency and application realms. Earlier studies

of TDIE methods are concerned with the late-time instability [1-4] in transient scattering and

radiation problems. The instability seriously impeded the popularity of the TDIE approaches.

Fortunately, it has been found recently that this difficulty seems to be tractable by the proper

choice of temporal basis functions [5-9]. The basis functions in [5-7] are compactly supported,

while those in [8,9] are not which requires more memory and CPU time. In regarding to

the efficiency of TDIE methods, the classical marching-on-in-time (MOT) scheme becomes

more powerful by incorporating the fast Fourier transform (FFT) technique or plane wave

time domain (PWTD) algorithm [10-13]. With the improvement of stability and efficiency,

TDIE method is becoming a viable tool for simulation of complex microwave circuits containing

nonlinear modules [12,13]. It is predicted that TDIE methods will have more applications for

the wide-band analysis in many areas.

Though the TDIE method is likely to be the preferred solver for transient wave phenomenon,

the stability problem is still a possible undermining factor, which is crucial for time domain

simulation techniques. Although the use of the Lagrange interpolating temporal basis functions
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[5,6] can produce stable solutions under the conventional MOT framework, the rationality

of using these functions is still unjustified. In fact, the first-order derivatives of these basis

functions are not continuous; consequently, the second-order derivatives do not exist. This

question is raised because both the current and its derivatives are required to calculate the

scattered fields. In contrast, there is a reasonable justification for employing the quadratic

B-spline function as the temporal basis functions [7], which ensures that any unknown function

and its derivatives up to the second order can be approximated by the basis functions and

their derivatives, respectively. In addition, because the B-spline functions are most compactly

supported among all the polynomial basis functions of the same order, the resulting system

matrices seem to be the sparest. Unconditional stability of the TDIE methods with quadratic

B-spline temporal basis functions for wire problems has been reported in [7], and the purpose

of this work is to demonstrate its suitability to arbitrary 3D conducting objects.

In the following parts, various TDIE formulations are described in Section 2, and numerical

demonstrations are provided in Section 3. Some concluding remarks are given in Section 4.

2. Formulation

Consider a transient wave which is incident upon a PEC (perfectly-electrical-conducting)

object as shown in Fig. 2.1, which induces a distribution of electric polarization Ps on the

surface S. The induced currents and charges on the surface are related to Ps(r
′, t′) through

Js(r
′, t′) = ∂Ps(r

′, t′)/∂t′ and σs(r
′, t′) = −∇′

s · Ps(r
′, t′),

so that the continuity equation is satisfied automatically, i.e.,

∇′

s · Js(r
′, t′) + ∂σs(r

′, t′)/∂t′ = 0.

The vector potential and scalar potential generated by the induced sources are

A(r, t) =
µ0

4π

∫

S

Js(r
′, t − R/c)

R
dS′, (2.1)

φ(r, t) =
1

4πε0

∫

S

σs(r
′, t − R/c)

R
dS′. (2.2)

The scattered fields can be expressed by the potentials as

Es = −∂A

∂t
−∇φ = − 1

4πε0

∫

S

[

∂2Ps(r
′, t − R/c)

R∂(ct)2
−∇

[∇′

s ·Ps(r
′, t′)]t′=t−R/c

R

]

dS′, (2.3)

Hs =
1

µ0
∇× A = − 1

η0

1

4πε0

∫

S

R̂

R
×

[

∂Ps(r
′, t − R/c)

R∂(ct)
+

∂2Ps(r
′, t − R/c)

∂(ct)2

]

dS′, (2.4)

where c = 1/
√

ε0µ0 is the velocity of light in vacuum and η0 =
√

µ0/ε0 is the intrinsic impedance

of the free space. The boundary conditions for a PEC surface are n̂ × (Ei + Es) = 0 and

n̂ × (Hi + Hs) = Js = ∂Ps/∂t, which by virtue of (2.3)-(2.4) become

n̂ × 1

4πε0

∫

S

[

∂2Ps(r
′, t − R/c)

R∂(ct)2
−∇

[∇′

s · Ps(r
′, t′)]t′=t−R/c

R

]

dS′ = n × Ei, (2.5)

1

2

∂Ps(r, t)

∂t
+ n̂ × c

4π
P.V.

∫

S

R̂

R
×

[

∂Ps(r
′, t − R/c)

R∂(ct)

+
∂2Ps(r

′, t − R/c)

∂(ct)2

]

dS′ = n̂ × Hi, (2.6)



376 M.Y. XIA, G.H. ZHANG, G.L. DAI AND C.H. CHAN

S

n̂
0 0
,

s
J

x

z

y

i
E

i
H

PEC

Fig. 2.1. Scattering by a 3D PEC object.

where Ei and Hi are the electric field and magnetic field of the incident wave. The P.V. in the

second term of (2.6) means the Cauchy principal-value integral with the singularity at R = 0

removed and its contribution has been added to the first term.

Suppose that there is neither charge nor current distribution on the surface before the time

instance t′ = 0, which means that Ps(r
′, t′) = ∂Ps(r

′, t′)/∂t′ = 0 for t′ ≤ 0. Let Ps be expanded

using the well-known RWG basis functions in the spatial domain and the quadratic B-spline

functions in the time domain:

Ps(r
′, t′) = (4πε0)

N
∑

n=1

∞
∑

j=0

Pn(j)S(t̄′ − j)fn(r′), (2.7)

where t̄′ = t′/∆t and ∆t is a prescribed resolution in the time axis, fn(r′) for n = 1, · · · , N are

the RWG basis functions [14] defined on the triangulated surface S. The current and charge

distributions on the surface are

Js(r
′, t′) =

4πε0

∆t

N
∑

n=1

∞
∑

j=0

Pn(j)S′(t̄′ − j)fn(r′), (2.8)

σs(r
′, t′) = (4πε0)

N
∑

n=1

∞
∑

j=0

Pn(j)S(t̄′ − j)gn(r′), (2.9)

where gn(r′) = −∇′ · fn(r′). The quadratic B-spline function as plotted in Fig. 2.2 is expressed

by

S(t̄) =







1
2 t̄2, 0 ≤ t̄ < 1,
1
2 + (t̄ − 1) − (t̄ − 1)2, 0 ≤ t̄ − 1 < 1,
1
2 − (t̄ − 2) + 1

2 (t̄ − 2)2, 0 ≤ t̄ − 2 < 1.

(2.10)

Testing (2.5) with n̂ × fm(r) for m = 1, · · · , N and with (2.7) in place, we obtain

∞
∑

j=0

N
∑

n=1

ZEFIE
mn (t̄ − j)Pn(j) = Ei

m(t̄), (2.11)

with

ZEFIE
mn (t̄) =

∫

Tm

∫

Tn

1

R

[

S(t̄ − R̄)

(c∆t)2
fm(r) · fn(r′) + S(t̄ − R̄)gm(r)gn(r′)

]

dS′dS, (2.12)

Ei
m(t̄) =

∫

Tm

fm(r) ·Ei(r, t̄∆t)dS, (2.13)
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Fig. 2.2. The quadratic B-spline basis function.

where t̄ = t/∆t and R̄ = R/(c∆t). Testing (2.6) with η0fm(r) for m = 1, · · · , N , we have

∞
∑

j=0

N
∑

n=1

ZMFIE
mn (t̄ − j)Pn(j) = η0H

i
m(t̄), (2.14)

with

ZMFIE
mn (t̄) =

2π

c∆t
S′(t̄)

∫

Tm

[fm(r) · fn(r)]dS

+P.V.

∫

Tm

∫

Tn

fm(r) · n̂ × [R̂ × fn(r′)]

(c∆t)R

[

S(t̄ − R̄)

c∆t
+

S′(t̄ − R̄)

R

]

dS′dS, (2.15)

Hi
m(t̄) =

∫

Tm

fm(r) · n̂ × Hi(r, t̄∆t)dS. (2.16)

In this paper, we will use the electric polarization as unknown function, rather than us-

ing the induced current as unknown source. If the induced current is employed as unknown

function, a temporal integral is required to find the induced charge and to evaluate the scalar

potential [13,15]. To bypass this temporal integral, Eqs. (2.11) and (2.14) may be differentiated

with respect to time [8,12]. This facilitates the solution for the unknown coefficients of the in-

duced currents; however, the temporal integral is still unavoidable if the near-field computation

is involved, such as in the analysis of electromagnetic compatibility or extraction of lumped

parameters to construct equivalent circuit models. Another concern is whether the incident

field or excitation source is indeed differentiable, say, in the case of a train of rectangular im-

pulses denoting a digital signal. Instead, by using the electric polarization as unknown function,

the charge and current are retrieved by derivatives which are normally evaluated easier than

integrals, and the resulting system matrices are sparse as long as the expansion basis functions

are compactly supported.

Applying the point matching method to (2.11) at t̄ = i for i = 1, 2, · · · , we arrive at

i−1
∑

j=jmin

N
∑

n=1

ZEFIE
mn (i − j)Pn(j) = Ei

m(i), i = 1, 2, · · · , (2.17)

where the upper limit is truncated at j = i−1 and the lower limit is from j = jmin = max(0, i−L)

due to the compactness of the temporal basis functions. Here L = int(Rmax/(c∆t) + 3) with

Rmax being the maximum linear dimension of the object, so that L is the number of time steps
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within which a wave propagates a distance comparable to the dimension of the object. By

changing the index j → i− j, we obtain the MOT form based on the time domain electric field

integral equation (TD-EFIE):

[ZEFIE(1)]{P (i − 1)} = {Ei(i)} −
min(i,L)

∑

j=2

[ZEFIE(j)]{P (i − j)}, (2.18)

where [ZEFIE(j)] for j = 1, · · · , L are matrices of size N ×N with elements calculated by (2.12)

at t̄ = j; {P (i − j)} is a column vector of size N × 1 associated with the (i − j)-th translated

spline function; and {Ei(i)} is a column vector of size N × 1 with the elements given by (2.13).

Similarly, if matching (2.14) at t̄ = i for i = 1, 2, · · · , we obtain the MOT form based on

the time domain magnetic field integral equation (TD-MFIE). The general MOT form based

on the time domain combined field integral equation (TD-CFIE) is

[ZCFIE(1)]{P (i − 1)} = {V i(i)} −
min(i,L)

∑

j=2

[ZCFIE(j)]{P (i − j)} (2.19)

with

[ZCFIE(j)] = α[ZEFIE(j)] + (1 − α)[ZMFIE(j)], (2.20)

{V i(i)} = α{Ei(i)} + (1 − α){η0H
i(i)}, (2.21)

where 0 ≤ α ≤ 1 is a combination constant. If the object is open such as a conducting plate,

α = 1 must be used because the MFIE is not valid for open surfaces. For a closed object,

an appropriate choice of α is necessary to suppress the resonant disturbance and increase the

accuracy [16].

We emphasize that the integrals of (2.12) and (2.15) must be evaluated accurately, otherwise

the MOT scheme may collapse due to error accumulation. The first integral of (2.15) can

be evaluated analytically [15], while the second one is nonsingular and can be approximated

accurately. As for the integral of (2.12), if t̄ > 3 it is nonsingular and can be evaluated

numerically. For t̄ ≤ 3, the singular integrals that we have to handle are of the form

{

I1

I2

}

=

∫

Tm

∫

Tn

{

gm(r)gn(r′)

fm(r) · fn(r′)

}

dS′dS

R
. (2.22)

These two integrals, fortunately, have closed-form expressions if the double integrals are per-

formed over the same triangle [17].

Finally, once the coefficients {Pn(j)}Nt

j=0 are found, where Nt is the number of time sequence

that has been resolved, the current may be retrieved by (2.8). The scattered far-field is the

transverse components of the first term of (2.3), i.e.,

Es
far−zone(r, t) = r̂ × r̂ × ∂A

∂t

≈ 1

r

1

(c∆t)2
r̂ × r̂ ×

Nt
∑

j=0

N
∑

n=1

Pn(j)Fn(τ̄ − j), (2.23)

Fn(τ̄ ) =

∫

Tn

S(τ̄ + r̂ · r̄′)fn(r′)dS′, (2.24)
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where τ̄ = t̄ − r̄ is the retarded or far-field time-step with r̄ = r/(c∆t) and r̄′ = r′/(c∆t), and

r̂ = x̂ sin θ cosφ + ŷ sin θ sinφ + ẑ cos θ

with (θ, φ) indicating the scattering direction in a spherical coordinate system. Because 0 6

τ̄ − j + r̂ · r̄′ < 3 due to the compactness of the temporal basis functions, we have

τ̄ + (r̂ · r̄′)min − 3 < j 6 τ̄ + (r̂ · r̄′)max,

so that the terms of summation over the index j in (2.23) may be reduced greatly to speed up

the computation of the scattered far-fields in a fixed direction at varying retarded instants. The

radar cross-section (RCS) is usually defined in frequency domain. By converting the far-field

data into frequency domain and normalized by the incident wave, we can obtain the wideband

RCS for an object for one simulation run in the time domain.

3. Numerical Results

The incident wave used in this paper is the modulated Gaussian pulse [8]:

Ei (r, t) = û exp

[

−
(

τ − t0√
2σ

)2
]

cos (2πf0τ ) , (3.1)

where f0 is the centre carrier frequency and τ = t − r · k̂/ c with û and k̂ indicating the

polarization and incident directions; t0 = 8σ and σ = 6/ (2πfbw) with fbw being the nominal

bandwidth that the spectrum decays to about 1% at f = f0 ± 1
2fbw.

The first example is a square PEC plate with an edge size of 0.5m on the xy-plane and

modeled with 1,407 unknowns using the RWG basis functions. Because this is an open-surface

problem, the TD-EFIE must be adopted. For this example, f0 = 800 MHz, fbw = 1600 MHz and

∆t = 1/12 ns have been used. Fig. 3.1(a) shows the evolution of induced current at the centre

of the plate (LM=light meter: the time that light takes to travel 1m). The late-time instability

was not observed till the computation was terminated at 5,000 time-steps. The backscattered

far-field computed by (2.23) is displayed in Fig. 3.1(b). Because the wideband RCS seems to

be the most suitable quantity for validating the simulation data, the backscattering wideband

RCS from zero frequency to 2.0GHz is plotted in Fig. 3.1(c). To check the accuracy, RCS data

at a set of discrete frequency points are obtained using the MoM in the frequency domain,

which coalesce with the TDIE results.

The second example is a PEC sphere of diameter 0.5m, which is centered at the coordinate

origin and modeled with 3,336 unknowns. For this closed body, because using either TD-EFIE

or TD-MFIE alone may yield wrong wideband RCS at some frequencies due to interior resonant

disturbance, the TD-CFIE has been employed. For this example, f0 = 700 MHz, fbw = 1400

MHz and ∆t = 1/12 ns have been used. It is found that the MOT scheme is stable as show

in Fig. 3.2(a). The backscattered far-field is presented in Fig. 3.2(b). The wideband RCS data

are obtained from zero frequency to 1GHz, which are in good agreement with analytical MIE

series solutions as shown in Fig. 3.2(c).

The last example is a metal cube of an edge size of 0.5m, which is also centered at the

coordinate origin and modeled with 2,592 unknowns. Also, the TD-CFIE has been adopted for

this example to suppress the resonant disturbance. For this example, f0 = 650 MHz, fbw = 1300

MHz and ∆t = 1/12 ns have been used. Again, no late-time instability has been observed as
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Fig. 3.1. Transient scattering of square PEC plate with an edge size of 0.5m: (a) induced currents at

the centre, (b) backscattered far-fields, and (c) wideband backscattering RCS.
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Fig. 3.2. Transient scattering of a PEC sphere with diameter of 0.5m: (a) induced currents at the pole

pint, (b) backscattered far-field, and (c) wideband backscattering RCS.
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Fig. 3.3. Transient scattering of a PEC cube with edge size of 0.5m: (a) induced currents at the center

of the top surface, (b) backscattered far-field, and (c) wideband backscattering RCS.
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shown in Fig. 3.3(a). The backscattered far-field is provided in Fig. 3.3(b). The wideband

backscattering RCS from 0 frequency to 1.2GHz are plotted in Fig. 3.3(c), which are found in

good agreement with the MoM results and measured data [18].

4. Conclusions

A stable solution of the TDIE methods for transient scattering is investigated in this paper.

The stability depends strongly on the choice of the temporal basis functions, in addition to

the accurate evaluation of the matrix elements. The quadratic B-spline basis functions form

a complete set up to the second order that permits both the induced current and induced

charge to be properly represented. These basis functions are the most compact among all the

polynomial basis functions of the same order. Consequently, the resulting system matrices

seem to be the sparsest, which is important for storage of matrix elements and computation

of matrix-vector multiplications in using MOT. Various TDIE formulations are derived by

using the induced electric polarizations as updating quantities. Numerical results show that

the proposed approach is accurate and efficient for wideband scattering problems with 3D

conducting objects.
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