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Abstract

The convergence and superconvergence properties of the discontinuous Galerkin (DG)

method for a singularly perturbed model problem in one-dimensional setting are studied.

By applying the DG method with appropriately chosen numerical traces, the existence and

uniqueness of the DG solution, the optimal order L2 error bounds, and 2p+1-order super-

convergence of the numerical traces are established. The numerical results indicate that

the DG method does not produce any oscillation even under the uniform mesh. Numerical

experiments demonstrate that, under the uniform mesh, it seems impossible to obtain the

uniform superconvergence of the numerical traces. Nevertheless, thanks to the implemen-

tation of the so-called Shishkin-type mesh, the uniform 2p + 1−order superconvergence is

observed numerically.
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1. Introduction

In scientific and engineering computation, we often encounter differential equations with
small parameters and these equations are “singularly perturbed”. One of the difficulties in nu-
merically computing the solution of singularly perturbed problems lays in the so-called bound-
ary layer behavior, i.e., the solution varies very rapidly in a very thin layer near the boundary.
Traditional methods, such as finite element and finite difference methods, do not work well
for these problems as they often produce oscillatory solutions which are inaccurate when the
diffusion parameter is small. Numerical simulations of these equations raise very challenging
problems for scientists and engineers. There is a rich literature in this direction. The reader is
referred to books [14, 15, 18] and survey articles [17, 22] for details. Currently, this is still a
very active field, see, e.g., [6, 10, 13, 19]. We have also noticed some publications in this journal
on the topic, see, e.g., [12], among others.
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Since the introduction of the first DG method for hyperbolic equations [16], there has been
an active development of DG methods for hyperbolic and elliptic equations in parallel, e.g.,
[1, 7, 8], some recent development [2, 24], and references therein. The model problem in this
article is a singularly perturbed convection-diffusion equation in the one-dimensional setting.
When the small parameter approaches 0, the problem changes from an elliptic equation to a
hyperbolic equation. The superconvergence property of the traditional finite element method
under the Shishkin mesh [20] for this model problem was discussed in [26], and the p-version
finite element method for this model problem was studied in [21, 25] among others. Inspired
by the great success of the DG method in solving hyperbolic equations [7], we adopt it to solve
the singularly perturbed convection-diffusion equations.

In this work, we first define the DG scheme by choosing the numerical trace which is very
delicate as it can affect the stability and accuracy. Next we verify the existence and uniqueness
of the approximate solution. We then focus on the proof of 2p + 1-order superconvergence of
the numerical traces at the nodes. For arbitrary ε, the uniform convergence is expected. The
so-called “uniform convergence” means that the convergence rate is uniformly valid in terms of
the singular perturbation parameter ε. The numerical results in Section 3 indicate that, under
the uniform mesh, it seems impossible to have the uniform 2p + 1-order superconvergence.
Nevertheless, an attractive feature is that the DG method does not produce any oscillation
outside boundary region even under the uniform mesh. In other words, the DG method is more
“local” than the traditional finite element method. On the other hand, when the Shishkin-type
meshes are implemented with some appropriately chosen τ , the length of the boundary layer
in numerical computation, the uniform superconvergent results are observed in our numerical
experiments in Section 3. The theoretical analysis of this exciting phenomenon is an ongoing
work. Further, the approach in this work can be generalized to the two-dimensional setting.

During the process of this study, we noticed a parallel work [3], which addressed the same
superconvergence issue for the model problem. However, two approaches are completely differ-
ent and our proof is much simpler. As for general finite element superconvergence theory, we
refer readers to following books [4, 5, 9, 11, 23, 27] and references therein.

2. DG Method

Consider the following one-dimensional convection-diffusion problem,{ −εu′′ + bu′ = f in (0, 1),
u(0) = u0, u′(1) = u′1,

(2.1)

where b > 0 and ε is a small positive parameter. The choice of b > 0 guarantees that the
location of the possible boundary layer is at the outflow boundary x = 1.

By setting q = u′, (2.1) can be rewritten as


−εq

′
+ bq = f in (0, 1),

q − u′ = 0,

u(0) = u0, q(1) = u′1.
(2.2)

Denote the mesh by Ij = [xj− 1
2
, xj+ 1

2
] for j = 1, · · · , N with x 1

2
= 0, xN+ 1

2
= 1. The center

of the cell Ij is xj = (xj− 1
2

+ xj+ 1
2
)/2 and hj = |Ij |. Set h = max

1≤j≤N
hj and Ωh =

N⋃

j=1

Ij . We

denote by u+
j+ 1

2
and u−

j+ 1
2

the values of u at xj+ 1
2
, from the right cell and the left cell of xj+ 1

2
,

respectively. Denote the jump at xj+ 1
2

by [u]j+ 1
2

= u+
j+ 1

2
− u−

j+ 1
2
.
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We multiply the two equations of (2.2) by test functions v and w, respectively, and integrate
by parts in each cell Ij to obtain,

ε

∫

Ij

qv′dx + b

∫

Ij

qvdx− εq−
j+ 1

2
v−

j+ 1
2

+ εq+
j− 1

2
v+

j− 1
2

=
∫

Ij

fvdx, 1 ≤ j ≤ N,

∫

Ij

uw′dx +
∫

Ij

qwdx− u−
j+ 1

2
w−

j+ 1
2

+ u+
j− 1

2
w+

j− 1
2

= 0, 1 ≤ j ≤ N.

This is the weak formulation we shall use to define the DG methods.
Now define the piecewise polynomial space Vh as the space of polynomials of degree p ≥ 1

in each cell Ij , i.e.,
Vh = {v : v ∈ Pp(Ij), j = 1, · · · , N}.

Moreover, define the space
Hk(Ωh) = {v : v ∈ Hk(Ij), j = 1, · · · , N}

with k ≥ 0. We will search for approximate solutions of (2.2) in terms of piecewise polynomial
functions U,Q ∈ Vh that satisfy (2.2) in a weak sense. Following Cockburn and Shu [8], we
consider the following general formulation: Find U,Q ∈ Vh such that

ε

∫

Ij

Qv′dx + b

∫

Ij

Qvdx− εQ̂j+ 1
2
v−

j+ 1
2

+ εQ̂j− 1
2
v+

j− 1
2

=
∫

Ij

fvdx, (2.3)
∫

Ij

Uw′dx +
∫

Ij

Qwdx− Ûj+ 1
2
w−

j+ 1
2

+ Ûj− 1
2
w+

j− 1
2

= 0 (2.4)

for any v andw ∈ Vh. To complete the specification of a DG method, one must define the
numerical traces Û and Q̂ at the nodes. Through the specification of the numerical traces, the
interaction of U and Q in different intervals Ij and the boundary conditions are imposed. The
impact of the choice of the numerical traces on the DG method for solving the linear elliptic
equation was shown in [1].

In this article, we take the following numerical traces:

Ûj+ 1
2

=

{
u0 j = 0,

U−
j+ 1

2
j = 1, · · · , N,

(2.5)

Q̂j+ 1
2

=

{
Q+

j+ 1
2

j = 0, 1, · · · , N − 1,

u′1 j = N.
(2.6)

The following theorem guarantees the existence and uniqueness of the numerical solution defined
by (2.3)-(2.6).

Theorem 2.1. The DG method defined by (2.3), (2.4) with the numerical traces (2.5) and (2.6)
has a unique solution.

Proof. Integrated by parts, (2.3) and (2.4) can be rewritten as∫

Ij

(−εQ′ + bQ)vdx− ε[Q]j+ 1
2
v−

j+ 1
2

=
∫

Ij

fvdx, (2.7)
∫

Ij

(−U
′
+ Q)wdx− [U ]j− 1

2
w+

j− 1
2

= 0, (2.8)

respectively. Summing up (2.3) and (2.7), respectively, we obtain
N∑

j=1

∫

Ij

(εQv′ + bQv)dx− εQ̂N+ 1
2
v−

N+ 1
2

+ εQ̂ 1
2
v+

1
2

+ ε
N−1∑

j=1

Q̂j+ 1
2
[v]j+ 1

2
=

N∑

j=1

∫

Ij

fvdx, (2.9)

N∑

j=1

∫

Ij

(−εQ′ + bQ)vdx− ε
N−1∑

j=1

[Q]j+ 1
2
v−

j+ 1
2
− ε[Q]N+ 1

2
v−

N+ 1
2

=
N∑

j=1

∫

Ij

fvdx. (2.10)
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Adding (2.9) and (2.10) with v = Q, we have

2b

N∑

j=1

∫

Ij

Q2dx + ε(Q̂ 1
2
)2 + ε

N−1∑

j=1

[Q]2j+ 1
2
− 2εQ̂N+ 1

2
Q−

N+ 1
2

+ ε(Q−
N+ 1

2
)2 (2.11)

= 2
N∑

j=1

∫

Ij

fQdx,

where the numerical trace Q̂ in (2.6) is used.
Now summing up (2.4) and (2.8), respectively, we have

N∑

j=1

∫

Ij

(Uw′ + Qw)dx− ÛN+ 1
2
w−

N+ 1
2

+ Û 1
2
w+

1
2

+
N−1∑

j=1

Ûj+ 1
2
[w]j+ 1

2
= 0, (2.12)

N∑

j=1

∫

Ij

(−U ′ + Q)wdx−
N−1∑

j=1

[U ]j+ 1
2
w+

j+ 1
2
− [U ] 1

2
w+

1
2

= 0. (2.13)

Adding (2.12) and (2.13) with w = U , we have

2
N∑

j=1

∫

Ij

QUdx−
N−1∑

j=1

([U ]j+ 1
2
)2 − (U+

1
2
)2 − (ÛN+ 1

2
)2 + 2Û 1

2
U+

1
2

= 0. (2.14)

Due to the linearity and finite dimensionality of the problem, to prove this theorem, it is
sufficient to verify that the only solution to (2.3)-(2.6) with f = 0, u0 = 0 and u′1 = 0 is U = 0
and Q = 0. By (2.11),

2b
N∑

j=1

∫

Ij

Q2dx + ε(Q̂ 1
2
)2 + ε

N−1∑

j=1

[Q]2j+ 1
2

+ ε(Q−
N+ 1

2
)2 = 0. (2.15)

If b 6= 0, (2.15) implies Q = 0. If b = 0, (2.15) implies

Q̂ 1
2

= 0, Q−
N+ 1

2
= 0, [Q]j+ 1

2
= 0, for j = 1, · · · , N − 1.

This, combining with (2.10), implies that
N∑

j=1

∫

Ij

Q′vdx = 0, ∀v ∈ Vh,

which results in Q′ = 0. As a result, Q is piecewise constant. Due to Q−
N+ 1

2
= 0 and [Q]j+ 1

2
=

0, for j = 1, · · · , N − 1, we have Q = 0.
On the other hand, from (2.14), we know

U+
1
2

= 0, ÛN+ 1
2

= 0, [U ]j+ 1
2

= 0 for j = 1, · · · , N − 1.

This, combining with (2.13), implies that
N∑

j=1

∫

Ij

U ′wdx = 0, ∀w ∈ Vh,

which implies U = 0.

3. Superconvergence of the Numerical Traces

Now we turn to investigate superconvergence properties of the numerical traces at nodes.
Note that the scheme (2.3) and (2.4) with (2.5) and (2.6) are consistent, i.e., the exact solutions
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q and u of (2.2) also satisfy (2.3) and (2.4). Denote the errors by eq = q −Q and eu = u− U .
To simplify notations, we set

B
(j)
1 (q; v) = ε

∫

Ij

qv′dx + b

∫

Ij

qvdx− εq̂j+ 1
2
v−

j+ 1
2

+ εq̂j− 1
2
v+

j− 1
2
, (3.1)

B
(j)
2 (q, u;w) =

∫

Ij

uw′dx +
∫

Ij

qwdx− ûj+ 1
2
w−

j+ 1
2

+ ûj− 1
2
w+

j− 1
2
. (3.2)

Then eq and eu satisfy the error equations

B
(j)
1 (eq; v) = 0, B

(j)
2 (eq, eu;w) = 0, ∀ v, w ∈ Vh. (3.3)

Set
B(j)(q, u; v, w) = B

(j)
1 (q; v) + B

(j)
2 (q, u;w).

By (3.1) and (3.2),

B(j)(q, u; v, w) =
∫

Ij

(εv′ + bv + w)qdx +
∫

Ij

w′udx

−εq̂j+ 1
2
v−

j+ 1
2

+ εq̂j− 1
2
v+

j− 1
2
− ûj+ 1

2
w−

j+ 1
2

+ ûj− 1
2
w+

j− 1
2
. (3.4)

By (3.3), we have
B(j)(eq, eu; v, w) = 0, ∀ v, w ∈ Vh. (3.5)

Integrated by parts in (3.1) and (3.2) and in terms of the numerical traces (2.5) and (2.6),
B

(j)
1 (q; v) and B

(j)
2 (q, u;w) can be rewritten as

B
(j)
1 (q; v) =

∫

Ij

(−εq′ + bq)vdx− ε[q]j+ 1
2
v−

j+ 1
2
, (3.6)

B
(j)
2 (q, u;w) =

∫

Ij

(−u
′
+ q)wdx− [u]j− 1

2
w+

j− 1
2
. (3.7)

Hence B(j)(q, u; v, w) can also be written as

B(j)(q, u; v, w)

=
∫

Ij

(−εq
′
+ bq)vdx +

∫

Ij

(−u
′
+ q)wdx− ε[q]j+ 1

2
v−

j+ 1
2
− [u]j− 1

2
w+

j− 1
2
. (3.8)

For convenience, let us introduce the p-degree projection operator π± as follows. For ∀u ∈
H1(Ωh),

(φ− π−φ)−
j+ 1

2
= 0,

∫

Ij

(φ− π−φ)v = 0, ∀ v ∈ Pp−1(Ij),

(φ− π+φ)+
j− 1

2
= 0,

∫

Ij

(φ− π+φ)v = 0, ∀ v ∈ Pp−1(Ij),

and π±u ∈ Vh. The existence of the above projection operators and the corresponding approx-
imation results can be seen in [4]. We just quote those estimates from [4] directly.

Lemma 3.1. For u ∈ Hp+1(Ij) with j = 1, ..., N , the following results hold:

‖Dα(u− π±u)‖Ij ≤ Chp+1−α|u|p+1,Ij , α = 0, 1.

Theorem 3.1. Consider the DG method defined by the weak form (2.3) and (2.4) with the
numerical traces (2.5) and (2.6). Suppose u ∈ Hp+2(Ωh) for some p ≥ 1. Then

‖eu‖ ≤ C(ε)hp+1‖u‖p+2, ‖eq‖ ≤ C(ε)hp+1‖u‖p+2.
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Proof. We construct an adjoint problem,



εV ′ + bV + W = eq in (0, 1),
W ′ = eu,

V (0) = 0, W (1) = 0,

(3.9)

which has the solution

W (x) = −
∫ 1

x

eudx, V (x) =
1
ε
e−

bx
ε

R x
0 (eq−W )e

bt
ε dt. (3.10)

By (3.4) and (3.9), we have

B(j)(eq, eu;V, W )

=
∫

Ij

(εV ′ + bV + W )eqdx +
∫

Ij

W ′eudx

−ε(êq)j+ 1
2
V −

j+ 1
2

+ ε(êq)j− 1
2
V +

j− 1
2
− (êu)j+ 1

2
W−

j+ 1
2

+ (êu)j− 1
2
W+

j− 1
2

(3.11)

=
∫

Ij

e2
qdx +

∫

Ij

e2
udx− ε(êq)j+ 1

2
V −

j+ 1
2

+ ε(êq)j− 1
2
V +

j− 1
2
− (êu)j+ 1

2
W−

j+ 1
2

+ (êu)j− 1
2
W+

j− 1
2
.

Summing up, we have
N∑

j=1

B(j)(eq, eu;V, W )

= ‖eq‖2 + ‖eu‖2 − ε(êq)N+ 1
2
V −

N+ 1
2

+ ε(êq) 1
2
(V )+1

2
− (êu)N+ 1

2
(W )−

N+ 1
2

+ (êu) 1
2
W+

1
2

= ‖eq‖2 + ‖eu‖2, (3.12)

where (êq)N+ 1
2

= 0, (êu) 1
2

= 0 and the boundary conditions in (3.9) are used.
On the other hand, by (3.8) and (3.5), we have

N∑

j=1

B(j)(eq, eu;V, W )

=
N∑

j=1

B(j)(eq, eu;V − π−V, W − π+W )

=
N∑

j=1

∫

Ij

(−εe
′
q + beq)(V − π−V )dx +

∫

Ij

(−e
′
u + eq)(W − π+W )dx (3.13)

=
N∑

j=1

∫

Ij

[−ε(q − π−q)
′
+ beq](V − π−V )dx +

∫

Ij

[−(u− π+u)
′
+ eq)](W − π+W )dx,

where the properties of the operators π− and π+ are used. By (3.12) and (3.13), we have

‖eq‖2 + ‖eu‖2
≤ (ε‖(q − π−q)′‖+ ‖eq‖)‖V − π−V ‖+ (‖(u− π+u)′‖+ ‖eq‖)‖W − π+W‖
≤ C0(C1εh

p|q|p+1 + ‖eq‖)h|V |1 + C2(C3h
p|u|p+1 + ‖eq‖)h|W |1

≤ C0(C1εh
p+1|q|p+1 + h‖eq‖)|V |1 + C2(C3h

p+1|u|p+1 + h‖eq‖)|W |1. (3.14)

By (3.10), we obtain
|W |1 = ‖eu‖, |V |1 ≤ C(ε)(‖eq‖+ ‖eu‖).

This, combining (3.14), implies that

‖eu‖ ≤ C(ε)hp+1‖u‖p+2, ‖eq‖ ≤ C(ε)hp+1‖u‖p+2.
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Based on the L2 estimate of the errors, we will investigate the superconvergence properties
of the numerical traces in the following theorem.

Theorem 3.2. Under the same assumptions as in Theorem 3.1 with b 6= 0, we have

|(êu)n+ 1
2
| ≤ C(ε)h2p+1‖u‖p+2,

|(êq)n− 1
2
| ≤ C(ε)h2p+1‖u‖p+2, n = 1, · · ·, N.

Proof. First consider the superconvergence of (êq)n− 1
2
. For this purpose, we construct

another adjoint problem,




εV ′ + bV + W = 0 in Ω1 = [xn− 1
2
, 1],

W ′ = 0,

V (xn− 1
2
) = (êq)n− 1

2
, W (1) = 0.

(3.15)

A simple calculation shows that (3.15) has the solutions

V = (êq)n− 1
2
e
b(x

n− 1
2
−x)/ε

, W = 0. (3.16)

The combination of (3.4) and (3.15) implies that

B(j)(eq, eu;V, W )

=
∫

Ij

(εV ′ + bV + W )eqdx +
∫

Ij

W ′eudx

−ε(êq)j+ 1
2
V −

j+ 1
2

+ ε(êq)j− 1
2
V +

j− 1
2
− (êu)j+ 1

2
W−

j+ 1
2

+ (êu)j− 1
2
W+

j− 1
2

(3.17)

= −ε(êq)j+ 1
2
V −

j+ 1
2

+ ε(êq)j− 1
2
V +

j− 1
2
− (êu)j+ 1

2
W−

j+ 1
2

+ (êu)j− 1
2
W+

j− 1
2
,

for j = n, n + 1, · · · , N. On the other hand, (3.8) and the properties of the projection operator
π+ and π− imply that

B(j)(eq, eu;V, W )

= B(j)(eq, eu;V − π−V, W − π+W ) (3.18)

=
∫

Ij

(−ε(q − π−q)
′
+ beq)(V − π−V )dx +

∫

Ij

(−(u− π+u)
′
+ eq)(W − π+W )dx.

By (3.17) and (3.18), we obtain

−ε(êq)j+ 1
2
V −

j+ 1
2

+ ε(êq)j− 1
2
V +

j− 1
2
− (êu)j+ 1

2
W−

j+ 1
2

+ (êu)j− 1
2
W+

j− 1
2

(3.19)

=
∫

Ij

[−ε(q − π−q)
′
+ beq](V − π−V )dx +

∫

Ij

[−(u− π+u)
′
+ eq)](W − π+W )dx.

Summing up, we have
N∑

j=n

∫

Ij

[−ε(q − π−q)
′
+ beq](V − π−V )dx +

∫

Ij

[−(u− π+u)
′
+ eq)](W − π+W )dx

= −ε(êq)N+ 1
2
V −

N+ 1
2

+ ε(êq)n− 1
2
(V )+

n− 1
2
− (êu)N+ 1

2
(W )−

N+ 1
2

+ (êu)n− 1
2
W+

n− 1
2
. (3.20)

In terms of (êq)N+ 1
2

= 0, the adjoint problem (3.15) and its solutions (3.16), (3.20) can be
written as

ε[(êq)n− 1
2
]2 =

∑N
j=n

∫
Ij

[−ε(q − π−q)
′
+ beq](V − π−V )dx. (3.21)
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Consequently, we have

[(êq)n− 1
2
]2 ≤ C(ε)

N∑

j=n

(‖(q − π−q)′‖Ij
+ C1‖eq‖Ij

)‖V − π−V ‖Ij

≤ C(ε)(hp|q|p+1,Ω1 + hp+1‖u‖p+2,Ω)hp+1|V |p+1,Ω1

≤ C(ε)(‖u‖p+2,Ω + h‖u‖p+2,Ω)h2p+1|V |p+1,Ω1 , (3.22)

where the results of Theorem 3.1 are used. By the expression of (3.16), it is known that

‖V ‖p+1,Ω1 ≤ C(ε)|(êq)n− 1
2
|. (3.23)

The combination of (3.23) and (3.22) implies that

|(êq)n− 1
2
| ≤ C(ε)h2p+1‖u‖p+2,Ω, n = 1, · · · , N. (3.24)

Now we turn to the estimate of (êu)n+ 1
2
. Consider the adjoint problem in [0, xn+ 1

2
] with

boundary conditions, i.e.,



εV ′ + bV + W = 0 in Ω2 = [0, xn+ 1
2
],

W ′ = 0,

V (0) = 0,W (xn+ 1
2
) = (êu)n+ 1

2
,

(3.25)

which has the solutions (to simplify the notations, we still denote them as V and W , resp.)
{

V =
(êu)

n+ 1
2

b (e−bx/ε − 1),
W = (êu)n+ 1

2
, in Ω2 = [0, xn+ 1

2
].

(3.26)

Obviously (3.19) still holds for j = 1, ..., n. Summing up, we have
n∑

j=1

∫

Ij

[−ε(q − π−q)
′
+ beq](V − π−V )dx +

n∑

j=1

∫

Ij

[−(u− π+u)
′
+ eq)](W − π+W )dx

= −ε(êq)n+ 1
2
V −

n+ 1
2

+ ε(êq) 1
2
(V )+1

2
− (êu)n+ 1

2
(W )−

n+ 1
2

+ (êu) 1
2
W+

1
2

= −[(êu)n+ 1
2
]2 − ε(êq)n+ 1

2
V −

n+ 1
2
, (3.27)

where (êu) 1
2

= 0 and the boundary conditions in (3.25) are imposed.
As W is a constant, W − π+W = 0. Similar to (3.22), we get

[(êu)n+ 1
2
]2 ≤ ε|(êq)n+ 1

2
||V −

n+ 1
2
|+ C(ε)h2p+1‖u‖p+2,Ω|V |p+1,Ω2 . (3.28)

In terms of the expression of V in (3.26), we obtain

|V |p+1,Ω2 ≤ C(ε)|(êu)n+ 1
2
|, |V −

n+ 1
2
| ≤ C|(êu)n+ 1

2
|.

This, combining with (3.28) and (3.24), results in

|(êu)n+ 1
2
| ≤ C(ε)h2p+1‖u‖p+2,Ω, n = 1, · · · , N. (3.29)

Corollary 3.3. Under the same assumptions as in Theorem 3.1 with b = 0 in (2.1), we have

(êq)n− 1
2

= 0, (êu)n+ 1
2

= 0, n = 1, 2, · · · , N.

Proof. When b = 0, (3.15) has the solutions{
V = (êq)n− 1

2

W = 0,

which are constants. So we have V − π−V = 0 in (3.21). Then we get

(êq)n− 1
2

= 0, n = 1, · · · , N. (3.30)
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On the other hand, (3.25) becomes



εV ′ + W = 0 in Ω2 = [0, xn+ 1
2
],

W ′ = 0,

V (0) = 0,W (xn+ 1
2
) = (êu)n+ 1

2
,

(3.31)

which has the solutions

V = −
(êu)n+ 1

2
x

ε
, W = (êu)n+ 1

2
.

For p ≥ 1, we have V − π−V = 0 and W − π+W = 0. This fact, combined with (3.27) and
(3.30), implies

(êu)n+ 1
2

= 0, n = 1, · · · , N.

Remark. Corollary 3.3 shows that, in the purely elliptic case, the numerical traces capture
the exact solution at the nodes of the mesh.

4. Numerical Results

The purpose of this section is to demonstrate the superconvergence results of the DG scheme.
We consider a test problem under the uniform mesh and modified Shishkin-type meshes with
different τ , respectively. Denote by ‖êu‖∞ = ‖u − Û‖∞, ‖êq‖∞ = ‖q − Q̂‖∞, ‖e+

u ‖∞ =
‖u− U+‖∞ and ‖e−q ‖∞ = ‖q −Q−‖∞, the errors in the maximum norm at nodal points.

Consider the equation 



−εu′′ + u′ = ex in (0, 1),
u(0) = 0,

u′(1) = εe(1−e−
1
ε )+1−e

ε(1−ε)(1−e−
1
ε )

, when ε 6= 1,

u′(1) = e(2−e)
e−1 , when ε = 1,

(4.1)

with the exact solution

u =





ex(1−e−
1
ε )+e1− 1

ε −1+(1−e)e
x−1

ε

(1−ε)(1−e−
1
ε )

ε 6= 1
e

e−1 (ex − 1)− xex ε = 1,
(4.2)

which exhibits a boundary layer with the order of magnitude O(ε), at the outflow boundary
x = 1.

Listed in Tables 4.1-4.2 are the errors in the maximum norm at nodal points and the
corresponding convergence rates of the DG solutions for (4.1) under the uniform mesh with
ε = 10−1 and ε = 10−2, respectively. The first column shows the degree p of the polynomial
we used to approximate the unknown u and q. The second column is the mesh number, where
i = 5, 6, ..., 9 indicates a uniform mesh with 2i evenly distributed elements.

When ε is small, we failed to maintain the reasonable superconvergence rates numerically.
Plotted in Fig. 4.1 and Fig. 4.2 are the convergence curves of the numerical traces for (4.1) in
the maximum norm at nodal points for ε = 1, ε = 10−1, and ε = 10−2 with p = 1. Though
the 2p + 1 superconvergence order is observed, the error bound is strongly dependent on ε.
Plotted in Figs. 4.3-4.6 are the figures of the exact solution u, the numerical trace Û , the exact
derivative u′ and the numerical trace Q̂ at the nodes with ε = 10−2 and ε = 10−10, respectively.
Obviously, these figures show that the DG solutions do not have any oscillatory behavior even
for small ε. In other words, the DG method is more “local” than the traditional finite element
method.
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Table 4.1: Numerical results of (4.1), uniform mesh, ε = 0.1

p mesh êu e+
u e−q êq

error order error order error order error order

1 5 2.75e-04 2.88 2.51e-02 1.74 1.87e-01 1.32 2.75e-03 2.88

6 3.56e-05 2.95 6.90e-03 1.86 6.00e-02 1.64 3.56e-04 2.95

7 4.55e-06 2.97 1.81e-03 1.93 1.70e-02 1.82 4.55e-05 2.97

8 5.74e-07 2.99 4.66e-04 1.96 4.54e-03 1.91 5.74e-06 2.99

9 7.22e-08 2.99 1.18e-04 1.98 1.17e-03 1.95 7.21e-07 2.99

2 5 2.76e-07 4.90 8.06e-04 2.74 5.90e-03 2.29 2.76e-06 4.91

6 8.83e-09 4.97 1.10e-04 2.87 9.46e-04 2.64 8.83e-08 4.97

7 2.78e-10 4.98 1.45e-05 2.93 1.34e-04 2.82 2.80e-09 4.98

8 1.33e-11 4.39 1.85e-06 2.97 1.78e-05 2.91 9.10e-11 4.94

9 2.94e-11 - 2.34e-07 2.98 2.30e-06 2.95 5.08e-11 –

3 5 1.39e-10 6.92 1.81e-05 3.75 1.33e-004 3.30 1.39e-009 6.92

6 9.97e-13 7.12 1.24e-06 3.87 1.06e-005 3.65 1.11e-011 6.97

7 1.13e-12 – 8.10e-08 3.94 7.49e-007 3.82 2.97e-012 –

8 6.90e-12 – 5.17e-09 3.97 4.98e-008 3.91 1.68e-011 –

9 6.88e-12 – 3.20e-10 4.01 3.21e-009 3.96 1.62e-011 –

Table 4.2: Numerical results of (4.1), uniform mesh, ε = 0.01

p mesh êu e+
u e−q êq

error order error order error order error order

1 6 2.42e-02 1.92 3.12e-01 1.14 8.06e+00 – 2.42e+00 1.92

7 3.51e-03 2.78 1.12e-01 1.48 5.31e+00 – 3.51e-01 2.78

8 4.76e-04 2.88 3.47e-02 1.70 2.36e+00 1.17 4.76e-02 2.88

9 6.29e-05 2.92 9.73e-03 1.83 8.01e-00 1.56 6.29e-03 2.92

10 8.05e-06 2.97 2.59e-03 1.91 2.35e-01 1.77 8.05e-04 2.97

2 6 6.30e-04 3.84 4.72e-002 2.01 9.16e-01 – 6.30e-02 3.84

7 2.26e-05 4.80 8.82e-003 2.42 4.00e-01 1.19 2.26e-03 4.80

8 7.50e-07 4.91 1.37e-003 2.69 9.27e-02 2.11 7.50e-05 4.91

9 2.44e-08 4.94 1.92e-004 2.84 1.58e-02 2.55 2.44e-06 4.94

10 7.73e-10 4.98 2.54e-005 2.92 2.30e-03 2.78 7.75e-08 4.98

3 6 8.14e-06 5.81 5.31e-03 2.94 1.12e-01 – 8.14e-04 5.81

7 7.22e-08 6.82 4.99e-04 3.41 2.28e-02 2.29 7.22e-06 6.82

8 5.92e-10 6.93 3.86e-05 3.69 2.61e-03 3.13 5.93e-08 6.93

9 4.54e-12 7.03 2.69e-06 3.84 2.21e-04 3.56 4.79e-10 6.95

10 2.16e-11 – 1.78e-07 3.92 1.61e-05 3.78 6.07e-011 –

Now we turn to the DG method based on the Shishkin mesh. The construction of the
so-called Shishkin mesh is as follows:

First choose a positive τ < 1
2 . In our experience, one can choose τ to match the length of

the boundary layer, e.g., O(ε) in our test problem. Next the intervals (0, 1 − τ) and (1 − τ, 1)
are each divided into N1 equal subintervals. As a result, the number of cells of the Shishkin
mesh is N = 2N1.

We take τ = (2p+1)ε ln(N +1) first. Listed in Tables 4.3-4.4 are the errors in the maximum
norm of the numerical traces at nodal points and the corresponding convergence rates with
p = 1, p = 2 for ε = 10−2 and ε = 10−5 , respectively. The first column in the tables is the
mesh number in [0, 1− τ ] and [1− τ, 1], where i means we used a 2i evenly distributed elements
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in [0, 1− τ ] and [1− τ, 1], respectively. Plotted in Figs. 4.7-4.10 are the convergence curves of
the numerical traces for (4.1) in the maximum norm at nodal points for ε = 10−2, ε = 10−4

and ε = 10−6 with p = 1, p = 2, respectively. As the derivative u′ becomes very large in the
boundary layer when ε is small, instead of the absolute error, the error in terms of Q in Tables
4.3-4.6, Figs. 4.9-4.10 and Figs. 4.13-4.14 is the relative one, i.e., ‖u

′−Q‖∞
‖u′‖∞ .

The numerical results in Tables 4.3-4.4 and Figs. 4.7-4.10 imply that the DG solutions have
the error estimates

‖êu‖∞ ≤ C( ln N
N )2p+1, ‖êq‖∞ ≤ C( ln N

N )2p+1|u|1,∞ (4.3)

for Shishkin mesh with τ = (2p + 1)ε ln(N + 1), where C is independent of ε.
Now we consider the DG method based on the Shishkin mesh with τ = −(2p+1)ε ln ε. Listed

in Tables 4.5-4.6 are the errors in the maximum norm at nodal points and the corresponding
convergence rates for p = 1, p = 2 with ε = 10−2, ε = 10−4, and ε = 10−6, respectively. Plotted
in Figs. 4.11-4.14 are the convergence curves of numerical traces for (4.1) in the maximum norm
at nodal points for ε = 10−2, ε = 10−4 and ε = 10−6 with p = 1, p = 2, respectively.

The numerical results in Tables 4.5-4.6 and Figs. 4.11-4.14 show that, though the errors seem
to depend on ε, the bound of the errors is independent of ε at all. So we have the following
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Table 4.3: êu and êq for (4.1), τ = (2p + 1)ε ln(N + 1), p = 1, p = 2, ε = 10−2

mesh p = 1 p = 2

êu êq êu êq

error order error order error order error order

5 4.78e-04 2.12 1.22e-03 2.07 9.18e-06 3.71 7.06e-05 3.16

6 9.87e-05 2.28 2.80e-04 2.12 6.54e-07 3.81 5.38e-06 3.71

7 1.89e-05 2.39 5.77e-05 2.28 4.08e-08 4.00 3.83e-07 3.81

8 3.40e-06 2.47 1.10e-05 2.39 2.34e-09 4.13 2.39e-08 4.00

9 5.88e-07 2.53 1.99e-06 2.47 1.29e-10 4.18 1.37e-09 4.13

Table 4.4: êu and êq for (4.1), τ = (2p + 1)ε ln(N + 1), p = 1, p = 2, ε = 10−5

mesh p = 1 p = 2

êu êq êu êq

error order error order error order error order

5 4.73e-004 2.12 1.20e-03 2.07 9.09e-06 3.71 6.95e-05 3.16

6 9.77e-005 2.28 2.75e-04 2.12 6.48e-07 3.81 5.29e-06 3.71

7 1.87e-005 2.39 5.68e-05 2.28 4.04e-08 4.00 3.77e-07 3.81

8 3.37e-006 2.47 1.09e-05 2.39 2.00e-09 4.34 2.35e-08 4.00

9 5.83e-007 2.53 1.96e-06 2.47 2.33e-09 – 1.16e-09 4.34

Table 4.5: êu and êq for (4.1), τ = −(2p + 1)ε ln ε, p = 1, p = 2, ε = 10−2

mesh p = 1 p = 2

êu êq êu êq

error order error order error order error order

5 6.39e-04 2.90 2.79e-03 2.68 1.48e-05 4.89 2.56e-04 3.98

6 8.41e-05 2.92 3.74e-04 2.90 5.04e-07 4.87 8.64e-06 4.89

7 1.08e-05 2.96 4.93e-05 2.92 1.62e-08 4.96 2.95e-07 4.87

8 1.37e-06 2.98 6.35e-06 2.96 1.62e-08 4.96 9.47e-09 4.96

9 1.73e-07 2.99 8.04e-07 2.98 2.06e-11 4.64 3.01e-10 4.97

Table 4.6: êu and êq for (4.1), τ = −(2p + 1)ε ln ε, p = 1, p = 2, ε = 10−5

mesh p = 1 p = 2

êu êq êu êq

error order error order error order error order

5 9.07e-03 2.42 2.82e-02 1.43 1.14e-03 3.59 8.03e-03 2.17

6 1.22e-03 2.90 5.28e-03 2.42 4.57e-05 4.64 6.65e-04 3.59

7 1.61e-04 2.92 7.09e-04 2.90 1.50e-06 4.93 2.66e-05 4.64

8 2.08e-05 2.95 9.37e-05 2.92 4.79e-08 4.97 8.74e-07 4.93

9 2.65e-06 2.97 1.21e-05 2.95 1.35e-09 5.15 2.79e-08 4.97

error estimates,

‖êu‖∞ ≤ CN−(2p+1), ‖êq‖∞ ≤ CN−(2p+1)|u|1,∞, (4.4)

for the Shishkin mesh with τ = −(2p + 1)ε ln ε.
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Fig. 4.11. Convergence curve of êu for (4.1),

Shishkin mesh, τ = −(2p + 1)ε ln ε, p = 1
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Shishkin mesh, τ = −(2p + 1)ε ln ε, p = 1
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Fig. 4.14. Same as Fig. 4.13, except p = 2

5. Conclusion

In this article, motivated by DG methods for hyperbolic equations, we designed a DG
scheme to solve the singularly-perturbed convection-diffusion equations in the one-dimensional
setting. The verification of the existence and uniqueness of the approximate solution is provided.
Further, we have established the 2p + 1−order superconvergence properties of the DG scheme.
Our numerical results show that the DG method does not produce any oscillation even under
the uniform mesh. In other words, the DG method is more “local” than the traditional finite
element method. This is a very fantastic property. The mathematical reason behind is an
ongoing work. Our numerical results demonstrate that, under the uniform mesh, it seems
impossible to obtain the uniform superconvergence of the numerical traces. Nevertheless, thanks
to the implementation of the so-called Shishkin-type mesh with an appropriately chosen τ ,
the uniform 2p + 1−order superconvergence is observed in our numerical experiments. The
theoretical verification of this phenomenon is our future work.

Our research shows that the combination of DG methods and the anisotropic meshes is one
of the most robust approaches in the study of the numerical methods for singularly perturbed
problems.
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