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Abstract

We introduce an adaptive finite element method for computing electromagnetic guided

waves in a closed, inhomogeneous, pillared three-dimensional waveguide at a given fre-

quency based on the inverse iteration method. The problem is formulated as a generalized

eigenvalue problems. By modifying the exact inverse iteration algorithm for the eigenvalue

problem, we design a new adaptive inverse iteration finite element algorithm. Adaptive

finite element methods based on a posteriori error estimate are known to be successful in

resolving singularities of eigenfunctions which deteriorate the finite element convergence.

We construct a posteriori error estimator for the electromagnetic guided waves problem.

Numerical results are reported to illustrate the quasi-optimal performance of our adaptive

inverse iteration finite element method.
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1. Introduction

In this paper we consider a closed waveguide defined by a right cylinder with cross section
Ω, a bounded, Lipschitz, simply connected polyhedral domain in R2. The waveguide is filled
with an inhomogeneous media whose electromagnetic properties are described by the real-
valued functions ε and µ. We assume that the magnetic permeability µ = µ0, the magnetic
permeability in vacuum, and the dielectric permittivity ε is piecewise constant and has no
variation along the waveguide. More precisely, let Ω1 ⊂ Ω be an open domain, Ω2 = Ω\Ω1. We
assume that

ε(x) =

{
ε1ε0 in Ω1,

ε2ε0 in Ω2,

where ε0 is the dielectric permittivity in vacuum.
The waveguide problem is to find solutions to the Maxwell equations which are of the general

form {
E(x, x3, t) = (E(x), E3(x))ei(ωt−βx3),

H(x, x3, t) = (H(x),H3(x))ei(ωt−βx3),
(1.1)

where x = (x1, x2) ∈ Ω and the x3-axis is along the waveguide, ω > 0 is the angular frequency
of the guided wave, β is the constant of propagation, E and H are electric and magnetic
field components in the plane of the cross section, and E3 and H3 are electric and magnetic
components along the waveguide.
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With expression (1.1), the second-order three-dimensional Maxwell equations expressed in
terms of the electric field (E, E3) reduce to the following two-dimensional equations (cf. e.g.
[7, 19, 22]):




∇× (∇×E)− iβ∇E3 − (ω2ε0µ0)εE + β2E = 0, in Ω;
−∇ · (∇E3)− (ω2ε0µ0)εE3 − iβ∇ ·E = 0, in Ω;
∇ · (εE)− iβεE3 = 0, in Ω.

(1.2)

For simplicity, perfect electric conductor boundary conditions are imposed:

E× n = 0, E3 = 0 on ∂Ω, (1.3)

where n is the unit outer normal to ∂Ω.
Advances in various branches of photonics technologies have established the need for the de-

velopment of numerical and approximate methods for the analysis of a wide range of waveguide
structures that are not amenable to exact analytical studies ([8, 12, 14]). Since no sources are
given, (1.2)–(1.3) is an eigenvalue problem. Either ω or β is assumed to be known, and the
goal is to find all possible pairs which consist of the other missing constant β or ω and the cor-
responding field (E, E3). Probably the first finite element analysis of the waveguide problems
was developed in the 1960s ([14]). Current finite element methods for computing waveguide
have been developed by using varied finite element technologies (see,e.g.,[4, 7, 8, 14, 15, 19]).
In [7], we investigated the finite element methods over the uniformly refined meshes for this
problem in the more physically relevant case, when ω is given, but β is unknown. A similar
finite element analysis was recently studied in [19].

For the simplest geometries, the finite element methods reported in [7] and [19] are quasi-
optimal. But the structure of the more interesting waveguides encountered in extensive applica-
tions is always very complex. With the complex structure, the eigenfunctions of the eigenvalue
problem usually display singularities which deteriorate the finite element convergence if uniform
mesh refinements are used. We show one such situation in [7] that points to the serious problem.
However, adaptive finite element methods based on a posteriori error estimates are known to
be successful in resolving this difficulty [5, 20]. Introducing the adaptive finite element method
for computing electromagnetic guided waves problemr at a given frequency is our main work
in this paper. Compared with the traditional adaptive finite element methods for eigenvalue
problems, our method is simpler, since the a posteriori error estimators are easily obtained.

In this paper, we will discuss the adaptive finite element algorithm for computing electro-
magnetic guided waves in a closed, inhomogeneous, pillared three-dimensional waveguide at a
given frequency based on the finite element formulation given by [7] and [19] (see [22] for more
details).

Let X = H0(curl; Ω)×H1
0 (Ω) equipped with the norm

‖(V, q)‖X = ‖V ‖curl,Ω + ‖ q ‖H1(Ω) ∀ (V, q) ∈ X.

Here,
‖V ‖curl,Ω = (‖∇ ×V ‖2L2(Ω) + ‖V ‖2L2(Ω))

1/2

is the norm of the space H(curl; Ω) which is defined as the collection of all functions V in
L2(Ω) such that ‖V ‖curl,Ω < ∞. H0(curl; Ω) consists of functions V in H(curl; Ω) whose
tangential component V × n vanishes on the boundary ∂Ω.

Let Enew
3 = iβE3. To save the notation, E3 will represent Enew

3 for the remainder of this
paper. Similar to in [7], [19] and [22], our goal is to solve the following variational problem for
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a given frequency ω > 0: Find pairs (λ, (E, E3)) ∈ C× X, such that

a((E, E3), (V, q)) = λb((E, E3), (V, q)) ∀(V, q) ∈ X. (1.4)

For any (U, p), (V, q) ∈ X, the bilinear forms a : X×X→ C and b : X×X→ C are defined as
follows:

a((U, p), (V, q)) = 〈∇ ×U,∇×V〉 − 〈k2
0εU,V〉 − 〈∇p,V〉 (1.5)

+k2
0(〈εU,∇q〉+ 〈εp, q〉),

b((U, p), (V, q)) = 〈−U,V〉, (1.6)

where λ = β2, k2
0 = ω2ε0µ0.

From the theory of variational eigenvalue problems [1], the existence of solutions to (1.4)
is equivalent to the following continuous inf-sup condition and was proved in [19]. There is a
similar theorem in [7].

Theorem 1.1. With the assumption on ω in (3.15) of [19], the continuous form a(·, ·) satisfies
the following conditions:

There exists α > 0 such that for any (U, p) ∈ X,

sup
(V,q)∈X

|a((U, p), (V, q))|
‖ (V, q) ‖X ≥ α‖ (U, p) ‖X, (1.7)

and for any (V, q) ∈ X, (V, q) 6= 0 ,

sup
(U,p)∈X

|a((U, p), (V, q))| > 0. (1.8)

Let Mh be a shape regular triangulation of Ω. For any K ∈ Mh, we denote by hK its
diameter, and set h = maxK∈Mh

hK . Denote Xh = Wh × Qh, where Qh ⊂ H1
0 (Ω) is the

standard conforming linear finite element space, and Wh ⊂ H0(curl; Ω) be the finite element
space of the lowest order H(curl; Ω) conforming edge element:

Wh = {Vh ∈ H0(curl; Ω) : Vh|K = (aK − cKx2, bK + cKx1)T ,

where aK , bK , cK ∈ R, K ∈Mh}.
The finite element approximation of the variationally posed eigenvalue problem (1.4) is as follow:
Find all pairs (λh, (Eh, E3h)) ∈ C× Xh, such that

a((Eh, E3h), (Vh, qh)) = λhb((Eh, E3h), (Vh, qh)), ∀ (Vh, qh) ∈ Xh. (1.9)

Similarly, the discrete inf-sup condition on a(·, ·) which is studied in Theorem 5 of [19] ensures
the existence of solutions to the discrete problem (1.9).

The outline of the remainder of this paper is as follows. In section 2, we shall construct
an new adaptive method for the eigenvalue problems, and our method is based on the inverse
iteration algorithm and is named adaptive inverse iteration finite element algorithm (AIIFEA).
For the electromagnetic guided waves problem, in section 3, we construct an a posteriori error
estimator and give a full adaptive procedure. We also report several numerical experiments in
the last section to illustrate the performance of the method studied in this paper.

2. Adaptive Inverse Iteration Finite Element Algorithm

To avoid complicated expressions, we consider the following simple eigenvalue problem: find
pairs (λ,U) ∈ C× X such that

F(U,V) = λG(U,V), ∀ V ∈ X, (2.1)
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where X is a Hilbert space, F(·, ·) and G(·, ·) : X× X→ C are bilinear forms.
We start this section by describing the standard exact inverse iteration algorithm (EIIA) in

infinite dimensions as an iteration to solve (2.1).

Exact Inverse Iteration Algorithm (EIIA)

Choose parameters εr > 0, κ0 > 0; set j = 0.

1. Set Ũ0 ∈ X satisfies G(Ũ0, Ũ0) = 1.

2. j = j + 1.

3. Compute Ũ∗
j ∈ X which is the solution of the variational problem

F(Ũ∗
j ,V) = G(Ũj−1,V), ∀ V ∈ X. (2.2)

4. κj = F(eU∗j , eU∗j )

G(eU∗j ,eU∗j )
, Ũj =

eU∗j
(G(eU∗j ,eU∗j ))1/2 .

5. If |(κj − κj−1)/κj | < εr goto (6);

else goto (2).

6. Output κj , Ũj .

Remark 2.1. Generally, the inverse iteration algorithm is used to compute the eigenvalue with
the least modulus and the corresponding eigenvector. If we want to obtain other eigenvalues and
the corresponding eigenvectors, we can use the shift inverse iteration finite element algorithm.
For more details, please see [22].

Our adaptive inverse iteration finite element algorithm is motivated by the Adaptive UZAWA
Finite Element Method for the Stokes problem that was investigated by Bänsch, Morin and
Nochetto (see [2]). We construct an adaptive inverse iteration finite element algorithm based
on EIIA that is different from the traditional adaptive finite element method for the eigenvalue
problems. Our adaptive algorithm consists of an inexact inner adaptive procedure ADAPTIVE
for the discrete variational problem, in place of the computation of (2.2).

To approximate (λ,U), we consider a sequence of triangulations {Mj,h}j=0,1,2,3··· of the
shape regular triangulation of Ω. Let Xj,h ⊂ X be the linear finite element subspace of X over
Mj,h, where j is the iteration number. In this section, to be simple, we omit the subscript
h, {Mj} will be the j-th shape regular triangulation of Ω, and Xj the linear finite element
subspace of the j-th iteration.

Given Ũj−1 ∈ Xj−1 for j ≥ 1, let Uj denote the exact solution of the following variational
problem:

Uj ∈ X : F(Uj ,V) = G(Ũj−1,V), ∀ V ∈ X.

If εj > 0 stands for an adjustable error tolerance, then in place of solving (2.2), the procedure
ADAPTIVE

(Ũj ,Mj) ← ADAPTIV E(Ũj−1,Mj−1, εj)

finds adaptively a refined mesh Mj of Mj−1 and solves the discrete eigenvalue problem

Ũj ∈ Xj : F(Ũj ,Vj) = G(Ũj−1,Vj), ∀ Vj ∈ Xj , (2.3)
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within the prescribed error bound

||Uj − Ũj ||a ≤ Cεj , (2.4)

where C > 0 is independent of j.
Now, we give the adaptive inverse iteration finite element algorithm to solve the variational

eigenvalue problem.

Adaptive Inverse Iteration Finite Element Algorithm(AIIFEA)

Choose parameters εr > 0, ε0 > 0, 0 < ρ < 1, κ0; set j = 0.

1. Select any initial mesh M0; and let Ũ0 ∈ X0 satisfy G(Ũ0, Ũ0) = 1.

2. Set j = j + 1, εj = ρεj−1.

3. Compute (Ũ∗
j ,Mj), where

(Ũ∗
j ,Mj) ← ADAPTIV E(Ũj−1,Mj−1, εj).

4. κj = F(eU∗j ,eU∗j )

G(eU∗j ,eU∗j )
, Ũj =

eU∗j
(G(eU∗j ,eU∗j ))1/2 .

5. If |(κj − κj−1)/κj | < εr, goto (6);

else goto (2).

6. Output κj , Ũj .

To avoid complicated notation and analysis, the AIIFEA given above just deals with the
eigenvalue of least modulus. Similarly, there is a shift adaptive inverse iteration finite element
algorithm to obtain the eigenvalue closest to the shift.

Our algorithm is a self-adaptive discretization method which has gained an enormous im-
portance for the numerical solution of partial differential equations that arise from physical and
technical applications. The key and main tool of the self-adaptive algorithm are error estima-
tors and indicators which enable us to give global and local information on the error of the
numerical solution using only the computed numerical solution and known data of the problem,
and therefore ensure that the exact solution Uj and the finite element solution Ũj satisfy (2.4).
The procedure ADAPTIVE of AIIFEA is a conventional adaptive algorithm, that is, it entails
an inner loop of the form

SOLVE → ESTIMATE → REFINE

for the general elliptic problem (2.2). To achieve the error reduction of (2.4), we need upper
and local lower a posteriori error bounds for (2.3) and a marking strategy. These issues are
discussed in section 4.

When Uj and Ũj satisfy (2.4), our numerical experiments show that the Adaptive Inverse
Iteration Finite Element Algorithm for the finite element eigenvalue problem can attain quasi-
optimal performance. But the convergence analysis of this algorithm is also an open problem.
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3. Posteriori Error Estimators

In this section we will derive an a posteriori error estimate for the vector Ũj = (Ej , E3,j),
j ≥ 1, the solution of (2.3), and that ensures the error reduction of (2.4). We consider the
following general variational problem that corresponds to problem (1.4):
Find (E, E3) ∈ X, such that

a((E, E3), (V, q)) = b((f , 0), (V, q)), ∀ (V, q) ∈ X, (3.1)

where f is an piecewise linear polynomial function.
Considering the j-th iteration of AIIFEA for the waveguide problem. Mh is the j-th shape

regular triangulation of Ω, Xh = Wh × Qh. Along with AIIFEA, we have f = −Ej−1,h. The
corresponding finite element problem of (3.1) is as follows:
Find (Eh, E3,h) ∈ Xh, such that

a((Eh, E3,h), (Vh, qh)) = b((f , 0), (Vh, qh)), ∀ (Vh, qh) ∈ Xh. (3.2)

For establishing an a posteriori error estimate of (3.1) and (3.2), we firstly give a decom-
position of the function space H0(curl,Ω) ([3, 11, 21]) and the property of the direct splitting
as shown in following lemma. Lemma 3.1 may be proved by arguments similar to those in the
proof of Theorem 2.3 of [21].

Lemma 3.1. If Ω ∈ R2 is a Lipschitz, bounded and simply connected domain, then for any
V ∈ H0(curl,Ω), there exist a constant C depending only on Ω, ~ϕ ∈ (H1(Ω))2 ∩H0(curl,Ω),
and ψ ∈ H1

0 (Ω) such that
V = ~ϕ +∇ψ

and

||~ϕ||H1(Ω) ≤ C||V||H(curl,Ω), (3.3)

||∇ψ||L2(Ω) ≤ C||V||H(curl,Ω). (3.4)

For D ⊆ Ω, the set of vertices and edges in D are denoted by Nh(D) and Bh(D). For any
K ∈Mh, e ∈ Bh(Ω), we designate that

=(K) = ∪{K ′ ∈Mh, (K ′ ∩K) ∈ (Bh(Ω) ∪Nh(Ω))},
℘(e) = ∪{K ∈Mh, Nh(e) ∩Nh(K) 6= ∅}.

We introduce a linear interpolation operator Θh : H0(curl,Ω) → Wh which is defined by

ΘhV = Θh(~ϕ +∇ψ) = Πh~ϕ +∇rhψ, ∀ V ∈ H0(curl,Ω).

where Πh: (H1(Ω))2 ∩ H0(curl,Ω) → Wh is the two-dimensional edge element interpolation
operator and rh: L2(Ω) → Qh is the Clément interpolation operator ([9, 18, 20]). In two
dimensions, the edge element interpolation operator has the following properties (see [17, 23]):

Lemma 3.2. There exists a constant C depending only on the mesh shape-regularity such that

||~ϕ−Πh~ϕ||[L2(K)]2 ≤ ChK ||~ϕ||H(curl,K), ∀ K ∈Mh,

||~ϕ−Πh~ϕ||[L2(e)]2 ≤ Ch
1
2
e ||~ϕ||H(curl,=(K)), ∀ e ∈ Bh(K), K ∈Mh.

and the Clément interpolation operator has the following properties (see Corollary 3.1 of [6]):
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Lemma 3.3. There exists a constant C depending only on the mesh shape-regularity such that

||ψ − rhψ||L2(K) ≤ ChK ||∇ψ||L2(=(K)), ∀ K ∈Mh,

||ψ − rhψ||L2(e) ≤ Ch
1
2
e ||∇ψ||L2(℘(e)), ∀ e ∈ Bh(Ω).

Theorem 3.4. (Upper Bound) Let (E, E3) ∈ X , (Eh, E3,h) ∈ Xh be the solutions of problem
(3.1) and (3.2), respectively. Then there exists a constant C > 0, depending only on the mesh
shape-regularity such that the following a posteriori upper bound for the error holds:

||E−Eh||H(curl,Ω) + ||E3 − E3,h||H1(Ω) ≤ C(
∑

K∈Mh

η(K)2)
1
2 ,

where the local error indicators η(K) are given by

η(K)2 = (η1(K)2 +
∑

e∈∂K,e/∈∂Ω

η1(e)2), (3.5)

with

η1(K)2 = h2
k(||f + k2

0εEh +∇E3,h||2[L2(K)]2 + ||∇ · (f + k2
0εEh +∇E3,h)||2L2(K)

+||k2
0(∇ · (εEh)− εE3,h)||2L2(K))

and

η1(e)2 = he(||[f + k2
0εEh +∇E3,h] · ne||2L2(e) + ||k2

0[εEh] · ne||2L2(e)),

where ne is the unit normal of the edge e, and the definition of the jump [·] is that for any
function J ∈ (L2(Ω))2 or L2(Ω): [J ] = (J |K1 − J |K2).

Proof. Since (E, E3) ∈ X and (Eh, E3,h) ∈ Xh are the solutions of (3.1) and (3.2), respec-
tively, we denote the total error by (e, e3) := (E−Eh, E3−E3,h) ∈ X. It is easy to see that for
all (V, q) ∈ X the error (e, e3) satisfies

a((e, e3), (V, q)) =< f ,V −ΘhV > −a((Eh, E3h), (V −ΘhV, q − rhq)).

From Lemma 3.1 and the definition of Θh, we have for any V ∈ H0(curl,Ω),

V = ~ϕ +∇ψ,

ΘhV = Πh~ϕ +∇rhψ,

where ~ϕ ∈ (H1(Ω))2 ∩H0(curl,Ω) and ψ ∈ H1
0 (Ω).

Then

a((e, e3), (V, q))

= < f ,V −ΘhV > −a(Eh, E3h), (V −ΘhV, q − rhq))

= < f , ~ϕ−Πh~ϕ +∇(ψ − rhψ) > −a((Eh, E3h), (~ϕ−Πh~ϕ +∇(ψ − rhψ), q − rhq))

=
∑

K∈Mh

< f + k2
0εEh +∇E3,h, ~ϕ−Πh~ϕ >K −

∑

K∈Mh

< curlEh, curl(~ϕ−Πh~ϕ) >K

+
∑

K∈Mh

< f + k2
0εEh +∇E3,h,∇(ψ − rhψ) >K −

∑

K∈Mh

k2
0 < εEh,∇(q − rhq) >K

−
∑

K∈Mh

k2
0 < εE3,h, q − rhq >K
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=
∑

K∈Mh

(< f + k2
0εEh +∇E3,h, ~ϕ−Πh~ϕ >K − < ∇ · (f + k2

0εEh +∇E3,h), ψ − rhψ >K)

+
∑

e∈Bh(Ω),e/∈∂Ω

∫

e

[(f + k2
0εEh +∇E3,h) · ne](ψ − rhψ)ds

+
∑

K∈Mh

k2
0 < ∇ · (εEh)− εE3,h, q − rhq >K +

∑

e∈Bh(Ω),e/∈∂Ω

k2
0

∫

e

([εEh] · ne)(q − rhq)ds

From (3.3)-(3.4), Lemma 3.2 and Lemma 3.3, we have for all (V, q) ∈ X,

|a((e, e3), (V, q))| ≤ C1(
∑

K∈Mh

η1(K)2)
1
2 ||(V, q)||X + C2(

∑

e∈Bh(Ω),e/∈∂Ω

η1(e)2)
1
2 ||(V, q)||X,

where

η1(K)2 = h2
k(||f + k2

0εEh +∇E3,h||2[L2(K)]2 + ||∇ · (f + k2
0εEh +∇E3,h)||2L2(K)

+||k2
0(∇ · (εEh)− εE3,h)||2L2(K))

and

η1(e)2 = he(||[f + k2
0εEh +∇E3,h] · ne||2L2(e) + ||k2

0[εEh] · ne||2L2(e))

and the constants C1, C2 depend only on the mesh shape-regularity.
Then, using the continuous inf-sup conditions for the bilinear form a(·, ·), we have

||E−Eh||H(curl,Ω) + ||E3 − E3h||H1(Ω)

≤ 1
α1

sup
(V,q)∈X

|a((e, e3), (V, q))|
‖ (V, q) ‖X

≤ 1
α1

sup
(V,q)∈X

C1(
∑

K∈Mh
η1(K)2)

1
2 ||(V, q)||X + C2(

∑
e∈Bh(Ω),e/∈∂Ω η1(e)2)

1
2 ||(V, q)||X

‖ (V, q) ‖X
≤ C(

∑

K∈Mh

η(K)2)
1
2 ,

where C depends only on the mesh shape-regularity, and

η(K)2 = (η1(K)2 +
∑

e∈∂K,e/∈∂Ω

η1(e)2).

Using the technique of [3], we have the following lower bound estimate. The proof of this
theorem is omitted here (for more details, see [22] Theorem 4.4).

Theorem 3.5. (Lower Bound) Let (E, E3) ∈ X , (Eh, E3,h) ∈ Xh be the solutions of problem
(3.1) and problem (3.2). Then there is a constant C∗ > 0, depending only on the mesh shape-
regularity such that

η(K) ≤ C∗{(||(E−Eh)||H(curl,=(K)) + ||E3 − E3h||H1(=(K)))}.

The above two theorems imply local efficiency of our adaptive finite element based on the
a posteriori error estimate, since refining where the local indicators η(K) are large is always
necessary to reduce the error.

Here, we present the procedure ADAPTIVE which is based on a marking strategy due to
E. Bänsch, P. Morin and R. H. Nochetto [2]. With the a posteriori error estimators (3.5), the
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ADAPTIVE procedure of AIIFEA uses normal adaptive technique. From [20], we can get that
(2.4) holds.

ADAPTIVE(Ũ∗,M0, ε∗)

Choose parameters 0 < Θ < 1, set i = 0.

1. Compute the discrete solution Ũ i ∈ Xi over Mi such that

F(Ũ i,V) = G(Ũ∗,V), ∀ V ∈ Xi.

2. Compute the local indicators η(K).

3. If (
∑

K∈Mi η(K)2)
1
2 ≤ ε∗ return (Ũ i,Mi) to AIIFMA.

4. Mark a subset M̃i ⊂Mi such that
∑

K∈gMi

η(K)2 ≥ Θ
∑

K∈Mi

η(K)2.

5. Define M̂i to be the set of all elements K ′ ∈ =(K) for K ∈ M̃i.

6. Refine Mi by using the longest edge refinement strategy over K ′ ∈ M̂i, get
Mi+1.

7. Set i = i + 1 and goto step (1).

4. Numerical Experiments

In this section we report several numerical examples to illustrate the performance of the
method studied in this paper. In every numerical experiment, we solve the eigenvalue problem
with the finite element inverse iteration algorithm over uniformly refined meshes and with the
AIIFMA. Let Nj be the number of nodes of the j-th mesh, E1,h = |λh − β2| the error of the
minimum eigenvalue with the uniformly refined meshes, where λh is the approximate eigenvalue
over the mesh of size h, and E2,h = |λj−β2| the error with the adaptively refined meshes, where
λj is the approximate eigenvalue of the j-th iteration. In the computations we used the PDE
toolbox of MATLAB. The discrete algebraic eigenvalue problems are solved by the shifted
inverse iteration algorithm with shift τ .

Example 1. This example is taken from [13] which concerns a rectangular dielectric waveguide
with one ridge. The domain Ω is a rib domain like Figure 4, and we set L = 12.7mm, H =
10.16mm, l = 2.54mm, h = 2.794mm. Here, Ω = Ω1 ∪ Ω2 ∪ Ω3 with ε1 = 1.0, ε2 = 1.5 and
ε3 = 1.0.

Example (1.1): Let k0 = ω
√

ε0µ0 ≈ 0.78539816 and τ = 0. Figure 4 shows clearly that
AIIFEA is better than the EIIA with the uniformly refined meshes, and the associated numerical
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Fig. 4.1. Rectangular dielectric waveguide with one ridge
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Fig. 4.2. Example 1.1: Performance of the error in terms of the number of nodes of the meshes

complexity is quasi-optimal: |λj − β2| ≈ CN
(−1.1)
j is valid asymptotically. The performance

of the quasi-optimal method is indicated by the line of slope -1.1. Figure 4.3 shows some
adaptively refined meshes for this example.

Example (1.2): Let k0 ≈ 0.80638829 and τ = 0. Figure 4 shows clearly that the associated
numerical complexity is quasi-optimal: |λj − β2| ≈ CN

(−1.0)
j is valid asymptotically.

Example (1.3): Let k0 ≈ 0.80638829 , τ = 0.2. Here, the analytical eigenvalue is β2
a ≈

0.2171. Figure 4 shows clearly the associated numerical complexity of AIIFEM is quasi-optimal:
|λj − β2

a| ≈ CN
(−1.0)
j is valid asymptotically.

Example 2. We consider an incomplete rectangular dielectric waveguide. This example is
taken from [16]. The following Figure 4 shows the transverse domain of the waveguide material.
Ω = [0, L]× [0,H] with H = 3mm , L = 9mm, and h1 = 1.0mm, h2 = 1.0mm, l1 = 3.0mm. In
practical computation, we take ε1 = 3.58 and ε2 = 1.0.

Example (2.1): Let k0 = 1/3 and τ = 0. Figure 4 shows clearly that AIIFEA is better
than the EIIA with the uniformly refined meshes, and the associated numerical complexity is
quasi-optimal: |λj − β2| ≈ CN

(−1.0)
j is valid asymptotically. The performance of the quasi-
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optimal method is indicated by the line of slope -1.0. Figure 4.8 gives some adaptively refined
meshes for this example.

Example (2.2): Let k0 = 4/15 , τ = 0. Figure 4.8 shows clearly that the associated
numerical complexity of AIIFEA is quasi-optimal: |λj−β2| ≈ CN

(−1.0)
j is valid asymptotically.

Example (2.3): Let k0 = 1 , τ = 0. Figure 4 shows clearly that the associated numerical
complexity of AIIFEA is quasi-optimal: |λj − β2| ≈ CN

(−1.0)
j is valid asymptotically.

Example 3. This example is taken form [10], where Ω = [0, L] × [0,H] with H = 0.6mm

and L = 1mm. This waveguide is sketched in Figure 4, where h1 = 0.4mm, l1 = 0.5mm and
ε1 = 3.0, ε2 = 1.0.

N = 607 N = 2167

N = 3534 N = 5468

Fig. 4.3. The adaptively refined meshes for Example 1.1

Let k0 = 2.5 and τ = 0. Figure 4 shows clearly that AIIFEA is better than the EIIA
with the uniformly refined meshes, and the associated numerical complexity is quasi-optimal:
|λj − β2| ≈ CN

(−1.0)
j is valid asymptotically. The performance of the quasi-optimal method is

indicated by the line of slope -1.0. Figure 4.13 gives some meshes for this example.
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Fig. 4.4. Example 1.2: Performance of the error in terms of the number of nodes of the meshes
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Fig. 4.5. Example 1.3: Performance of the error in terms of the number of nodes of the meshes
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Fig. 4.6. Incomplete rectangular dielectric waveguide
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Fig. 4.7. Example 2.1: Performance of the error in terms of the number of nodes of the meshes

N = 347 N = 870

N = 1434 N = 3442

Fig. 4.8. The adaptively refined meshes for Example 2.1
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Fig. 4.9. Example 2.2: Performance of the error in terms of the number of nodes of the meshes
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Fig. 4.10. Example 2.3: Performance of the error in terms of the number of nodes of the meshes
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Fig. 4.11. Rectangular dielectric waveguide
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Fig. 4.12. Example 3: Performance of the error in terms of the number of nodes of the meshes
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N=288 N=885

N=2813 N=9147

Fig. 4.13. The adaptively refined meshes for Example 3
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