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Abstract

Separable nonlinear least squares problems are a special class of nonlinear least squares

problems, where the objective functions are linear and nonlinear on different parts of

variables. Such problems have broad applications in practice. Most existing algorithms

for this kind of problems are derived from the variable projection method proposed by

Golub and Pereyra, which utilizes the separability under a separate framework. However,

the methods based on variable projection strategy would be invalid if there exist some

constraints to the variables, as the real problems always do, even if the constraint is simply

the ball constraint. We present a new algorithm which is based on a special approximation

to the Hessian by noticing the fact that certain terms of the Hessian can be derived from the

gradient. Our method maintains all the advantages of variable projection based methods,

and moreover it can be combined with trust region methods easily and can be applied to

general constrained separable nonlinear problems. Convergence analysis of our method is

presented and numerical results are also reported.
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1. Introduction

In this paper, we consider the separable nonlinear least squares problem, which is derived

from the following special nonlinear data fitting problem

yi =

p
∑

j=1

ajφj(b, ti), (i = 1, 2, · · · ,m), (1.1)

where φj(b, t)(j = 1, · · · , p) are real functions defined on ℜq+1, ti and yi (i = 1, · · · ,m) are

given data, a ∈ ℜp and b ∈ ℜq are parameters to be decided, and p and q are two positive
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integers satisfying p + q = n. In practice, it is usual to have m > n, which is also assumed in

this paper. Data fitting problem (1.1) can be written as general nonlinear equations as follows

fi(a, b) = 0, i = 1, 2, · · · ,m, (1.2)

where

fi(a, b) = yi −

p
∑

j=1

ajφj(b, ti), i = 1, 2, · · · ,m. (1.3)

It is easy to see that the nonlinear equations (1.2) are linear to variable set a. Models of this

type are very common and have a variety of applications in different fields, such as inverse

problems, signal analysis, medical and biological imaging, neural networks, robotics and vision,

telecommunications, electrical and electronics engineering, environmental sciences and time

series analysis, differential equations and dynamical systems, etc. (see, e.g., [4, 5]). It is natural

to consider the nonlinear least squares formulation

min
a∈Rp,b∈Rq

1

2

m
∑

i=1

(fi(a, b))
2, (1.4)

because (1.4) is equivalent to (1.2) when the latter has solutions and numerical methods for

(1.4) can be used for solving (1.2) (see, e.g., [2, 12, 16, 19]).

If yi (i = 1, · · · ,m) depend on b, the data fitting problem (1.1) is generalized to the standard

form of separable nonlinear least squares problems

min
a∈Rp,b∈Rq

ψ(a, b) =
1

2
|| y(b) − Φ(b)a||22, (1.5)

where y : Rq 7→ Rm; Φ : Rq 7→ Rm×p, with (Φ(b))ij = φj(b, ti), 1 ≤ i ≤ m, 1 ≤ j ≤ p.

Golub and Pereyra [4] proposed the variable projection method for (1.4), which is (1.5) with

y(b) = y0. The main idea of their variable projection method is as follows. For any fixed b ∈ Rq,

(1.5) reduces to a linear least squares problem and we can obtain the least-norm solution

â(b) = Φ+(b)y0, (1.6)

where Φ+(b) is the Moore-Penrose inverse of Φ(b). Substituting (1.6) into (1.4), we have

min
a∈Rp,b∈Rq

ψ(a, b) = min
b∈Rq

1

2
|| y0 − Φ(b)Φ+(b)y0||

2
2 = min

b∈Rq

1

2
||P⊥

Φ(b)y0||
2
2. (1.7)

Here, P⊥
Φ(b) is the orthogonal projector from Rm to the null space of Φ(b)T . Thus, we derive a

reduced problem (1.7). A solution b̂ of (1.7) can be obtained by applying any nonlinear least

squares algorithm, and consequently â(b̂) can be defined by (1.6). In Golub and Pereyra [5],

the computing and storage methods for the Fréchet derivative of the orthogonal projector are

also developed, and it is proved that the separating variables approach led to the same solution

set as that of the original problem when Φ(b) has a constant rank. The main feature of the

variable projection methods is the elimination of the linear variables, which leads to three main

advantages over the standard Gauss-Newton method: less iteration steps to convergence; less

initial guess; decreasingly ill-conditioned if the whole problem is.

Kaufman[6] simplified the Jacobian formula of the orthogonal projector in Golub and

Pereyra’s method. It has extensively demonstrated that savings of up to 25% are achieved
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by this simplification, making the variable projection method as cost efficient per iteration as

working with the full functional.

Ruhe and Wedin [14] extended the variable projection idea to the general nonlinear case.

They considered and developed the implicit reduction methods for the separable nonlinear least

squares problem (1.5) by adopting alternate iteration between the two sets of the variables.

Consider the minimization problem

min
a∈Rp

ψ(a, b), (1.8)

where ψ(a, b) is a general nonlinear function. Assume that (1.8) is easy to solve numerically

for every fixed b in the domain under consideration. Of course, such an assumption is satisfied

for the separable nonlinear least squares problem, when the objective function ψ(a, b) is of the

form in (1.5). Let a(b) denote a solution of (1.8). It is easy to see that (a(b̂), b̂) solves (1.5) if b̂

solves

min
b∈Rq

ψ(a(b), b). (1.9)

Inexact Newton’s method is used by Ruhe and Wedin[14] to solve the above problem (1.9). It

is important is to obtain a good approximation to the Hessian of ψ(a(b), b) without evaluating

any second order derivatives, by using the special structure of the problem. For example, when

problem (1.8) is the special problem (1.5), we can define

ϕ(a, b) = y(b) − Φ(b)a. (1.10)

Direct calculations show that

ϕa(a, b) = Φ(b), ϕb(a, b) = y′(b) − Φ′(b)a, (1.11)

ϕab(a, b) = Φ′(b)T , ϕba(a, b) = Φ′(b), ϕaa(a, b) = 0. (1.12)

Hence only ϕbb(a, b) is not available if we do not compute any second order derivatives.

The implicit reduction algorithm for separable nonlinear least squares problems (1.5) can

be described as follows.

Algorithm 1.1. (Implicit Reduction Algorithm)

Step 1 Given b0, a0 = 0; ǫ > 0 sufficiently small, k := 0.

Step 2 Compute ϕ(k) = ϕ(ak, bk), and ϕ
(k)
a = Φ(bk),

ak+1 = ak − (ϕ(k)
a )+ϕ(k). (1.13)

Step 3 Compute ϕ
(k)
b = y′(bk) − Φ′(bk)ak,

set bk+1 either by Kaufman’s step

bk+1 = bk − (P⊥

ϕ
(k)
a

ϕ
(k)
b )+[I − ϕ(k)

a (ϕ(k)
a )+]ϕ(k) = bk − (P⊥

ϕ
(k)
a

ϕ
(k)
b )+ϕ(k), (1.14)

or by Golub and Pereyra’s step

bk+1 = bk − (P⊥

ϕ
(k)
a

ϕ
(k)
b + P

ϕ
(k)
a
ϕ(k)

a

+
Φ′(bk)ϕ)+ϕ(k). (1.15)

Step 4 k := k + 1, If ||ϕ
(k)
a

T
ϕ(k) + ϕ

(k)
b

T
ϕ(k)|| < ǫ then stop, else go to Step 2.
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According to the analysis in [14], the steps defined by the above algorithm are equivalent to

Golub and Pereyra’s step and Kaufman’s step respectively, and the calculation of the steps can

be more concise. It is also found that the variable projection methods require almost the same

arithmetical operations per iteration as the unseparated Gauss-Newton method, while their

asymptotical convergence properties are better than the unseparated Gauss-Newton method.

Some other modifications of the variable projection method and extensions to separable

nonlinear least squares problems are mentioned in [1, 7, 8] etc.. For instance, Böckmann [1]

introduces a finite-difference approximation with function evaluation for the reduced problem

(1.7), and uses a trust-region method to solve it. Kaufman and Pereyra [7] extends separable

nonlinear least squares problems to the cases with separate nonlinear equality constraints.

However, in practice, the separable nonlinear least squares problems normally do not have

separate equality constraints. For example, box constraints or ball constraints are very common.

In these cases, the variable projection method can not be easily applied. In fact, it is rather

difficult to extend the variable projection method to solve a nonlinear constrained least squares

problem if there exists a constraint which does not have the same separable pattern as the

objective function. To overcome these difficulties, we propose an unseparated framework for

the separable nonlinear least squares problems.

The rest of this paper is organized as follows. Our new unseparated framework will be

introduced in the next section. We will analyze the convergence properties of the unseparated

framework in Section 3. In Section 4, results of some numerical experiments will be showed.

Finally, conclusions and discussions are given in the last section.

2. A New Unseparated Framework

Before we present our new unseparated framework, the motivation will be clarified. To

achieve it, we give a brief review on general methods for nonlinear least squares problems.

2.1. General methods for nonlinear least squares problems

The general nonlinear least squares problem can be described as

min
x∈Rn

F (x) =
1

2
||f(x)||22, (2.1)

where

f : Rn 7→ Rm, with (f(x))i = fi(x).

There are quite a few kinds of iterative methods proposed for solving (2.1). Most of these

methods for nonlinear least squares problems are based on the linear approximation of f in

each iteration, which is derived from Gauss-Newton method. The main idea of Gauss-Newton

method is as follows [2, 12]. Suppose our current iterative point is xk, then we obtain the next

point xk+1 = xk + dk by solving the following linear least squares problem

min
d∈Rn

1

2
||f(xk) + J(xk)d||22, (2.2)

where J(x) is the Jacobian of f(x). A solution of problem (2.2) is

dk = −(J(xk))+f(xk) = −(J(xk)TJ(xk))−1J(xk)T f(xk). (2.3)
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If we compare (2.3) with the Newton step of (2.1), we can find that Gauss-Newton method use

J(xk)TJ(xk), which consists of only the first-order information of f , to substitute the actual

Hessian of F (x)

∇2F (x) = J(x)TJ(x) +
m

∑

i=1

∇2fi(x)fi(x), (2.4)

by omitting the second term in (2.4). It can be proved easily that Gauss-Newton method has

good local convergence properties when the second term is significantly small, which is normally

true if the least squares has a zero minimum.

Most efficient methods for nonlinear least squares problems, such as Levenberg-Marquardt

method and structured quasi-Newton methods, can be regarded as some kinds of modifications

or extensions of the Gauss-Newton method. To guarantee the global convergence without

losing nice local convergence properties, Levenberg-Marquardt method tries to control the step

length at each iteration by replacing the last term by a positive definite scalar matrix [3].

Modern versions of the Levenberg-Marquardt method restrict the step length directly by posing

a trust region constraint [9, 11, 16]. Structured quasi-Newton methods reserve the first-order

information J(xk)TJ(xk) of ∇2F (x) and apply quasi-Newton techniques to approximate the

last term in (2.4) (for example, see [18]).

2.2. Motivation of our approach

Using the special structure of the separable nonlinear least squares problem, variable projec-

tion methods eliminate the linear part of variables in order to reduce the objective function to a

function depending on only the nonlinear part of variables. Then, standard methods for general

nonlinear least squares problems can be applied to the reduced problem. Both theoretical anal-

ysis and numerical results show that the variable projection based methods need less iteration

steps than the corresponding unseparated methods (for example, see [5]). A comprehensible

reason is that the general unseparated frame neglects the speciality of separable nonlinear least

squares problem.

However, when we add some general constraints on (1.5), the variable projection methods

will be invalid. Since their successes rely too much on the explicit expression of the optimum

when the nonlinear part of variables is fixed.

Due to the low efficiency of general unseparated methods and the low compatibility of the

variable projection methods, we want to design an unseparated framework which can utilize

the separable information. Consequently, the derived algorithms can easily be extended to

constrained problems.

Consider problem (1.5). Define ϕ by (1.10), we can write the Hessian of ψ(a, b) as follows:

∇2ψ =

(

ϕT
a ϕa + ϕT

aaϕ ϕT
aϕb + ϕT

abϕ

ϕT
b ϕa + ϕT

baϕ ϕT
b ϕb + ϕT

bbϕ

)

. (2.5)

Due to the special structure of the problem, using (1.12), we have that

∇2ψ =

(

ϕT
a ϕa ϕT

aϕb + Φ′(b)ϕ

ϕT
b ϕa + (Φ′(b)ϕ)T ϕT

b ϕb + ϕT
bbϕ

)

. (2.6)

Because Newton’s method converges quadratically, an efficient method for (1.5) should use a

good approximation to the Hessian matrix (2.6). Under the general unseparated scheme, the
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Gauss-Newton method approximates the Hessian by the first order term of ϕ as

HGN =

(

ϕT
a ϕa ϕT

aϕb

ϕT
b ϕa ϕT

b ϕb

)

. (2.7)

However, comparing (2.7) and (2.6) we can easily find that there is a term Φ′(b)ϕ, neglected

by (2.7), which can be obtained without computing any second order derivatives. Therefore, it

seems that it is more natural to approximate the Hessian matrix (2.6) by

H(0) =

(

ϕT
a ϕa ϕT

a ϕb + Φ′(b)ϕ

ϕT
b ϕa + (Φ′(b)ϕ)T ϕT

b ϕb

)

. (2.8)

Unfortunately, it is not a good idea, because H(0) may not be positive semi-definite, even when

the real Hessian ∇2ψ is positive definite. In the next section, we can show that H(0) based

scheme is not as good as Gauss-Newton method in most cases.

Now we try to modify (2.8) so that positive definite condition is satisfied. First, we define

ϕC = (ϕ+
a )T Φ′(b)ϕ

and replace ϕT
aϕb + Φ′(b)ϕ by ϕT

a (ϕb + ϕC). Furthermore, if the lower right block term ϕT
b ϕb

is replaced by (ϕb + ϕc)
T (ϕb + ϕc), we would have the following approximation formula:

H(1) =

(

ϕT
aϕa ϕT

a (ϕb + ϕc)

(ϕb + ϕc)
Tϕa (ϕb + ϕC)T (ϕb + ϕC)

)

. (2.9)

Now, we can see H(1) is always positive semi-definite and has more second-order information

than HGN . If Φ(b) has rank p, we can show that

ϕT
aϕb + Φ′(b)ϕ = ϕT

a (ϕb + ϕC). (2.10)

In this case, we have

H(1) = ∇2ψ +

(

0 0

0 ϕT
b ϕC + ϕT

Cϕb + ϕT
CϕC − ϕT

bbϕ

)

. (2.11)

Hence the error matrixH(1)−∇2ψ is a rank q matrix. We will prove in the next section that (2.9)

is really a better approximation to ∇2ψ than HGN . Now we add ϕT
CϕC to the bottom-right

part of (2.9) and have

H(2) =

(

ϕT
a ϕa ϕT

a (ϕb + ϕc)

(ϕb + ϕc)
Tϕa (ϕb + ϕC)T (ϕb + ϕC) + ϕT

CϕC

)

. (2.12)

H(2) can be proved to be another better approximation to ∇2ψ. We call methods based on

approximate Hessian (2.9) or (2.12) structured unseparated methods for separable nonlinear

least squares problem.

2.3. Methods Based on Our New Scheme

Using the approximation Hessian (2.9) and (2.12), we can give three algorithms which

apply line search, Levenberg-Marquardt technique and trust region approach respectively. The

descriptions of the algorithms are given as follows.
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Algorithm 2.1. (Structured Unseparated Method: Line Search Version)

Step 1 Given x0 = (aT
0 , b

T
0 )T ; given ρ ∈ (0, 0.5) and ǫ > 0 sufficiently small.

k := 0.

Step 2 If ||∇ψ(xk)|| < ǫ, then stop;

Step 3 Compute Hk by either (2.9) or (2.12), set

dk = −(Hk)−1∇ψ(xk). (2.13)

Step 4 Find α > 0 satisfying:

ψ(xk + αdk) ≤ ψ(xk) + ρα∇ψ(xk)T dk, (2.14)

ψ(xk + αdk) ≥ ψ(xk) + (1 − ρ)α∇ψ(xk)Tdk. (2.15)

Step 5 xk+1 = xk + αdk, k:=k+1, goto Step 2.

Line search type algorithms normally will have numerical difficulties when the approximate

Hessian matrix Hk is nearly singular. To overcome this, we can employ either the Levenberg-

Marquardt technique or the trust region approach.

Algorithm 2.2. (Structured Unseparated Method: Levenberg-Marquardt Version)

Step 1 Given x0, given c1 > 1, c2 > 1, 0 < p1 < p2 < 1 and ǫ > 0 sufficiently small.

Let λ0 = ||ψ(x0)||, k := 0.

Step 2 If ||∇ψ(xk)|| < ǫ, then stop;

Step 3 Compute Hk by either (2.9) or (2.12), let

dk = −(Hk + λkI)
−1∇ψ(xk). (2.16)

Step 4 Compute the ratio

rk =
ψ(xk) − ψ(xk + dk)

−∇ψ(xk)T dk − 1
2d

T
kHkdk

, (2.17)

Generate λk+1 and xk+1:

λk+1 =











c1λk if rk ≤ p1,
1
c2
λk if rk ≥ p2,

λk otherwise;

(2.18)

xk+1 =

{

xk + dk if rk > 0,

xk otherwise.
(2.19)

Step 5 k := k + 1, goto Step 2.
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Algorithm 2.3. (Structured Unseparated Method: Trust Region Version)

Step 1 Given x0, ∆0 > 0, c1 > 1, c2 > 1, 0 < p1 < p2 < 1; and ǫ > 0 sufficiently small.

k=0;

Step 2 If ||∇ψ(xk)|| < ǫ, then stop;

Step 3 Compute Hk by either (2.9) or (2.12), solve

min
d∈ℜn

mk(d) = ∇ψ(xk)T d+
1

2
dTHkd, (2.20)

s.t. ||d||2 ≤ ∆k, (2.21)

obtaining dk.

Step 4 Compute the ratio

rk =
ψ(xk) − ψ(xk + dk)

m(0) −m(dk)
, (2.22)

Generate ∆k+1 and xk+1:

∆k+1 =











1
c1
‖dk‖2 if rk ≤ p1,

max[c2‖dk‖2, ∆k] if rk ≥ p2,

∆k otherwise;

(2.23)

xk+1 =

{

xk + dk if rk > 0,

xk otherwise.
(2.24)

Step 5 k := k + 1, goto Step 2.

In Step 3 of the above algorithm, dk can be either an exact solution [10] or an approximation

solution of subproblem (2.20)-(2.21) obtained by the truncated conjugate gradient method

[15, 17]. The step dk computed by the truncated conjugate gradient method has the nice

property that it reduces the objective function by at least half of the reduction of the exact

solution [20]. When we apply the truncated conjugate gradient method, we also use the post

process suggested by Powell [13].

3. Convergence Analysis

In this section, we study the convergence properties of our algorithms. Due to the fact that

the differences between our methods and the unseparated Gauss-Newton method are different

second order terms used in the approximation model, it is straightforward for us to extend the

global convergence results of the Gauss-Newton method to all our three algorithms. Therefore,

in this section we only study the local convergence properties of our algorithms. First, we show

that both the approximate Hessians (2.9) or (2.12) are accurate approximations so that fast

local convergence rate is ensured.
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3.1. Local convergence rate

First, Similar to Gauss-Newton method, our algorithms are also quadratically convergent

for zero-residual problems. Without loss of generality, we only prove the local quadratic con-

vergence result for the step computed by Algorithm 2.1.

Theorem 3.1. We denote x∗ as a local minimum of (1.5) at which ϕ(x∗) = 0. If we assume

H(i)(x∗), i = 1, 2 in (2.9), (2.12) respectively is positive definite, ∇2ψ(x) and H(i)(x)−1 are

Lipschitz continuous in a domain of x∗, then there exists a ǫ > 0, for any xk ∈ N(x∗, ǫ), we

have that

‖xk + dk − x∗‖ = O(‖xk − x∗‖2). (3.1)

Proof. Without loss of generality, we consider the case that Hk is defined by (2.9). Denote

Sk = ∇2ψ(xk) −Hk. From the definition of ϕC , (2.11), and our assumptions, it follows that

‖Sk‖ = O(‖ϕ(xk)‖) = O(‖xk − x∗‖). (3.2)

Let

dN
k = −∇2ψ(xk)∇ψ(xk) (3.3)

be the Newton’s step. It is well known that

xk + dN
k − x∗ = O(‖xk − x∗‖2), (3.4)

which gives

‖dN
k ‖ = O(‖xk − x∗‖). (3.5)

Therefore, we have

‖dk − dN
k ‖ = ‖(∇2ψ(xk)−1 −H−1

k )∇ψ(xk)‖

= ‖(I −H−1
k ∇2ψ(xk))dN

k ‖

≤ ‖I −H−1
k ∇2ψ(xk)‖‖dN

k ‖

= ‖H−1
k (Hk −∇2ψ(xk))‖‖dN

k ‖

≤ ‖H−1
k ‖‖Sk‖‖d

N
k ‖ = O(‖xk − x∗‖2). (3.6)

Now, (3.1) follows from relations (3.4) and (3.6). �

3.2. Asymptotical convergence rate

Now we concentrate on the asymptotical convergence properties among Golub and Pereyra’s

step, Kaufman’s step, unseparated Gauss-Newton step, and our new unseparated step (2.13).

Here, our analysis is motivated by the work of Ruhe and Wedin [14], where they compare the

asymptotical convergence of the variable projection method with the Gauss-Newton method

for the first time. Their comparison testified that the former one needs less iteration steps to

convergence.

For any iterative method

xk+1 = h(xk), lim
k→∞

xk = x∗, (3.7)
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we define asymptotical convergence rate

R = − ln ρ(h
′

(x∗)). (3.8)

We know the smaller the spectral radius ρ(h
′

(z∗)) is, the faster the method converges. Here,

ρ(h
′

(x∗)) = max(−α, β), where α and β denote the smallest and largest eigenvalues of general-

ized symmetrical eigenvalue problem

(H −∇2ψ)z = λHz, (3.9)

respectively. Since the eigenvalues of (3.9) are the stationary values of the Rayleigh quotient

µ(z) =
zT (H −∇2ψ)z

zTHz
, (3.10)

We can estimate the spectral radius by evaluating the extreme values of (3.10).

The theoretical analysis reported in Ruhe and Wedin [14] shows that the following theorem

is true.

Lemma 3.1. The convergence quotients µ(G.&P.)(z), µ(K.), and µGN of variable projection

methods with Golub and Pereyra’s step (1.15) or Kaufman’s step (1.14) and unseparated Gauss-

Newton step are given by the extreme values of the following functional respectively:

µ(G.&P.)(z) = q(z); µ(K.) =
q(z) − c(z)

1 − c(z)
;

µGN (z) = {solution to r(µ, z) = q(z) − µ+ (µ+ µ−1 − 2)c(z) = 0};

where the homogenous parameter independent functionals q, b, and c are defined by

q(z) = −||ϕ||2λmax(K2),

and K2 is the curvature matrix of ϕ restricted to ℑ;

c(z) =
||ϕ+

a Φ′(b)ϕz||22
||P⊥

ϕa
ϕbz||22 + ||ϕ+

a Φ′(b)ϕz||22
.

According to Lemma 3.1, we have the following proposition:

Proposition 3.1. If we denote αM , βM are the smallest and largest eigenvalues of problem

(3.9) respectively, when H = HM , here M means Gauss-Newton method, variable projection

method with Golub and Pereyra’s step or Kaufman’s step.

αGN ≤ α(K.) ≤ α(G.&P.), β(K.) ≤ β(G.&P.) ≤ βGN . (3.11)

We can see that the spectral radius of unseparated Gauss-Newton method are larger than

the two variable projection methods. Therefore, it is very likely that the unseparated Gauss-

Newton method is the slowest one among these three methods.

Using the results in Lemma 3.1, we can prove the following theorem.

Theorem 3.2. If we denote α(i), β(i) as the smallest and largest eigenvalues of problem (3.9),

when H = H(i), i = 1, 2, respectively. Here H(1), and H(2) are decided by (2.9) and (2.12).

Then the following results hold:

α(1) = α(K.), β(1) = β(K.); α(2) = α(G.&P.), β(2) = β(G.&P.). (3.12)
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Proof. Firstly, we consider the case H = H(2). Since the extreme values µ(2) should be the

extreme eigenvalues of the generalized eigenvalue problem (H(2) −∇2ψ)z = λH(2)z, it should

be a zero point of

det[H(2) −∇2ψ − µ(2)H(2)] = 0.

Since we have

det

[

X11 X12

X21 X22

]

= det[X11] · det[X22 −X21X
−1
11 X12]

if X11 is nonsingular. We have

det[H(2) −∇2ψ − µ(2)H(2)]

= det

[

−µ(2)ϕT
aϕa −µ(2)ϕT

a ϕb + ϕT
abϕ

−µ(2)ϕT
b ϕa + ϕT

baϕ (1 − µ(2))(ϕT
b ϕC + ϕT

Cϕb + 2ϕT
CϕC) − ϕT

bbϕ− µ(2)ϕT
b ϕb

]

= (−µ(2))p+q det[ϕT
a ϕa] det[(H(G.&P.) − ψ

′′

ℑ) − µ(2)H(G.&P.)],

where

H(G.&P.) = ϕT
b P

⊥
ϕa
ϕb + (ϕa

+Φ′(b)ϕ)TPϕa
ϕa

+Φ′(b)ϕ (3.13)

is the iterative matrix of variable projection method with Golub and Pereyra’s step, and

ψ
′′

ℑ = ϕbb − ϕbaϕ
−1
aa ϕab (3.14)

is the Hessian of the objective function ψ restricted to ℑ. The last equation is due to the fact

that

ϕC = ϕT
a (ϕb + Φ′(b)ϕ).

A nonzero eigenvalue is now a zero point of

det[(H(G.&P.) − ψ
′′

ℑ − µ(2)H(G.&P.)].

Therefore we proved that µ(2)(z) is of the same extreme values as µ(G.&P.)(z)’s.

The proof can be easily generated to the case that H = H(1) and H(K.) = ϕT
b P

⊥
ϕa
ϕb is the

iterative matrix of variable projection method with Kaufman’s step. �

Theorem 3.2 tells us that our new unseparated framework is of the same asymptotical

convergence rate as the two classical variable projection methods given by Golub and Pereyra

[4] and Kaufman [6].

Similarly, we can evaluate the asymptotical convergence rate in the case of H = H(0). α(0)

and β(0) are given by the extreme values of the following functional

µ(z) =
p(z)

1 + p(z) − q(z)
, (3.15)

where

p(z) = zTϕT
bbϕz/(||P

⊥
ϕa
ϕbz||

2
2 + ||ϕCz||

2
2), (3.16)

and q(z) is the Rayleigh quotient of (3.8) in the case of H = H(G.&P.). (3.15) shows that we

can benefit from using H(0) when the second-order term ϕT
bbϕ is significantly small. On the

other hand, this method has poor asymptotical convergence property when ϕT
bbϕ is relatively

large comparing to ϕT
b ϕC .
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4. Numerical Results

In this section, we will show numerical results of the new methods based on our new sepa-

rated framework. We compare our methods with the algorithms based on variable projection

framework and general unseparated framework. We choose the above two typical test problems

from Golub and Pereyra [4] and Ruhe and Wedin [14].

Problem 1. (Exponential data fitting)

φ(a, b; t) = a1 + a2e
−b1t + a3e

−b2t,

with m = 33 and the optimal solution is a∗1 = 0.37531, a∗2 = 1.9305, a∗3 = −1.4592, b∗1 =

0.012867, b∗2 = 0.022123.

Test problem is generated by setting ti = i, yi = (1 + nf · randn(1))φ(a∗, b∗; ti), where nf

is the noise parameter. Initial point is

ai = (1 + rd · (2rand(1) − 1))a∗i , i = 1, 2, 3;

bj = (1 + rd · (2rand(1) − 1))b∗j , j = 1, 2,

where rd is the initial parameter.

Problem 2. (Fractional data fitting)

φ(a, b; t) = a1 + a2t+ a3t
2 − a4

[

1

1 + ((b1 + 0.5b2 − t)/b3)2
+

1

1 + ((b1 − 0.5b2 − t)/b3)2

]

−a5

[

1

1 + ((b4 + 0.5b5 − t)/b6)2
+

1

1 + ((b4 − 0.5b5 − t)/b6)2

]

− a6

[

1

1 + ((b7 − t)/b8)2

]

,

with m = 188 and the optimal solution is a∗1 = 1.0, a∗2 = 0.2, a∗3 = 0.1, a∗4 = 0.9, a∗5 = 0.7,

a∗6 = 0.3, b∗1 = 0.2, b∗2 = 0.8, b∗3 = 3.0, b∗4 = 0.3, b∗5 = 0.7, b∗6 = 3.0, b∗7 = 0.5, b∗8 = 2.0.

Test problem is generated by setting ti = i/m, yi = (1 + nf · randn(1))φ(a∗, b∗; ti), where

nf is the noise parameter. Initial point is

ai = (1 + rd · (2rand(1) − 1))a∗i , i = 1, 2, · · · , 6;

bj = (1 + rd · (2rand(1) − 1))b∗j , j = 1, 2, · · · , 8,

where rd is the initial parameter.

We applied our algorithms to the above two problems for two different cases: one without

noise (nf = 0) and one with nose (nf = 0.1). For all the runs, we set ǫ = 10−10 and the

approximate Hessian (2.9) is used in all our algorithms.

The results for the case there is no noise are reported in Table 4.1, where the number of

iterations and running time in seconds of the standard (unseparated) Gauss-Newton method,

the variable projection method with Kaufman’s step and our Algorithm 2.1 (with ρ = 0.01) are

listed.

From Table 4.1, we can see that Algorithm 2.1 performs similarly to the variable projection

method, and it is better than the standard Gauss-Newton method.

We also tested our algorithms when there are noise in the data. We compared four algo-

rithms: the standard (unseparated) Levenberg-Marquadt method(L-M), the variable projection
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Table 4.1: Test Results for noise-free data.

Problem Gauss-Newton Variable Projection Algorithm 2.1

P1, rd = 0.01 6/0.0160 4/0.0140 4/0.0160

P2, rd = 0.01 16/0.7540 9/0.4400 10/0.4970

Table 4.2: Test Results for noise data (nf = 0.1).

Problem L-M Variable Projection Algorithm 2.2 Algorithm 2.3

P1, rd = 0.1 19/0.0310 13/0.0250 14/0.0340 17/0.0410

P1, rd = 0.2 21/0.0340 14/0.0270 16/0.0370 18/0.0430

P1, rd = 0.5 25/0.0410 16/0.0310 19/0.0430 20/0.0470

P2, rd = 0.1 162/0.7660 142/0.7410 154/1.0160 62/0.4370

P2, rd = 0.2 169/0.8030 144/0.7880 160/1.0790 72/0.5000

P2, rd = 0.5 195/0.9540 158/0.9370 182/1.2910 76/0.5310

method with Kaufman’s step and L-M modification, Algorithm 2.2 and Algorithm 2.3. For Al-

gorithms 2.2 and 2.3, the following parameters are chosen: c1 = c2 = 2, p1 = 0.1, and p2 = 0.4.

The results are reported in Table 4.2.

From the above results, it can be seen that our Algorithm 2.2 behaves very similarly to the

variable projection method. Both are better than the standard Levenberg-Marquardt method.

Our Algorithm 2.3 performs better than the variable projection method for Problem 2, but

slightly worse for Problem 1.

5. Discussions

In this paper, we propose a new unseparated framework for the separable nonlinear least

squares problem, by using special approximation formulae to the Hessian of the separable

problems. Algorithms based on this framework are more efficient than general unseparated

methods, and moreover they can be extended to constrained problems easily. Convergence

analysis shows, that our new methods have the nice properties of variable projection methods.

Numerical results also indicate that our algorithms are comparable to the famous variable

projection method with Kaufman’s step. The algorithms we presented can be improved if the

arithmetical operations for computing the approximate Hessians H(1) and H(2) can be reduced.

Our approach offers a possibility to construct efficient algorithms for general constrained

nonlinear least squares problems, particularly the constraints do not have the same separability

structure as that of the objective function. However, how to implement such kinds of algorithms

need careful studies, for example, attention has to be given to how to use the two different

separable properties (those of the objective function and the constraints) properly. Moreover,

large scale problems require us to exploit the structure with more sophistication.
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