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Abstract

In this paper we show the well-posedness and stability of the Maxwell scattering prob-

lem with the transparent boundary condition. The proof depends on the well-posedness of

the time-harmonic Maxwell scattering problem with complex wave numbers which is also

established.
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1. Introduction

We consider the electromagnetic scattering problem with the perfect conducting boundary

condition on the obstacle

ε
∂E

∂t
−∇× H = J in [R3\D̄] × (0, T ), (1.1)

µ
∂H

∂t
+ ∇× E = 0 in [R3\D̄] × (0, T ), (1.2)

n× E = 0 on ΓD × (0, T ), (1.3)

E|t=0 = E0, H|t=0 = H0. (1.4)

Here D ⊂ R3 is a bounded domain with Lipschitz boundary ΓD, E is the electric field, H is the

magnetic field, x̂ = x/|x|, and n is the unit outer normal to ΓD. The applied current J and the

initial conditions E0,H0 are assumed to be supported in the circle BR = {x ∈ R2 : |x| < R}
for some R > 0. The electric permittivity ε and magnetic permeability µ are assumed to be

positive constants. We remark that the results in this paper can be easily extended to solve

scattering problems with other boundary conditions such as the impedance boundary condition

on ΓD.

One of the fundamental problems in the efficient simulation of the wave propagation is the

reduction of the exterior problem which is defined in the unbounded domain to the problem

in the bounded domain. The transparent boundary condition plays an important role in the

construction of various approximate absorbing boundary conditions for the simulation of wave
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propagation, see the review papers Givoli [5], Tsynkov [11], Hagstrom [7] and the references

therein. The purpose of this paper is to study the transparent boundary condition for Maxwell

scattering problems.

For any s ∈ C such that Re (s) > 0, we let E
L

= L (E) and H
L

= L (H) be respectively

the Laplace transform of E and H in time

E
L
(x, s) =

∫ ∞

0

e−stE(x, t)dt, H
L
(x, s) =

∫ ∞

0

e−stH(x, t)dt.

Since L (∂tE) = sE
L
−E0 and L (∂tH) = sH

L
−H0, by taking the Laplace transform of (1.1)

and (1.2) we get

ε(sE
L
− E0) −∇× H

L
= J

L
in R

3\D̄, (1.5)

µ(sH
L
− H0) + ∇× E

L
= 0 in R

3\D̄, (1.6)

where J
L

= L (J). Because J, E0, H0 are supported inside BR = {x ∈ R2 : |x| < R}, we know

that E
L

satisfies the time-harmonic Maxwell equation outside BR

∇×∇× E− k2E
L

= 0 in R
3\D̄,

where the wave number k = i
√

εµs so that Im (k) =
√

εµs1 > 0. Let Ge : H−1/2(Div; ΓR) →
H−1/2(Div; ΓR) be the Dirichlet to Neumann operator

Ge(x̂ × E
L
) =

1

ik
x̂ × (∇× E

L
) = − 1√

εµ

1

s
x̂ × (∇× E

L
).

By using (1.6) we have

Ge(x̂ × E
L
) =

√

µ

ε
x̂ × H

L
on ΓR. (1.7)

For x̂ × E
L
|ΓR =

∑∞
n=1

∑n
m=−n amnUm

n (x̂) + bmnVm
n (x̂), we know that (cf., e.g., in Monk [9]

and also the discussion in Section 2)

Ge(x̂ × E
L
) =

∞
∑

n=1

n
∑

m=−n

−ikRbmnh
(1)
n (kR)

z
(1)
n (kR)

Um
n +

amnz
(1)
n (kR)

ikRh
(1)
n (kR)

Vm
n ,

where Um
n ,Vm

n are the vector spherical harmonics, h
(1)
n (z) is the spherical Hankel function of

the first order of order n, and z
(1)
n (z) = h

(1)
n (z) + zh

(1)′

n (z).

By taking the inverse Laplace transform of (1.7) we obtain the following transparent bound-

ary condition for the electromagnetic scattering problems
√

µ

ε
x̂ × H = (L −1 ◦ Ge ◦ L )(x̂ × E|ΓR) on ΓR, (1.8)

where

(L −1 ◦ Ge ◦ L )(x̂ × E|ΓR)

=

∞
∑

n=1

n
∑

m=−n

[

L
−1

(√
εµsRh

(1)
n (i

√
εµsR)

z
(1)
n (i

√
εµsR)

)

∗ bmn(R, t)

]

Um
n

−
[

L
−1

(

z
(1)
n (i

√
εµsR)

√
εµsRh

(1)
n (i

√
εµsR)

)

∗ amn(R, t)

]

Vm
n , (1.9)



286 Z. CHEN AND J.-C. NÉDÉLEC

with

amn(R, t) =

∫

ΓR

(x̂ × E) · Um
n dx̂, bmn(R, t) =

∫

ΓR

(x̂ × E) ·Vm
n dx̂.

The objective of this paper is to prove the well-posedness and stability of the system (1.1)-

(1.4) with the boundary condition (1.8). The proof depends on the abstract inversion theorem

of the Laplace transform and the a priori estimate for the time-harmonic Maxwell scattering

problem with complex wave number which seems to be new and is of independent interest.

In Lax and Phillips [8], the scattering problem of the wave equation is studied by using the

semigroup theory of operators in the absence of the source function. We remark that the well-

posedness of scattering problems in the frequency domain is well-known for real wave numbers

(cf., e.g., Colton and Kress [2], Nédélec [10], and Monk [9]).

2. The Time-Harmonic Maxwell Equation with Complex Wave

Numbers

In this section we consider the following time-harmonic Maxwell scattering problem with

complex wave numbers

∇×∇× E− k2E = Js in R
3\D̄, (2.1)

n × E = 0 on ΓD, (2.2)

|x| [(∇× E) × x̂ − ikE] → 0, as |x| → ∞. (2.3)

We assume the wave number k is complex such that Im (k) > 0. The applied current Js is

assumed to be support inside some ball BR.

We first recall the series solution of the scattering problem (2.1)-(2.3) outside the ball BR

by following the development in Monk [9]. Let Y m
n (x̂), m = −n, · · · , n, n = 1, 2, · · · , be the

spherical harmonics which satisfies

∆∂B1
Y m

n (x̂) + n(n + 1)Y m
n (x̂) = 0 on ∂B1, (2.4)

where

∆∂B1
=

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂φ2

is the Laplace-Beltrami operator for the surface of the unit sphere ∂B1. The set of all spherical

harmonics {Y m
n (x̂) : m = −n, · · · , n, n = 1, 2, · · · } forms a complete orthonormal basis of

L2(∂B1).

Denote the vector spherical harmonics

Um
n =

1
√

n(n + 1)
∇∂B1

Y m
n , Vm

n = x̂ × Um
n , (2.5)

where

∇∂B1
Y m

n =
∂Y m

n

∂θ
eθ +

1

sin θ

∂Y m
n

∂φ
eφ,

and {er, eθ, eφ} are the unit vectors of the spherical coordinates. The set of all vector spherical

harmonics {Um
n ,Vm

n : m = −n, · · · , n, n = 1, 2, · · · } forms a complete orthonormal basis of

L2
t (∂B1) = {u ∈ L2(∂B1)

3 : u · x̂ = 0 on ∂B1}.
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For any Φ ∈ H(curl, BR), x̂ × Φ|ΓR is in the trace space H−1/2(Div; ΓR), whose norm, for

any λ =
∑∞

n=1

∑n
m=−n anmUm

n + bnmVm
n , is defined by

‖λ ‖2
H−1/2(Div;ΓR) =

∞
∑

n=1

n
∑

m=−n

√

n(n + 1)|anm|2 +
1

√

n(n + 1)
|bnm|2. (2.6)

It is also known that for Φ ∈ H(curl; BR), the tangential component (x̂×Φ)× x̂|ΓR belongs to

H−1/2(Curl; ΓR) which is the dual space of H−1/2(Div; ΓR) with respect to the scalar product

in L2
t (ΓR) [10, Theorem 5.4.2, Lemma 5.3.1]. In the following we will always denote by 〈·, ·〉ΓR

the duality pairing between H−1/2(Div; ΓR) and H−1/2(Curl; ΓR).

Let h
(1)
n (z) be the spherical Hankel function of the first kind of order n. We introduce the

vector wave functions

Mm
n (r, x̂) = ∇× {xh(1)

n (kr)Y m
n (x̂)}, Nm

n (r, x̂) =
1

ik
∇× Mm

n (r, x̂),

which are the radiation solutions of the Maxwell equation (2.1) in R3\{0}.
Given the tangential vector λ =

∑∞
n=1

∑n
m=−n anmUm

n + bnmVm
n on ΓR, the solution E of

(2.1)-(2.3) in the domain R3\B̄R can be written as

E(r, x̂) =
∞
∑

n=1

n
∑

m=−n

anmMm
n (r, x̂)

h
(1)
n (kR)

√

n(n + 1)
+

ikRbnmNm
n (r, x̂)

z
(1)
n (kR)

√

n(n + 1)
. (2.7)

The series in (2.7) converges uniformly for r > R if λ ∈ L2
t (ΓR) = {u ∈ L2(ΓR)3 : u · x̂ =

0 on ΓR} (cf., e.g., [9, Theorem 9.17]).

The Calderon operator Ge : H−1/2(Div; ΓR) → H−1/2(Div; ΓR) is the Dirichlet to Neumann

operator defined by

Ge(λ) =
1

ik
x̂× (∇× E),

where E satisfies (2.1)-(2.3). Since

1

ik
∇× Mm

n = Nn
m, − 1

ik
∇× Nm

n = Mm
n ,

we have

1

ik
∇× E =

∞
∑

n=1

n
∑

m=−n

amnNm
n

h
(1)
n (kR)

√

n(n + 1)
− ikRbmnM

m
n

z
(1)
n (kR)

√

n(n + 1)
.

On the other hand, it is easy to check that the vector wave functions satisfy

Mm
n (r, x̂) = h(1)

n (kr)∇∂B1
Y m

n (x̂) × x̂,

Nm
n (r, x̂) =

√

n(n + 1)

ikr
z(1)

n (kr)Um
n (x̂) +

n(n + 1)

ikr
h(1)

n (kr)Y m
n (x̂)x̂.

Thus

x̂× Mm
n =

√

n(n + 1)h(1)
n (kr)Um

n (x̂), (2.8)

x̂× Nm
n =

√

n(n + 1)

ikr
z(1)

n (kr)Vm
n (x̂), (2.9)
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which implies

Ge(λ) =

∞
∑

n=1

n
∑

m=−n

−ikRbnmh
(1)
n (kR)

z
(1)
n (kR)

Um
n (x̂) +

anmz
(1)
n (kR)

ikRh
(1)
n (kR)

Vm
n (x̂). (2.10)

Let a : H(curl, ΩR) × H(curl, ΩR) → C be the sesquilinear form

a(E,Φ) =
1

ik

∫

ΩR

(∇× E · ∇ × Φ̄− k2E · Φ̄)dx + 〈Ge(x̂ × E), (x̂ × Φ) × x̂〉ΓR .

The scattering problem (2.1)-(2.3) is equivalent to the following weak formulation: Given Js ∈
L2(ΩR)3, find E ∈ HD(curl; ΩR) such that

a(E,Φ) =
1

ik
(Js,Φ), ∀Φ ∈ HD(curl; ΩR), (2.11)

where HD(curl; ΩR) = {v ∈ H(curl; ΩR) : n × v = 0 on ΓD}.
We need the following lemma on the modified Bessel function which is a direct consequence

of the Macdonald formula in Watson [14, P.439]. The proof of this lemma can be found in Chen

and Liu [1].

Lemma 2.1. For any ν ∈ R and z ∈ C such that Im (z) > 0, we have

|H(1)
ν (z)|2 =

2

π2

∫ ∞

0

e
− |z|2

2w + z2+z̄2

2|z|2
w
Kν(w)

dw

w
.

The following lemma can be proved by using Lemma 2.1, see [1, Lemma 2.2].

Lemma 2.2. For any ν ∈ R, z ∈ C such that Im (z) > 0, and Θ ∈ R such that 0 < Θ < |z|, we

have

|H(1)
ν (z)| ≤ e−Im (z)(1−Θ2/|z|2)1/2 |H(1)

ν (Θ)|.

The following two lemmas on the spherical Bessel functions for the complex wave number k

extend the corresponding results for the positive wave number in Nédélec [10, Theorem 2.6.1].

Lemma 2.3. Let R > 0, n ∈ Z, and k ∈ C such that Im (k) > 0, we have

Re

(

z
(1)
n (kR)

h
(1)
n (kR)

)

< 0.

Proof. First we note that

Re

(

z
(1)
n (kR)

h
(1)
n (kR)

)

= Re





|h(1)
n (kR)|2 + kRh

(1)′

n (kR)h
(1)
n (kR)

|h(1)
n (kR)|2



 .

For z ∈ C, since h
(1)
n (z) =

√

π
2z H

(1)
n+1/2(z), by Lemma 2.1 we have

|z||h(1)
n (z)|2 =

π

2
|H(1)

n+1/2(z)|2 =
1

π

∫ ∞

0

e
− |z|2

2w + z2+z̄2

|z|2
w
Kn+1/2(w)

dw

w
.

Thus, for any r > 0,

|kr||h(1)
n (kr)|2 =

1

π

∫ ∞

0

e
− |k|2r2

2w + k2+k̄2

2|k|2
w
Kn+1/2(w)

dw

w
.
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This implies r|h(1)
n (kr)|2 is a strictly decreasing function for r ∈ (0,∞). Consequently,

d

dr

[

r|h(1)
n (kr)|2

] ∣

∣

∣

r=R
= |h(1)

n (kR)|2 + Re
[

kRh(1)′

n (kR)h
(1)
n (kR)

]

< 0.

This completes the proof. �

Lemma 2.4. Let R > 0, n ∈ Z, k = k1 + ik2, k1, k2 ∈ R such that k2 > 0, we have

Im

(

k1
z
(1)
n (kR)

h
(1)
n (kR)

)

≥ 0.

Proof. By the definition of the vector wave function ∇ × Mm
n = ikNm

n and (2.8)-(2.9) we

have

〈∇ × Mm
n × x̂, x̂× Mm

n × x̂〉ΓR

= ik〈Nm
n × x̂, x̂ × Mm

n × x̂〉ΓR = n(n + 1)Rz(1)
n (kR)h

(1)
n (kR). (2.12)

Thus we only need to prove

Im (k1〈∇ × Mm
n × x̂, x̂ × Mm

n × x̂〉ΓR) ≥ 0.

Since Mm
n satisfies the Maxwell equation

∇×∇× Mm
n − k2Mm

n = 0 in R
3\{0}.

By multiplying the above equation by Mm
n and integrating over ΩR,ρ = Bρ\B̄R, we obtain

‖∇× Mm
n ‖2

L2(ΩR,ρ) − k2‖Mm
n ‖2

L2(ΩR,ρ) − 〈∇× Mm
n × n,n× Mm

n × n〉ΓR∪Γρ = 0.

Notice that Im (−k1k
2) = −2k2

1k2 ≤ 0, we have

−Im (k1〈∇ × Mm
n × n,n× Mm

n × n〉ΓR)

≥ Im
(

k1〈∇ × Mm
n × n,n× Mm

n × n〉Γρ

)

,

which implies, since n = −x̂ on ΓR and n = x̂ on Γρ,

Im (k1〈∇ × Mm
n × x̂, x̂ × Mm

n × x̂〉ΓR)

≥ Im
(

k1〈∇ × Mm
n × x̂, x̂× Mm

n × x̂〉Γρ

)

. (2.13)

By (2.12)

Im
(

k1〈∇ × Mm
n × x̂, x̂ × Mm

n × x̂〉Γρ

)

= n(n + 1)Im
(

k1kρ2h(1)′

n (kρ)h
(1)
n (kρ)

)

.

We are now going to show that

|kρ2h(1)′

n (kρ)h
(1)
n (kρ)| → 0, as ρ → ∞. (2.14)

Since h
(1)′

n (z) = −n+1
z h

(1)
n (z) − h

(1)
n−1(z), we have

|kρ2h(1)′

n (kρ)h
(1)
n (kρ)| ≤ (n + 1)ρ|h(1)

n (kρ)|2 + |kρ2||h(1)
n (kρ)||h(1)

n−1(kρ)|.
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On the other hand, for any Θ > 0 such that Θ < |kρ|, by Lemma 2.2

|h(1)
n (kρ)| =

√

π

2|kρ| |H
(1)
n+1/2(kρ)| ≤

√

π

2|kρ|e
−k2ρ

(

1− Θ2

|kρ|2

)1/2

|H(1)
n+1/2(Θ)|,

that is, |h(1)
n (kρ) decays exponentially as ρ→∞. This proves (2.14) and completes the proof. �

Lemma 2.5. For any Φ ∈ H(curl; ΩR), we have

Re 〈Ge(x̂ × Φ), x̂ × Φ× x̂〉ΓR ≤ 0.

Proof. Let x̂ × Φ|ΓR =
∑∞

n=1

∑n
m=−n amnUm

n (x̂) + bmnV
m
n (x̂). Then

x̂× Φ × x̂|ΓR =

∞
∑

n=1

n
∑

m=−n

−amnV
m
n (x̂) + bmnUm

n (x̂).

Thus, by (2.10),

〈Ge(x̂ × Φ), x̂ × Φ× x̂〉ΓR

= −
∞
∑

n=1

n
∑

m=−n

z
(1)
n (kR)

ikRh
(1)
n (kR)

|amn|2 +
ikRh

(1)
n (kR)

z
(1)
n (kR)

|bmn|2.

Denote by z
(1)
n (kR)/h

(1)
n (kR) = an(kR) + ibn(kR), where an(kR), bn(kR) are the real and

imaginary part of z
(1)
n (kR)/h

(1)
n (kR). By Lemmas 2.3 and 2.4 we know that an(kR) < 0 and

k1bn(kR) ≥ 0. Hence

Re

(

z
(1)
n (kR)

ikRh(1)(kR)

)

= Re

(−ik̄(an(kR) + ibn(kR))

|k|2R

)

=
−k2an(kR) + k1bn(kR)

|k|2R > 0.

Since Re (z−1) = |z|−2Re (z), we then have

Re

(

ikRh(1)(kR)

z
(1)
n (kR)

)

> 0.

This completes the proof. �

The following theorem is the main result of this section.

Theorem 2.1. The variational problem (2.11) has a unique weak solution E ∈ HD(curl; ΩR)

which satisfies

‖∇× E ‖L2(ΩR) + ‖ kE ‖L2(ΩR) ≤ Ck−1
2 ‖Js ‖L2(ΩR). (2.15)

Proof. Since Re (1/ik) = −k2/|k|2, Re (ik) = −k2, by Lemma 2.5 we know that, for any

Φ ∈ H(curl; ΩR),

|a(Φ,Φ)| ≥ Re (−a(Φ,Φ)) ≥ k2

|k|2
(

‖∇× Φ ‖2
L2(ΩR) + ‖ kΦ ‖2

L2(ΩR)

)

. (2.16)
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By the Lax-Milgram lemma we know that the problem (2.11) has a unique solution. To show

the stability estimate (2.15), we know from (2.11) that

|a(E,E)| ≤ |k|−2‖Js ‖L2(ΩR)‖ kE ‖L2(ΩR).

Therefore, by (2.16),

‖∇× E ‖L2(ΩR) + ‖ kE ‖L2(ΩR) ≤ Ck−1
2 ‖Js ‖L2(ΩR).

This completes the proof. �

3. The Maxwell Scattering Problem

We first give the assumptions required on the boundary and initial data:

(H1) E0,H0,∇× E0,∇× H0 ∈ H(curl; ΩR) and supp(E0), supp(H0) ⊂ BR;

(H2) J ∈ H1(0, T ; L2(ΩR))3, J|t=0 = 0, and supp(J) ⊂ BR × (0, T ).

In the rest of this paper, we will always assume that J is extended so that

J ∈ H1(0, +∞; L2(ΩR))3, ‖J‖H1(0,+∞;L2(ΩR)) ≤ C‖J‖H1(0,T ;L2(ΩR)).

The following lemma can be proved by the standard energy argument.

Lemma 3.1. Let Ê, Ĥ be the solution of the following problem

ε
∂Ê

∂t
−∇× Ĥ = 0 in ΩR × (0, T ),

µ
∂Ĥ

∂t
+ ∇× Ê = 0 in ΩR × (0, T ),

n × Ê = 0 on ΓD ∪ ΓR,

Ê|t=0 = E0, Ĥ|t=0 = H0.

Then

‖ Ê ‖L2(ΩR) + ‖ Ĥ ‖L2(ΩR) ≤ C‖E0 ‖L2(ΩR) + C‖H0 ‖L2(ΩR),

‖ ∂tÊ ‖L2(ΩR) + ‖ ∂tĤ ‖L2(ΩR) ≤ C‖∇ × E0 ‖L2(ΩR) + C‖∇× H0 ‖L2(ΩR),

‖ ∂2
t Ê ‖L2(ΩR) + ‖ ∂2

t Ĥ ‖L2(ΩR) ≤ C‖∇×∇× E0 ‖L2(ΩR) + C‖∇ ×∇× H0 ‖L2(ΩR).

Let E′ = E− Ê,H′ = H− Ĥ. Then by (1.1)-(1.2) we know that

ε
∂E′

∂t
−∇× H′ = J in [R3\D̄] × (0, T ), (3.1)

µ
∂H′

∂t
+ ∇× E′ = 0 in [R3\D̄] × (0, T ). (3.2)

The boundary condition (1.3) becomes

n × E′ = 0 on ΓD × (0, T ). (3.3)
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By (1.8) we have
√

µ

ε
x̂× H′ = (L −1 ◦ Ge ◦ L )(x̂ × E′|ΓR) −

√

µ

ε
x̂× Ĥ on ΓR. (3.4)

It is obvious that

E′|t=0 = 0, H′|t=0 = 0. (3.5)

Let E′
L

= L (E′),H′
L

= L (H′). Then by taking the Laplace transform of (3.1)-(3.4) we obtain

∇×∇× E′
L
− k2E′

L
= −

√

µ

ε
ikJ

L
in ΩR, (3.6)

n× E′
L

= 0 on ΓD, (3.7)

1

ik
x̂ × (∇× E′

L
) = Ge(x̂ × E′

L
) −

√

µ

ε
x̂ × Ĥ

L
on ΓR. (3.8)

By Theorem 2.1 we know that the problem (3.6)-(3.8) has a unique solution. Our strategy to

show the well-posedness of (3.1)-(3.5) and thus (1.1)-(1.4), (1.8) is to show the inverse Laplace

transform of the solution E′
L

of (3.6)-(3.8) is existent.

We first recall the following theorem in Treves [12, Theorem 43.1] which is the analog of

the Paley-Wiener-Schwarz theorem for the Fourier transform of the distributions with compact

support in the case of Laplace transform .

Lemma 3.2. Let h(s) denote a holomorphic function in the half-plane Re (s) > σ0, valued in

the Banach space E. The following conditions are equivalent:

(i) there is a distribution T ∈ D′
+(E) whose Laplace transform is equal to h(s);

(ii) there is a σ1 real, σ0 ≤ σ1 < ∞, a constant C > 0, and an integer k ≥ 0 such that, for all

complex numbers s, Re (s) > σ1,

‖h(s) ‖E ≤ C(1 + |s|)k.

Here D′
+ is the space of distributions on the real line which vanish identically in the open

negative half-line.

Lemma 3.3. There exists a constant C independent of s such that

‖∇× E′
L
‖L2(ΩR) + ‖ kE′

L
‖L2(ΩR)

≤ C

k2

(

‖ kJ
L
‖L2(ΩR) + ‖ kx̂× Ĥ

L
‖H−1/2(Div;ΓR) + ‖ |k|2x̂ × Ĥ

L
‖H−1/2(Div;ΓR)

)

.

Proof. By testing (3.6) with Ē′
L
∈ HD(curl; ΩR) we know that

a(E′
L
,E′

L
) = −

√

µ

ε
(J

L
,E′

L
) +

√

µ

ε
〈x̂ × Ĥ

L
, x̂× E′

L
× x̂〉ΓR .

By (2.16)

k2

|k|2
(

‖∇× E′
L
‖2

L2(ΩR) + ‖ kE′
L
‖2

L2(ΩR)

)

≤ C‖ k̄−1J
L
‖L2(ΩR)‖ kE′

L
‖L2(ΩR) + C‖ x̂ × Ĥ

L
‖H−1/2(Div;ΓR)‖E′

L
‖H(curl;ΩR)

≤ C‖ k̄−1J
L
‖L2(ΩR)‖ kE′

L
‖L2(ΩR) + C‖ x̂ × Ĥ

L
‖H−1/2(Div;ΓR)‖∇× E′

L
‖L2(ΩR)

+C‖ k̄−1x̂ × Ĥ
L
‖H−1/2(Div;ΓR)‖ kE′

L
‖L2(ΩR).
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This completes the proof. �

Theorem 3.1. Let the assumptions (H1)-(H2) be satisfied. Then the problem (1.1)-(1.4), (1.8)

has a unique solution (E,H) such that

E ∈ L2(0, T ; HD(curl; ΩR)) ∩ H1(0, T ; L2(ΩR)3),

H ∈ L2(0, T ; H(curl, ΩR)) ∩ H1(0, T ; L2(ΩR)3),

E|t=0 = E0, H|t=0 = H0, and

∫ T

0

[

ε
(∂E

∂t
,Φ
)

− (H,∇× Φ) −
√

ε

µ
〈(L −1 ◦ Ge ◦ L )(x̂ × E),Φ〉ΓR

]

dt

=

∫ T

0

(J,Φ)dt, ∀Φ ∈ L2(0, T ; HD(curl; ΩR)), (3.9)

∫ T

0

[

µ
(∂H

∂t
,Ψ
)

+ (∇× E,Ψ)

]

dt = 0, ∀Ψ ∈ L2(0, T ; L2(ΩR)3). (3.10)

Here (L −1◦G◦L )(x̂×E) ∈ L2(0, T ; H−1/2(Div; ΓR)). Moreover, (E,H) satisfies the following

stability estimate

max
0≤t≤T

(

‖ ∂tE ‖L2(ΩR) + ‖∇× E ‖L2(ΩR) + ‖ ∂tH ‖L2(ΩR) + ‖∇× H ‖L2(ΩR)

)

≤ C‖(E0,H0)‖ΩR + C‖∂tJ‖L1(0,T ;L2(ΩR)), (3.11)

where

‖(E0,H0)‖ΩR = ‖E0 ‖H(curl;ΩR) + ‖H0 ‖H(curl;ΩR).

Proof. Our starting point is the solution E′
L
,H′

L
of the following scattering problem

εsE′
L
−∇× H′

L
= J

L
in R

3\D̄, (3.12)

µsH′
L

+ ∇× E′
L

= 0 in R
3\D̄, (3.13)

n × E′
L

= 0 on ΓD, (3.14)
√

µ

ε
x̂ × H′

L
= Ge(x̂ × E′

L
) −

√

µ

ε
x̂× Ĥ

L
on ΓR. (3.15)

Since k = i
√

εµs, by Lemma 3.3, there exists a constant C independent of s such that

‖∇× E′
L
‖L2(ΩR) + ‖ sE′

L
‖L2(ΩR)

≤ C

s1

(

‖ sJ
L
‖L2(ΩR) + ‖ sx̂× Ĥ

L
‖H−1/2(Div;ΓR) + ‖ |s|2x̂ × Ĥ

L
‖H−1/2(Div;ΓR)

)

. (3.16)

By (3.12)-(3.13),

‖∇× H′
L
‖L2(ΩR) + ‖ sH′

L
‖L2(ΩR)

≤ C

s1

(

‖J
L
‖L2(ΩR) + ‖ sJ

L
‖L2(ΩR)

)

+
C

s1

(

‖ sx̂× Ĥ
L
‖H−1/2(Div;ΓR) + ‖ |s|2x̂ × Ĥ

L
‖H−1/2(Div;ΓR)

)

. (3.17)

By [12, Lemma 44.1], E′
L
,H′

L
are holomorphic functions of s on the half plane Re (s) > γ > 0,

where γ is any positive constant. By Lemma 3.2 the inverse Laplace transform of E′
L
,H′

L
are
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existent and supported in [0,∞]. Denote by E′ = L −1(E′
L
), H′ = L −1(H′

L
). Then, since

E′
L

= L (E′) = F (e−s1tE′), where F is the Fourier transform in s2, by the Parseval identity

and (3.16), we have

∫ ∞

0

e−2s1t
(

‖∇× E′ ‖2
L2(ΩR) + ‖ ∂tE

′ ‖2
L2(ΩR)

)

dt

= 2π

∫ ∞

−∞

(

‖∇× E′
L
‖2

L2(ΩR) + ‖ sE′
L
‖2

L2(ΩR)

)

ds2

≤ C

s2
1

∫ ∞

−∞

‖ sJ
L
‖2

L2(ΩR)ds2

+
C

s2
1

∫ ∞

−∞

(

‖ sx̂× Ĥ
L
‖2

H−1/2(Div;ΓR) + ‖ |s|2x̂ × Ĥ
L
‖2

H−1/2(Div;ΓR)

)

ds2.

Since J|t=0 = 0 in ΩR, x̂ × Ĥ|t=0 = ∂t(x̂ × Ĥ)|t=0 = 0 on ΓR, we have L (∂tJ) = sJ
L

in ΩR

and L (∂t(x̂ × H)) = sx̂× H
L

on ΓR. Moreover, notice that

|s|2x̂ × Ĥ
L

= (2s1 − s)sx̂ × Ĥ
L

= 2s1L (∂t(x̂ × Ĥ)) − L (∂2
t (x̂ × Ĥ)) on ΓR,

we have
∫ ∞

0

e−2s1t
(

‖∇× E′ ‖2
L2(ΩR) + ‖ ∂tE

′ ‖2
L2(ΩR)

)

dt

≤ C

s2
1

∫ ∞

−∞

(

‖L (∂tJ) ‖2
L2(ΩR) + ‖L (x̂ × ∂2

t Ĥ) ‖2
H−1/2(Div;ΓR)

)

ds2

+C

(

1 +
1

s2
1

)∫ ∞

−∞

‖L (x̂ × ∂tĤ) ‖2
H−1/2(Div;ΓR)ds2.

Again by the Parseval identity

∫ ∞

0

e−2s1t
(

‖∇× E′ ‖2
L2(ΩR) + ‖ ∂tE

′ ‖2
L2(ΩR)

)

dt

≤ C

s2
1

∫ ∞

0

e−2s1t
(

‖ ∂tJ ‖2
L2(ΩR) + ‖ x̂× ∂2

t Ĥ ‖2
H−1/2(Div;ΓR)

)

dt

+C

(

1 +
1

s2
1

)∫ ∞

0

e−2s1t‖ x̂× ∂tĤ ‖2
H−1/2(Div;ΓR)dt.

This proves E′ ∈ L2(0, T ; H(curl; ΩR)) ∩ H1(0, T ; L2(ΩR)3). Similarly, by (3.17), we have

H′ ∈ L2(0, T ; H(curl; ΩR)) ∩ H1(0, T ; L2(ΩR)3). Moreover, by (3.15), we deduce that (L −1 ◦
Ge ◦L )(x̂×E′) ∈ L2(0, T ; H−1/2(Div; ΓR)). By taking the inverse Laplace transform in (3.12)-

(3.13) and using the definition of E′ = E − Ê, H′ = H − Ĥ, one can easily show that (E,H)

satisfies (3.9)-(3.10).

It remains to prove the stability estimate (3.11). By (1.9) we know that

〈(L −1 ◦ Ge ◦ L )(x × E), x̂× E × x̂〉ΓR

= R2
∞
∑

n=1

n
∑

m=−n

[

L
−1

(√
εµsRh

(1)
n (i

√
εµsR)

z
(1)
n (i

√
εµsR)

)

∗ bmn(R, t)

]

b̄mn(R, t)

−
[

L
−1

(

z
(1)
n (i

√
εµsR)

√
εµsRh

(1)
n (i

√
εµsR)

)

∗ amn(R, t)

]

āmn(R, t).
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Denote ãmn = amnχ[0,T ], b̃mn = bmnχ[0,T ], where χ[0,T ] is the characteristic function of the

interval (0, T ). Therefore

∫ T

0

e−2s1t〈(L −1 ◦ Ge ◦ L )(x × E), x̂ × E× x̂〉ΓRdt

= R2
∞
∑

n=1

n
∑

m=−n

∫ ∞

−∞

e−2s1t

[

L
−1

(√
εµsRh

(1)
n (i

√
εµsR)

z
(1)
n (i

√
εµsR)

)

∗ b̃mn

]

¯̃
bmn

+

∫ ∞

−∞

e−2s1t

[

L
−1

(

z
(1)
n (i

√
εµsR)

√
εµsRh

(1)
n (i

√
εµsR)

)

∗ ãmn

]

¯̃amn.

Note that by the formula for the inverse Laplace transform we have

g(t) = F
−1(es1t

L (g)(s1 + is2)),

where F−1 denotes the inverse Fourier transform with respect to s2. By the Plancherel identity

we then obtain
∫ T

0

e−2s1t〈(L −1 ◦ Ge ◦ L )(x × E), x̂× E× x̂〉ΓRdt

= 2πR2
∞
∑

n=1

n
∑

m=−n

∫ ∞

−∞

(√
εµsRh

(1)
n (i

√
εµsR)

z
(1)
n (i

√
εµsR)

)

|L (b̃mn)|2

+

∫ ∞

−∞

(

z
(1)
n (i

√
εµsR)

√
εµsRh

(1)
n (i

√
εµsR)

)

|L (ãmn)|2.

Since k = i
√

εµs satisfies Im (k) > 0, by using Lemmas 2.3 and 2.4 we obtain

−Re

∫ T

0

e−2s1t〈(L −1 ◦ Ge ◦ L )(x × E), x̂ × E× x̂〉ΓRdt ≥ 0.

For any 0 < t∗ < T , by taking Φ = e−2s1tEχ(0,t∗) in (3.9), Ψ = e−2s1tHχ(0,t∗) in (3.10), and

adding the two equations, we obtain

1

2

∫ t∗

0

e−2s1t d

dt

(

ε‖E ‖2
L2(ΩR) + µ‖H ‖2

L2(ΩR)

)

dt ≤
∫ t∗

0

e−2s1t(J,E)dt.

By standard argument we can deduce

max
0≤t≤T

[

e−2s1t
(

ε‖E ‖2
L2(ΩR) + µ‖H ‖2

L2(ΩR)

)]

≤ C
(

ε‖E0 ‖2
L2(ΩR) + µ‖H0 ‖2

L2(ΩR)

)

+ C‖ e−s1tJ ‖L1(0,T ;L2(ΩR)).

By letting s1 → 0, we obtain

max
0≤t≤T

(

ε‖E ‖2
L2(ΩR) + µ‖H ‖2

L2(ΩR)

)

(3.18)

≤ C
(

ε‖E0 ‖2
L2(ΩR) + µ‖H0 ‖2

L2(ΩR)

)

+ C‖J ‖L1(0,T ;L2(ΩR)).

Since E0,H0 has a compact support inside BR, amn(R, 0) = bmn(R, 0) = 0 on ΓR. By differ-

entiating (1.8) in time we know that
√

µ

ε
x̂ × ∂tH = (L −1 ◦ Ge ◦ L )(x̂ × ∂tE|ΓR) on ΓR.
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Now by differentiating (1.1)-(1.2) in time, we know that ∂tE, ∂tH satisfy the same set of equa-

tions with the source ∂tJ and the initial condition ∂tE|t=0 = ε−1∇×E0, ∂tH|t=0 = −µ−1∇×E0.

Thus we can use (3.18) for ∂tE, ∂tH to conclude the proof. �
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[10] J.C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic

Problems, Springer, 2001.

[11] S.V. Tsynkov, Numerical solutions of problems on unbounded domain, Appl. Numer. Math., 27

(1998), 465-532.

[12] F. Treves, Basic Linear Partial Differential Equations, Academic press, San Diego, 1975.

[13] E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations, Appl. Numer.

Math., 27 (1998), 533-557.

[14] G.N. Watson, A Treatise on The Theory of Bessel Functions, Cambridge, 1922.


