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Abstract

This paper extends the two-grid discretization scheme of the conforming finite elements

proposed by Xu and Zhou (Math. Comput., 70 (2001), pp.17-25) to the nonconforming

finite elements for eigenvalue problems. In particular, two two-grid discretization schemes

based on Rayleigh quotient technique are proposed. By using these new schemes, the

solution of an eigenvalue problem on a fine mesh is reduced to that on a much coarser

mesh together with the solution of a linear algebraic system on the fine mesh. The resulting

solution still maintains an asymptotically optimal accuracy. Comparing with the two-grid

discretization scheme of the conforming finite elements, the main advantages of our new

schemes are twofold when the mesh size is small enough. First, the lower bounds of the

exact eigenvalues in our two-grid discretization schemes can be obtained. Second, the first

eigenvalue given by the new schemes has much better accuracy than that obtained by

solving the eigenvalue problems on the fine mesh directly.
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1. Introduction

Xu [10–12] first proposed two-grid discretization methods for nonsymmetric and nonlinear
elliptic problems. Later, Xu and Zhou [13] proposed a two-grid discretization scheme of con-
forming finite elements for eigenvalue problems. In [14], Xu and Zhou proposed some local
and parallel finite element algorithms based on [13]. Yang [15] extended the method in [13] to
the Wilson nonconforming element and demonstrated by numerical experiments that the first
eigenvalue given by the two-grid discretization scheme approximates the exact eigenvalue from
below and has much better accuracy than that obtained by solving the eigenvalue problem on
a fine mesh directly.

In this paper we will discuss two-grid discretization schemes of the nonconforming finite
elements for any n-dimensional eigenvalue problems. We propose a new two-grid discretization
scheme (see Scheme 1) and extend the scheme in [13, 15] (see Scheme 2). Using these two new
schemes, the solution of an eigenvalue problem on a fine mesh is reduced to the solution of
an eigenvalue problem on a much coarser mesh and the solution of a linear algebraic system
on the fine mesh and the resulting solution still maintains an asymptotically optimal accuracy.
Comparing with the two-grid discretization scheme of the conforming finite elements (see [13]),
the main advantages of our new schemes are twofold when the mesh size is small enough. First,
the lower bounds of the exact eigenvalues in our two two-grid discretization schemes can be
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obtained. Second, the first eigenvalue given by these new schemes has much better accuracy
than that obtained by solving the eigenvalue problems on fine mesh directly.

Finding the lower bounds of eigenvalues by using the nonconforming elements has attracted
many attentions in the past. In 1967, Zienkiewicz etc. [19] discovered that the nonconforming
Morley element approximates eigenvalues from below. As for the vibration plate problems, Ran-
nacher [6] provided numerical results in 1979, which indicated that the nonconforming Morley
and Adini element can be used to obtain lower bounds of eigenvalues. Yang [16] proved that on
a rectangular domain, the Adini element approximates the exact eigenvalues from below. For
Laplace operator eigenvalue problems, Armentano and Duran [1] proved that piecewise linear
nonconforming Crouzeix-Raviart element approximates the exact eigenvalues from below, Lin
and Lin [5] proved that the nonconforming EQrot

1 element approximates the exact eigenvalues
from below, and Zhang et al. [18] proved that the nonconforming Wilson element approximates
the exact eigenvalues from below. In this paper, we will show that the proposed two-grid
discretization schemes maintain the above properties of approximation from below.

By the minimum-maximum principle we can conclude that the first eigenvalue given by the
two-grid discretization scheme in [13] has much lower accuracy than that obtained by solving the
eigenvalue problems on the fine mesh directly for conforming finite elements. However, to our
surprise, it is exactly opposite for two-grid discretization scheme of most nonconforming finite
elements. In particular, the two-grid discretization schemes of nonconforming finite elements
are very efficient for eigenvalue problems.

The rest of the paper is organized as follows. In Section 2, we shall describe some notation
and properties of the nonconforming finite element approximation for eigenvalue problems. In
Section 3, we propose two two-grid discretization schemes of the nonconforming finite elements
for eigenvalue problems and discuss approximation properties of the schemes. In Section 4, we
apply the results in Section 3 to several representative nonconforming finite elements such as
Wilson, Crouzeix-Raviart and Adini nonconforming elements.

2. Preliminaries

Let Ω be a bounded open connected subset of Rn with a Lipschitz-continuous boundary.
Let V be a mth-order Sobolev space over Ω with inner product (·, ·)V and norm ‖ · ‖V (m=1,
2), and let W be a sth-order Sobolev space over Ω with inner product (·, ·)W and norm ‖ · ‖W

(0 ≤ s < m), V ⊂ W with a compact imbedding.
Suppose that a(·, ·) and b(·, ·) are symmetric and continuous bilinear forms on V × V and

W ×W , respectively, which satisfy

| a(u, v) |≤ M1‖u‖V ‖v‖V , ∀u, v ∈ V,

a(u, u) ≥ α1‖u‖2V , ∀u ∈ V,

| b(u, v) |≤ M2‖u‖W ‖v‖W , ∀u, v ∈ W,

b(u, u) ≥ α2‖u‖2W , ∀u ∈ W.

Define ‖ · ‖b = b(·, ·) 1
2 . Noting that ‖ · ‖b and ‖ · ‖W are two equivalent norms on W , we shall

use b(·, ·) and ‖ · ‖b as the inner product and norm on W , respectively.
Consider the 2mth-order elliptic differential operator eigenvalue problems: Find (λ, u) ∈

R× V, ‖u‖b = 1 satisfying

a(u, v) = λb(u, v), ∀v ∈ V. (2.1)
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Let πh be a mesh of Ω with the mesh size h, and Vh be a nonconforming finite element space
on πh, Vh ⊂ W and Vh 6⊂ V . The nonconforming finite element discretization of (2.1) is given
by: Find (λh, uh) ∈ R× Vh, ‖uh‖b = 1 satisfying

ah(uh, v) = λhb(uh, v), ∀v ∈ Vh, (2.2)

where ah(·, ·) is an approximation to a(·, ·).
Define ‖ · ‖h = ah(·, ·) 1

2 . Assume that ah(·, ·) is uniformly Vh-elliptic, symmetric and con-
tinuous, and ‖ · ‖h is a norm on V + Vh. Define T : W → V such that

a(Tf, v) = b(f, v), ∀f ∈ W,∀v ∈ V.

Moreover, define Th : W → Vh such that

ah(Thf, v) = b(f, v), ∀f ∈ W,∀v ∈ Vh.

It is clear that (2.1) and (2.2) are equivalent to

λTu = u (2.3)

and

λhThuh = uh, (2.4)

respectively.
Using the facts that the bilinear forms a(·, ·), ah(·, ·) and b(·, ·) are symmetric, continuous and

V ⊂ W with a compact imbedding, one can prove that T is self-adjoint completely continuous
operator and Th are self-adjoint operators of finite rank (see [2]). In fact,

b(Tf, g) = b(g, Tf) = a(Tg, Tf) = a(Tf, Tg) = b(f, Tg), ∀f, g ∈ W,

and

b(Thf, g) = b(g, Thf) = ah(Thg, Thf) = ah(Thf, Thg) = b(f, Thg), ∀f, g ∈ W.

It is also known that the spectrum of (2.1) consists of an infinite sequence of isolated real
eigenvalues with finite algebraic multiplicity,

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ↗ +∞.

In the sequence {λk}, the λk are repeated according to algebraic multiplicity, and the corre-
sponding eigenspaces are denoted by M(λk) with M(λk) = M(λl) in case λk = λl. Moreover,
the spectrum of (2.2) consists exactly of Nh = dimVh real eigenvalues,

0 < λ1,h ≤ λ2,h ≤ λ3,h ≤ · · · ≤ λNh,h.

We make the following assumptions.
C1: {Th} is a family of operators satisfying

‖Th − T‖b → 0 (h ↘ 0).

C2: For the nonconforming finite element approximation of the source problem correspond-
ing to (2.1) with the right hand side b(f, v), there exist three positive constants C, q1 and
q2 (q1 ≤ q2) independent of h and f ∈ W , such that the following error estimates hold:

‖Tf − Thf‖h ≤ Chq1‖f‖b, ‖Tf − Thf‖b ≤ Chq2‖f‖b.
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The above conditions are satisfied for most of the nonconforming finite elements in practice.
Assume the algebraic multiplicity of λk is equal to q, i.e.,

λk = λk+1 = · · · = λk+q−1.

Let Mh(λk) be the direct sum of the eigenspaces of (2.2) corresponding to eigenvalues λj,h

that converge to λk. Let the eigenfunctions {uj,h} be an orthonormal basis for Mh(λk) with
‖uj,h‖b = 1. Write

λ̄k,h =
1
q

k+q−1∑

j=k

λj,h, ūk,h =
k+q−1∑

j=k

b(uk, uj,h)uj,h (2.5)

and

‖(T − Th) |M(λk) ‖ = max
u∈M(λk),‖u‖b=1

‖Tu− Thu‖b. (2.6)

Throughout this paper, we shall use the letter C to denote a generic positive constant indepen-
dent of mesh size h, which may stand for different values at its different occurrences.

Lemma 2.1. ([17]) Suppose C1 is satisfied. Let (λk,h, uk,h) be a nonconforming elemet
eigenpair of (2.2) with ‖uk,h‖b = 1. Then λk,h → λk (h ↘ 0) and there is a function uk ∈ M(λk)
with ‖uk‖b = 1 such that

| λk,h − λk |≤ C‖(T − Th)|M(λk)‖, (2.7)

‖uk,h − uk‖b ≤ C‖(T − Th)|M(λk)‖, (2.8)

‖uk,h − uk‖h ≤ λk‖Tuk − Thuk‖h + C‖(T − Th)|M(λk)‖. (2.9)

Lemma 2.2. Suppose C1 is satisfied. Let (λk, uk) be an eigenpair of (2.1) with ‖uk‖b = 1.
Then

‖ūk,h − uk‖b ≤ C‖(T − Th) |M(λk) ‖,

‖ūk,h − uk‖h ≤ C

(
‖(T − Th) |M(λk) ‖+ ‖Tuk − Thuk‖h

)
.

Proof. Note that ūk,h is the orthogonal projection of uk onto Mh(λk). We can obtain

‖ūk,h − uk‖b ≤ ‖uk,h − uk‖b,

‖ūk,h − uk‖h ≤ ‖ūk,h − uk,h‖h + ‖uk,h − uk‖h

=

∥∥∥∥∥∥

k+q−1∑

j=k

b(uk − uk,h, uj,h)uj,h

∥∥∥∥∥∥
h

+ ‖uk,h − uk‖h.

Combining (2.8) with (2.9), Lemma 2.2 is proved. ¤

3. Two Two-Grid Discretization Schemes

It is well-known that the Rayleigh quotient has higher accuracy. In fact, if

‖uk‖b = ‖uk,H‖b = 1,
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then
∣∣∣∣
b(Tuk,H , uk,H)
b(uk,H , uk,H)

− 1
λk

∣∣∣∣

=
∣∣∣∣b(Tuk,H , uk,H)− 1

λk

∣∣∣∣ = |b(Tuk,H , uk,H)− b(Tuk, uk)|

=
∣∣∣∣b(Tuk,H − Tuk, uk,H − uk)− 1

λk
‖uk,H − uk‖2b

∣∣∣∣
≤C‖uk,H − uk‖2b . (3.1)

The problem is how to solve Tuk,H . It is a natural method to take Tuk,H ≈ Thuk,H , which
gives the following two-grid discretization scheme.

Scheme 1:

Step 1. Solve an eigenvalue problem (2.2) on coarse mesh πH : Find (λk,H , uk,H) ∈ R×VH

such that ‖uk,H‖b = 1 and

aH(uk,H , v) = λk,Hb(uk,H , v), ∀v ∈ VH ,

where k ∈ {1, 2, · · · , NH = dimVH}.
Step 2. Solve a boundary value problem corresponding to (2.1) on fine mesh πh: Find
u∗k,h ∈ Vh, such that

ah(u∗k,h, v) = λk,Hb(uk,H , v), ∀v ∈ Vh. (3.2)

Step 3. Compute the Rayleigh quotient

λk,r = 1/b(Thuk,H , uk,H) ≡ λ2
k,H/ah(u∗k,h, u∗k,h). (3.3)

Note that we have u∗k,h = λk,HThuk,H by the definition of Th and (3.2). We then use
(λk,r, u

∗
k,h) as an approximation of (λk, uk).

The following scheme further develops the two-grid discretization scheme established by Xu
and Zhou [13].

Scheme 2:

Step 1. Solve an eigenvalue problem (2.2) on coarse mesh πH : Find (λk,H , uk,H) ∈ R×VH

such that ‖uk,H‖b = 1 and

aH(uk,H , v) = λk,Hb(uk,H , v), ∀v ∈ VH ,

where k ∈ {1, 2, · · · , NH = dimVH}.
Step 2. Solve a boundary value problem corresponding to (2.1) on fine mesh πh: Find
u∗k,h ∈ Vh, such that

ah(u∗k,h, v) = λk,Hb(uk,H , v), ∀v ∈ Vh.
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Step 3. Compute the Rayleigh quotient

λk,s = ah(u∗k,h, u∗k,h)/b(u∗k,h, u∗k,h). (3.4)

We then use (λk,s, u
∗
k,h) as an approximation of (λk, uk).

Theorem 3.1. Suppose C1 is satisfied. Let (λk,r, u∗k,h) and (λk,s, u
∗
k,h) be obtained by Scheme

1 and Scheme 2, respectively. Then there exists a function uk ∈ M(λk) with ‖uk‖b = 1 such
that

‖u∗k,h − uk‖h ≤C

(
‖Tuk − Thuk‖h + ‖(T − TH)|M(λk)‖

)
, (3.5)

| λk,s − λk |≤C‖(T − Th) |M(λk) ‖

+ C

(
‖Tuk − Thuk‖h + ‖(T − TH)|M(λk)‖

)2

, (3.6)

| λk,r − λk |≤C

(
‖Tuk − Thuk‖b + ‖(T − TH)|M(λk)‖2

)
. (3.7)

Proof. Let λ̄k,h and ūk,h be of the form (2.5). By Lemma 2.1 we can obtain for all j =
k, · · · , k + q − 1,

| λ̄k,h − λk | + | λj,h − λ̄k,h |≤ C‖(T − Th) |M(λk) ‖. (3.8)

By u∗k,h = λk,HThuk,H we see that

u∗k,h − uk = λk,HThuk,H − λkTuk

=λk,H(Thuk,H − Thuk) + λk,H(Thuk − Tuk) + (λk,H − λk)Tuk. (3.9)

From C1 we conclude that the {Th} is uniformly bounded. Thus

‖Th(uk,H − uk)‖b ≤ C‖uk,H − uk‖b.

By the definition of Th, Schwarz,s inequality and (2.8) we have

ah(Th(uk,H − uk), Th(uk,H − uk))

=b(uk,H − uk, Th(uk,H − uk)) ≤ ‖uk,H − uk‖b‖Th(uk,H − uk)‖b

≤C‖uk,H − uk‖2b ≤ C‖(T − TH)|M(λk)‖2,
and hence

‖Th(uk,H − uk)‖h ≤ C‖(T − TH)|M(λk)‖. (3.10)

Using (3.9), (3.10) and (2.7) we get (3.5). From (3.9), (2.7) and (2.8) we get

‖uk − u∗k,h‖b ≤ C

(
‖Tuk − Thuk‖b + ‖(T − TH)|M(λk)‖

)
. (3.11)

From (3.5) and Lemma 2.1 we get

‖u∗k,h − ūk,h‖h ≤ ‖u∗k,h − uk ‖h + ‖ uk − ūk,h‖h

≤C

(
‖Tuk − Thuk‖h + ‖(T − TH) |M(λk) ‖+ ‖(T − Th) |M(λk) ‖

)
, (3.12)
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and combining (3.11) with Lemma 2.2 we get

‖u∗k,h − ūk,h‖b ≤ C

( ∥∥(T − Th) |M(λk) ‖+ ‖(T − TH) |M(λk)

∥∥
)

. (3.13)

As ūk,h is of the form in (2.5), we conclude

ah(u∗k,h, ūk,h) = ah


u∗k,h,

k+q−1∑

j=k

b(uk, uj,h)uj,h




=
k+q−1∑

j=k

b(uk, uj,h)ah(u∗k,h, uj,h) =
k+q−1∑

j=k

b(uk, uj,h)λj,hb(u∗k,h, uj,h)

=
k+q−1∑

j=k

b(uk, uj,h)(λj,h − λ̄k,h + λ̄k,h)b(u∗k,h, uj,h)

=λ̄k,hb(u∗k,h, ūk,h) + r1,

where

r1 =
k+q−1∑

j=k

b(uk, uj,h)(λj,h − λ̄k,h)b(u∗k,h, uj,h).

Using a similar way we can obtain

ah(ūk,h, ūk,h) = λ̄k,hb(ūk,h, ūk,h) + r2,

where

r2 =
k+q−1∑

j=k

b(uk, uj,h)(λj,h − λ̄k,h)b(ūk,h, uj,h).

By the above two relations it follows that

‖u∗k,h − ūk,h‖2h − λ̄k,h‖u∗k,h − ūk,h‖2b
=ah(u∗k,h, u∗k,h)− 2ah(u∗k,h, ūk,h) + ah(ūk,h, ūk,h)

− λ̄k,hb(u∗k,h, u∗k,h) + 2λ̄k,hb(u∗k,h, ūk,h)− λ̄k,hb(ūk,h, ūk,h)

=ah(u∗k,h, u∗k,h)− λ̄k,hb(u∗k,h, u∗k,h)− 2r1 + r2,

and dividing by b(u∗k,h, u∗k,h) on both sides of the above identity, we deduce

λk,s − λ̄k,h =
‖u∗k,h − ūk,h‖2h − λ̄k,h‖u∗k,h − ūk,h‖2b + 2r1 − r2

b(u∗k,h, u∗k,h)
.

It follows from (3.8) that

| 2r1 | + | r2 |≤ C‖(T − Th) |M(λk) ‖.

Write λk,s − λk = λk,s − λ̄k,h + λ̄k,h − λk. Using (3.12), (3.13) and (3.8) gives (3.6).
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By C1 we can deduce that ‖Th − T‖b ≤ C, and hence
∣∣∣∣

1
λk,r

− b(Tuk,H , uk,H)
∣∣∣∣ = |b(Thuk,H , uk,H)− b(Tuk,H , uk,H)|

= |b((Th − T )uk,H , uk) + b((Th − T )uk,H , uk,H − uk)|
=|b((Th − T )uk, uk,H) + b((Th − T )(uk,H − uk), uk,H − uk)

+ b((Th − T )uk, uk,H − uk)|
≤C‖(Th − T )uk‖b + C‖uk,H − uk‖2b .

By the above inequality, combining (3.1) with (2.8) we obtain (3.7). ¤

Theorem 3.1 and Lemma 2.1 show that both λk,r and λk,s can achieve the order of conver-
gence of the nonconforming finite element eigenvalue λk,h.

Theorem 3.2. Suppose (λk,H , uk,H) and (λk,r, u
∗
k,h) are obtained by Scheme 1. Then there

exsits a function uk ∈ M(λk) with ‖uk‖b = 1 such that

λk − λk,r

=2
λk,r

λk,H
ah(uk − Ihuk, u∗k,h) +

λk,r

λkλ2
k,H

‖λk,Huk − λku∗k,h‖2h

− λk,r‖Ihuk − uk,H‖2b + λk,r

(
‖Ihuk‖2b − ‖uk‖2b

)
. (3.14)

Proof. Since ‖uk‖b = ‖uk,H‖b = 1, we observe that

1
λk

= b(Tuk, uk),
1

λk,r
= b(Thuk,H , uk,H).

By (2.3) and the identity u∗k,h = λk,HThuk,H , we have

‖Tuk − Thuk,H‖2h

=
∥∥∥∥

1
λk

uk − 1
λk,H

u∗k,h

∥∥∥∥
2

h

=
(

1
λkλk,H

)2

‖λk,Huk − λku∗k,h‖2h.

Hence,

1
λk

+
1

λk,r

=b(Tuk, uk) + b(Thuk,H , uk,H) = ah(Tuk, Tuk) + ah(Thuk,H , Thuk,H)

=‖Tuk − Thuk,H‖2h + 2ah(Tuk, Thuk,H)

=
2
λk

ah(uk − Ihuk, Thuk,H) + ‖Tuk − Thuk,H‖2h +
2
λk

ah(Ihuk, Thuk,H)

=
2
λk

ah(uk − Ihuk, Thuk,H) + ‖Tuk − Thuk,H‖2h +
2
λk

b(Ihuk, uk,H)

=
2

λkλk,H
ah(uk − Ihuk, u∗k,h) +

(
1

λkλk,H

)2

‖λk,Huk − λku∗k,h‖2h

+
1
λk

(
− ‖Ihuk − uk,H‖2b + 2 + ‖Ihuk‖2b − ‖uk‖2b

)
.
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The conclusion follows by subtracting 2
λk

from both sides. ¤
Theorem 3.3. Suppose C1 and C2 are satisfied. Let λ1,h be the first eigenvalue of (2.2) on
Vh. If λk,r and λk,s are obtained by Scheme 1 and Scheme 2, respectively, then

λk,r ≥ λk,s, (3.15)

λ1,r ≥ λ1,s ≥ λ1,h. (3.16)

Proof. By Theorem 3.1, we have ‖u∗k,h − uk‖h → 0 (h ↘ 0), and hence ah(u∗k,h, u∗k,h) > 0
and b(u∗k,h, u∗k,h) > 0. Using (3.2)-(3.4) and Schwarz,s inequality, we get

λk,r − λk,s =
1

b(Thuk,H , uk,H)
− ah(u∗k,h, u∗k,h)

b(u∗k,h, u∗k,h)

=
1

ah(Thuk,H , Thuk,H)
− b(uk,H , Thuk,H)

b(Thuk,H , Thuk,H)

=
b(Thuk,H , Thuk,H)− b(uk,H , Thuk,H)2

ah(Thuk,H , Thuk,H)b(Thuk,H , Thuk,H)

≥ ‖Thuk,H‖2b − ‖uk,H‖2b‖Thuk,H‖2b
ah(Thuk,H , Thuk,H)b(Thuk,H , Thuk,H)

= 0,

which implies that (3.15) holds. It follows directly from the minimum principle (see, e.g., [2],
p. 699) for eigenvalue problem (2.2) on πh that λ1,s ≥ λ1,h, which together with (3.15) yield
(3.16). ¤

Theorem 3.4. Suppose C1 and C2 are satisfied. Let (λk,H , uk,H) be an eigenpair of (2.2)
with ‖uk,H‖b = 1, and let (λk,r, u

∗
k,h) and (λk,s, u

∗
k,h) be obtained by Scheme 1 and Scheme 2,

respectively. Then λk,H → λk and there exists a function uk ∈ M(λk) with ‖uk‖b = 1 such that

| λk,H − λk |≤ CHq2 , (3.17a)

‖uk,H − uk‖b ≤ CHq2 , (3.17b)

‖uk,H − uk‖H ≤ CHq1 , (3.17c)

‖u∗k,h − uk‖h ≤ C
(
hq1 + Hq2

)
, (3.17d)

| λk,s − λk |≤ C
(
hq2 + h2q1 + H2q2

)
, (3.17e)

| λk,r − λk |≤ C
(
hq2 + H2q2

)
. (3.17f)

Proof. The desired results can be obtained from Lemma 2.1, Theorem 3.1 and C2. ¤

4. Applications

We will need regular mesh in the following usual sense (see [3], p. 131):

Regular mesh: A family of meshes πh is regular if there exists a constant σ > 0 such that

he

ρe
≤ σ, for all e ∈

⋃

h

πh, and if h = max
e∈πh

he → 0,

where
he = diam(e), ρe = sup{diam(S) : S is a ball contained in e}.

Let Ws,p(Ω) be the usual Sobolev space with the norm ‖ · ‖s,p and the semi-norm | · |s,p.
Write Ws,2(Ω) = Hs(Ω), ‖ · ‖s,2 = ‖ · ‖s, | · |s,2=| · |s and ‖ · ‖L2(Ω) = ‖ · ‖0.
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4.1. Wilson nonconforming element

Consider the following eigenvalue problem:

−∆u = λu, in Ω; u = 0, on ∂Ω. (4.1)

The weak form of (4.1) is (2.1), where Ω is rectangular domain, V = H1
0 (Ω),W = L2(Ω),

a(u, v) =
∫

Ω

5u5 vdx, b(u, v) =
∫

Ω

uvdx,

and ‖u‖b = ‖u‖0. Let πh be a rectangular mesh of domain Ω and let Vh be the Wilson
nonconforming element space on πh. The Wilson nonconforming element approximation of
(4.1) is (2.2), where

ah(uh, v) =
∑
e∈πh

∫

e

5uh 5 vdx.

Theorem 4.1. Suppose both πH and πh are regular rectangular meshes. Let (λk,H , uk,H) be a
Wilson element eigenpair of (4.1) with ‖uk,H‖0 = 1, let (λk,r, u

∗
k,h) and (λk,s, u

∗
k,h) be obtained

by Scheme 1 and Scheme 2 for the Wilson element, respectively. Then there exists a function
uk ∈ M(λk) with ‖uk‖0 = 1 such that (3.17) holds with q1 = 1 and q2 = 2.

Proof. From [3], ∀f ∈ L2(Ω), we have

‖Thf − Tf‖h ≤ Ch‖Tf‖2, ‖Thf − Tf‖0 ≤ Ch2‖Tf‖2,
for the Wilson element approximation of the associated source problems. And from well-known
a priori estimate for elliptic problems on polygonal domain (see [4]), there exists a constant M
independent of f and h, such that

‖Tf‖2 ≤ M‖f‖0 ∀f ∈ L2(Ω).

Therefore, C2 is satisfied with q1 = 1 and q2 = 2. Consequently,

‖Th − T‖0 = sup
f∈L2(Ω)

‖Thf − Tf‖0
‖f‖0 ≤ Ch2 → 0 (h ↘ 0),

i.e., C1 is satisfied. The desired results are obtained from Theorem 3.4. ¤
Recently, Zhang et al. [18] proved that, when Ω = (0, a) × (0, b) is a rectangular domain

and πh is a regular rectangular mesh, the Wilson nonconforming element eigenvalue provides
lower bound of the exact eigenvalue for small enough mesh size. Yang [15] extended the method
in [13] to Wilson noncconforming element, and showed by numerical experiments that the first
eigenvalue of two-grid discretization scheme approximates exact eigenvalues from below and
has much better accuracy than the first eigenvalue which is obtained by solving the eigenvalue
problems on a fine mesh Kh directly. In the following theorem, we shall prove this result.

Theorem 4.2. Suppose Ω is a rectangular domain, πH and πh are two regular rectangular
meshes. Let λk be a simple eigenvalue, let(λk,r, u

∗
k,h) and (λk,s, u

∗
k,h) be obtained by Scheme

1 and Scheme 2 for the Wilson element, respectively. If h = O(H2−δ) with arbitrarily given
δ ∈ (0, 1), then

λk,s ≤ λk,r ≤ λk, (4.2)

λ1,h ≤ λ1,s ≤ λ1,r ≤ λ1. (4.3)
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Proof. It follows from the proof of Theorem 4.1 that C1 and C2 are satisfied with q1 = 1
and q2 = 2. From Lemma 3.8 in [5], we have

ah(uk − Ihuk, u∗k,h) =
1
3

∑
e∈πh

(h2
e + k2

e)
∫

e

∂11uk∂22ukdx +O(h3 + h2H2),

where the eigenfunction is known as

uk(x1, x2) = sin
k1π

a
x1 sin

k2π

b
x2/‖ sin

k1π

a
x1 sin

k2π

b
x2‖0.

Therefore, ∂11uk∂22uk > 0 on Ω, and we have

ah(uk − Ihuk, u∗k,h) = O(h2),

ah(uk − Ihuk, u∗k,h) > 0.

It follows from (3.17a) and (3.17f) that

2
λk,r

λk,H
→ 2 (H → 0).

By the above three relations we get

2
λk,r

λk,H
ah(uk − Ihuk, u∗k,h) > 0.

By (3.17a) and (3.17d) we get

λk,r

λkλ2
k,H

‖λk,Huk − λku∗k,h‖2h ≤ C(h2 + H4).

By (3.17b) and the interpolation error estimate (see [3]), we get
∣∣−λk,r‖Ihuk − uk,H‖20

∣∣ ≤ CH4,

∣∣‖Ihuk‖20 − ‖uk‖20
∣∣ =

∣∣∣∣
∫

(Ihuk − uk)(Ihuk + uk)dx

∣∣∣∣ ≤ Ch3.

Combining the above four relations and (3.14), when h is of lower order than H2, the sign
of λk − λk,r is determined by the first and second term on the right hand side of (3.14).
Therefore, the eigenvalue λk,r gives lower bound of the exact eigenvalue λk for sufficiently small
H. Consequently, from Theorem 3.3 we get (4.2) and (4.3). ¤

4.2. Crouzeix-Raviart Nonconforming Element

Consider eigenvalue problem (4.1) and its weak form (2.1), where Ω ⊂ R2 is a polygonal
domain with the maximum internal angle ω.

If ω > π, we denote r0 = π
ω , r < r0 and sufficiently close to r0, p = 2/(2− r); and if ω < π,

we denote r0 = r = 1 and p = 2.
Let πH and πh be regular triangular meshes of Ω, and Vh be the piecewise linear Crouzeix-

Raviart nonconforming element space on πh. The Crouzeix-Raviart nonconforming element
approximation of (4.1) is (2.2).
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Theorem 4.3. Let (λk,H , uk,H) be a Crouzeix-Raviart element eigenpair of (4.1) with ‖uk,H‖0 =
1, and let (λk,r, u

∗
k,h) and (λk,s, u

∗
k,h) be obtained by using Scheme 1 and Scheme 2 for the

Crouzeix-Raviart element, respectively. Then there exists a function uk ∈ M(λk) with ‖uk‖0 = 1
such that (3.17)) holds with q1 = r and q2 = 2r.

Proof. It follows from known a priori estimate for elliptic problems on a polygonal domain
(see [4]) that

Tf ∈ W2,p(Ω), ‖Tf‖2,p ≤ M‖f‖0,p, ∀f ∈ Lp(Ω).

It is proved that uk can be approximated in the ‖ · ‖h norm by functions in Vh with order
hr (see, for example [1]). Moreover, from the general theory of the nonconforming element
approximation for the associated source problems it follows that C2 can be satisfied with
q1 = r and q2 = 2r (see [3, 7]). Consequently,

‖Th − T‖0 = sup
f∈L2(Ω)

‖Thf − Tf‖0
‖f‖0 → 0,

i.e., C1 is satisfied. Therefore, the desired results are obtained from Theorem 3.4. ¤
Armentano and Duran [1] proved that the Crouzeix-Raviart nonconforming element eigen-

value gives lower bound of the exact eigenvalue for small enough mesh size h when the exact
eigenfunction is singular and ‖uk,h−uk‖h ≥ Chr0 . Hence, it is natural to assume ‖u∗k,h−uk‖h ≥
Chr0 in the following theorem.

Theorem 4.4. Under hypotheses of Theorem 4.3, and further suppose the exact eigenfunction
is singular and

‖u∗k,h − uk‖h ≥ Chr0 , r0 < 1.

Then, if h = O(H2−δ) with arbitrarily given δ ∈ (0, 1), then

λk,s ≤ λk,r ≤ λk, (4.4)

λ1,h ≤ λ1,s ≤ λ1,r ≤ λ1. (4.5)

Proof. It follows from the proof of Theorem 4.3 that C1 and C2 are satisfied with q1 = r

and q2 = 2r. By [1] we have

ah(uk − Ihuk, u∗k,h) = 0,

where Ih denotes the “edge average” interpolation operator. By (3.17b) and the interpolation
error estimate (see [1]), we get

∣∣−λk,r‖Ihuk − uk,H‖20
∣∣ ≤ C

(
h2+2r + H4r

)
.

By (3.17a), (3.17d) and this assumption ‖u∗k,h − uk‖h ≥ Chr0 , we have

‖λk,Huk − λku∗k,h‖2h
=‖λk,Huk − λkuk + λkuk − λku∗k,h‖2h
=(λk,H − λk)2‖uk‖2h + λ2

k‖uk − u∗k,h‖2h
+ 2ah(λk,Huk − λkuk, λkuk − λku∗k,h) ≥ Ch2r0 .
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Fig. 4.1. The geometry of Example 1

Table 4.1: Numerical approximations for the first eigenvalue for Example 1

H h λ1,H λ1,h λ1,r λ1,s√
2

4

√
2

8
9.13340 9.46120 9.48594 9.46222√

2
16

√
2

64
9.57482 9.63049 9.63091 9.63052√

2
36

√
2

216
9.61918 9.63797 9.63802 9.63798

Armentano and Duran [1] proved that

∣∣‖Ihuk‖20 − ‖uk‖20
∣∣ =

∣∣∣∣
∫

Ω

(Ihuk − uk)(Ihuk + uk)dx

∣∣∣∣
≤ C‖uk‖0,∞‖Ihuk − uk‖0,1 ≤ Ch2.

Combining the above four relations and (3.14), when h = ′(H2−δ) we conclude that the sign
of λk − λk,r is determined by the second term on the right hand side of (3.14). Therefore,
the eigenvalue λk,r gives lower bounds of the exact eigenvalue λk for sufficiently small H.
Consequently, from Theorem 3.3 we get (4.4) and (4.5). ¤

Example 1. Consider the eigenvalue problem (4.1).
Let Ω = [0, 2]× [0, 1]∪ [0, 1]× [1, 2] be the L-shaped domain, see Figure 4.1. For this domain,

the first eigenvalue is λ1 = 9.6397 · · · . In Figure 4.1 we show an initial mesh, and refine the
initial mesh in a uniform way (each triangle is divided into four congruent triangles) to get
meshes πH and πh. We compute the first eigenvalue by MATLAB 6.5. The numerical results
are shown in Table 1.

From Table 4.1 we see that both λ1,r and λ1,s not only give lower bounds of the exact
eigenvalue λ1, but also have much better accuracy than that for the λ1,h.

4.3. Adini Nonconforming Finite Element

Consider vibration plate problem (2.1), where V = H2
0 (Ω),W = L2(Ω),

a(u, v) =
∫

Ω

(
σ∆u∆v + (1− σ)(2∂12u∂12v + ∂11u∂11v + ∂22u∂22v)

)
dx,

b(u, v) =
∫

Ω

uvdx, ‖u‖b = ‖u‖0,
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Ω is a polygonal domain in R2 with boundary ∂Ω, σ is the Poisson coefficient. It follows from [3]
that the a(·, ·) is a symmetric, continuous and H2

0 (Ω)-elliptic bilinear form on H2
0 (Ω)×H2

0 (Ω).
Let Vh be a nonconforming Adini element space. The nonconforming Adini element approx-

imation of the vibration plate problem (2.1) reads (2.2), where

ah(uh, v) =
∑
e∈πh

∫

e

(
σ∆uh∆v + (1− σ)(2∂12uh∂12v + ∂11uh∂11v + ∂22uh∂22v)

)
dx.

Rannacher [6] discussed the nonconforming finite element approximation of the vibration plate
problem (2.1), and proved the error estemates of the Adini rectangle element.

Based on Ciarlet [3], we next prove directly the error estemates of the Adini rectangle
element by Lemma 2.1 for the vibration plate problem (2.1).

Theorem 4.5. Suppose M(λk) ⊂ H3(Ω), πH and πh are two regular rectangular meshes. Let
(λk,H , uk,H) be an Adini element eigenpair with ‖uk,H‖0 = 1, let (λk,r, u

∗
k,h) and (λk,s, u

∗
k,h) be

obtained by Scheme 1 and Scheme 2 for the Adini element, respectively. Then there exists a
function uk ∈ M(λk) with ‖uk‖0 = 1 such that (3.17) holds with q1 = 1 and q2 = 2.

Proof. From [3] it follows that C2 is satisfied with q1 = 1 and q2 = 2. Hence, we have
‖Th − T‖0 → 0, i.e., C1 is satisfied. Therefore, the desired results follow by Theorem 3.4. ¤

The numerical example provided by Rannacher [6] showed that the Adini element eigenvalue
gives lower bound, i.e., λk,h < λk, which is proved by Yang [16]. We now prove that both λk,s

and λk,r also give lower bounds for small enough mesh size.

Theorem 4.6. Suppose M(λk) ⊂ H4(Ω), and both πH and πh are uniform rectangular meshes
of a rectangular domain Ω. Let (λk,r, u

∗
k,h) and (λk,s, u

∗
k,h) be obtained by Scheme 1 and Scheme

2 for the Adini element, respectively. If h = O(H2−δ) with arbitrarily given δ ∈ (0, 1), then

λk,s ≤ λk,r ≤ λk, (4.6)

λ1,h ≤ λ1,s ≤ λ1,r ≤ λ1. (4.7)

Proof. From [3] it follows that C2 is satisfied with q1 = q2 = 2. It follows from the proof of
Theorem 4.5 that C1 is satisfied. Let Dh = ah(uk, u∗k,h)− λkb(uk, u∗k,h).Then

ah(uk − Ihuk, u∗k,h)

=ah(uk, u∗k,h)− λkb(uk, u∗k,h) + λkb(uk, u∗k,h)− ah(Ihuk, u∗k,h)

=Dh + λkb(uk, λk,HThuk,H)− b(Ihuk, λk,Huk,H)

=Dh + λkλk,Hb(uk, Thuk,H)− λk,Hb(uk, uk,H)− λk,Hb(Ihuk − uk, uk,H)

=Dh + λkλk,Hb(Thuk − Tuk, uk,H)− λk,Hb(Ihuk − uk, uk,H). (4.8)

From [16] it follows that

Dh = O(h2), Dh ≥ 0;

λj,h − λk = O(h2), λk − λj,h ≥ 0 j = k, k + 1, · · · , k + q − 1.

Write r = b(Thuk−Tuk, uk,H−ūk,h). From C2, (3.17b) and Lemma 2.2, we have | r |≤ CH2h2.
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Consequently, from (2.3) and (2.4) we have

b(Thuk − Tuk, uk,H) = b(Thuk − Tuk, ūk,h) + r

=b


Thuk − 1

λk
uk,

k+q−1∑

j=k

b(uk, uj,h)uj,h


 + r

=b


uk,

k+q−1∑

j=k

λk − λj,h

λj,hλk
b(uk, uj,h)uj,h


 + r

=
k+q−1∑

j=k

λk − λj,h

λj,hλk
b(uk, uj,h)2 + r ≥ 0 (H ↘ 0).

By the interpolation error estimate (see [3]) we have

| b(Ihuk − uk, uk,H) |≤ Ch4.

It is derived from combining (4.8) with the above analysis that

ah(uk − Ihuk, u∗k,h) > 0.

By (3.17a) and (3.17d) we have

0 ≤ λk,r

λkλ2
k,H

‖λk,Huk − λku∗k,h‖2h ≤ CH4.

By (3.17b) and the interpolation error estimate (see [3]), we have
∣∣−λk,r‖Ihuk − uk,H‖20

∣∣ ≤ CH4,

∣∣‖Ihuk‖20 − ‖uk‖20
∣∣ =

∣∣∣∣
∫

(Ihuk − uk)(Ihuk + uk)dx

∣∣∣∣ ≤ Ch4.

Combining the above four relations with (3.14), we conclude that when h is of lower order
than H2 the sign of λk − λk,r is determined by the first term on the right hand side of (3.14).
Therefore, the eigenvalue λk,r gives lower bounds of the exact eigenvalue λk for sufficiently
small H. As a result, from Theorem 3.3 we get (4.6) and (4.7). ¤

5. Concluding Remarks

The EQrot
1 element proposed by Lin, Tobiska and Zhou in 2005 was applied to solving

eigenvalue problems in Lin-Lin’s book [5], which proved that when Ω is a rectangular domain
and πh is a uniform rectangular mesh, the EQrot

1 element eigenvalues give lower bounds of the
exact eigenvalues for small enough mesh size. A similar analysis indicates that it is possible to
apply the two-grid method to the EQrot

1 element.
Recently, Morley element, Adini element, Bogner-Fox-Schmit element and Zienkiewicz-type

element have been extended to arbitrary dimensions by Wang, Shi and Xu [8,9]. Based on their
work, it is possible to propose and analyze two-grid discretization schemes of the nonconforming
finite elements for eigenvalue problems with arbitrarily dimensions.
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