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Abstract

We consider H(curl, Ω)-elliptic variational problems on bounded Lipschitz polyhedra

and their finite element Galerkin discretization by means of lowest order edge elements.

We assume that the underlying tetrahedral mesh has been created by successive local mesh

refinement, either by local uniform refinement with hanging nodes or bisection refinement.

In this setting we develop a convergence theory for the the so-called local multigrid correc-

tion scheme with hybrid smoothing. We establish that its convergence rate is uniform with

respect to the number of refinement steps. The proof relies on corresponding results for lo-

cal multigrid in a H1(Ω)-context along with local discrete Helmholtz-type decompositions

of the edge element space.
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1. Introduction

On a polyhedron Ω⊂ R
3, scaled such that diam(Ω) = 1, we consider the variational problem:

seek u ∈ HΓD
(curl,Ω) such that

(curl u, curl v)L2(Ω) + (u,v)L2(Ω)︸ ︷︷ ︸
=:a(u,v)

= (f ,v)L2(Ω) ∀v ∈ HΓD
(curl,Ω) . (1.1)

For the Hilbert space of square integrable vector fields with square integrable curl and vanishing

tangential components on ΓD we use the symbol HΓD
(curl,Ω), see [22, Ch. 1] for details. The

source term f in (1.1) is a vector field in (L2(Ω))3. The left hand side of (1.1) agrees with the

inner product of HΓD
(curl,Ω) and will be abbreviated by a(u,v) (“energy inner product”).

Further, ΓD denotes the part of the boundary ∂Ω on which homogeneous Dirichlet boundary

conditions in the form of vanishing tangential traces of u are imposed. The geometry of the

Dirichlet boundary part ΓD is supposed to be simple in the following sense: for each connected

component Γi of ΓD we can find an open Lipschitz domain Ωi ⊂ R
3 such that

Ωi ∩ Ω = Γi , Ωi ∩ Ω = ∅ , (1.2)
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Table 1.1: Important notation used in this paper

H(curl,Ω) : Sobolev space of square integrable vector fields on Ω ⊂ R
3 with square

integrable curl

HΓD
(curl,Ω) : vector fields in H(curl,Ω) with vanishing tangential components on

ΓD ⊂ ∂Ω

M, T : tetrahedral finite element meshes, may contain hanging nodes

N (M) : set of vertices (nodes) of a mesh M

E(M) : set of edges of a mesh M

ρK , ρM : shape regularity measures

h : – local meshwidth function for a finite element mesh

– (as subscript) tag for finite element functions
U(M) : lowest order edge element space on M

bE : nodal basis function of U(M) associated with edge E

V (M) : space of continuous piecewise linear functions on M

V2(M) : quadratic Lagrangian finite element space on M

Ṽ2(M) : quadratic surplus space, see (2.19)

bp : nodal basis function of V (M) (“tent function”) associated with vertex

p

BX(M) : set of nodal basis functions for finite element space X on mesh M

Πh : nodal edge interpolation operator onto U(M), see (2.7)

Ih : vertex based piecewise linar interpolation onto V (M)

Pp : space of 3-variate polynomials of total degree ≤ p

U(M), V (M): finite element spaces oblivious of zero boundary conditions

≺ : nesting of finite element meshes

ℓ(K) : level of element K in hierarchy of refined meshes

ωl : refinement zone, see (4.1)

Σl : refinement strip, see (5.35)

B
l
V , B

l
U : sets of basis functions supported inside refinement zones, see (4.9)

Qh : quasi-interpolation operator for linear Lagrangian finite elements

and Ωi and Ωj have positive distance for i 6= j. Further, the interior of Ω ∪ Ω1 ∪ Ω2 . . . is

expected to be a Lipschitz-domain, too (see Fig. 5.1). This is not a severe restriction, because

variational problems related to (1.1) usually arise in quasi-static electromagnetic modelling,

where simple geometries are common. Of course, ΓD = ∅ is admitted.

Lowest order HΓD
(curl,Ω)-conforming edge elements are widely used for the finite element

Galerkin discretization of variational problems like (1.1). Then, for a solution u ∈ (H1(Ω))3

with curl u ∈ (H1(Ω))3 we can expect the optimal asymptotic convergence rate

‖u − uh‖H(curl,Ω) ≤ CN
−1/3
h , (1.3)

on families of finite element meshes arising from global refinement. Here, uh is the finite element

solution, Nh the dimension of the finite element space, and C > 0 does not depend on Nh.

However, often u will fail to possess the required regularity due to singularities arising at

edges/corners of ∂Ω and material interfaces [20, 21]. Fortunately, it seems to be possible to

retain (1.3) by the use of adaptive local mesh refinement based on a posteriori error estimates,

see [10, 47] for theory in H1-setting, [7, 17] for numerical evidence in the case of edge element

discretization, and [8, 31, 45] for related theoretical investigations.
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We also need ways to compute the asymptotically optimal finite element solution with

optimal computational effort, that is, with a number of operations proportional to Nh. This

can only be achieved by means of iterative solvers, whose convergence remains fast regardless

of the depth of refinement. Multigrid methods are the most prominent class of iterative solvers

that achieve this goal. By now, geometric multigrid methods for discrete H(curl,Ω)-elliptic

variational problems like (1.1) have become well established [19, 25, 46, 50]. Their asymptotic

theory on sequencies of regularly refined meshes has also matured [2, 23, 25, 27, 44]. It confirms

asymptotic optimality: the speed of convergence is uniformly fast regardless of the number of

refinement levels involved. In addition, the costs of one step of the iteration scale linearly with

the number of unknowns.

Yet, the latter property is lost when the standard multigrid correction scheme is applied

to meshes generated by pronounced local refinement. Optimal computational costs can only

be maintained, if one adopts the local multigrid policy, which was pioneered by A. Brandt et

al. in [5], see also [36]. Crudely speaking, its gist is to confine relaxations to “new” degrees of

freedom located in zones where refinement has changed the mesh. Thus an exponential increase

of computational costs with the number of refinement levels can be avoided: the total costs of

a V-cycle remain proportional to the number of unknowns. An algorithm blending the local

multigrid idea with the geometric multigrid correction scheme of [25] is described in [46]. On

the other hand, a proof of uniform asymptotic convergence has remained elusive so far. It is

the objective of this paper to provide it, see Theorem 4.2.

We recall the key insight that (1.1) is one member of a family of variational problems. Its kin

is obtained by replacing curl with grad or div, respectively. All these differential operators turn

out to be incarnations of the fundamental exterior derivative of differential geometry, cf. [25,

Sect. 2]. They are closely connected in the deRham complex [3] and, thus, it is hardly surprising

that results about the related H1
ΓD

(Ω)-elliptic variational problem, which seeks u ∈ H1
ΓD

(Ω)

such that

(gradu,gradv)L2(Ω) + (u, v)L2(Ω) = (f, v)L2(Ω) ∀ v ∈ H1
ΓD

(Ω) , (1.4)

prove instrumental in the multigrid analysis for discretized versions of (1.1). Here H1
ΓD

(Ω) is

the subspace of H1(Ω) whose functions have vanishing traces on ΓD.

Thus, when tackling (1.1), we take the cue from the local multigrid theory for (1.4) dis-

cretized by means of linear continuous finite elements. This theory has been developed in vari-

ous settings, cf. [5,11,14,15,54]. In [1] local refinement with hanging nodes is treated. Recently,

Wu and Chen [52] proved the uniform convergence of local multigrid V-cycles on adaptively

refined meshes in two dimensions. Their mesh refinements are controlled by a posteriori er-

ror estimators and carried out according to the “newest vertex bisection” strategy introduced,

independently, in [6, 35].

As in the case of global multigrid, the essential new aspect of local multigrid theory for

(1.1) compared to (1.4) is the need to deal with the kernel of the curl-operator, cf. [25, Sect. 3].

In this context, the availability of discrete scalar potential representations for irrotational edge

element vector fields is pivotal. Therefore, we devote the entire Sect. 2 to the discussion of

edge elements and their relationship with conventional Lagrangian finite elements. Meshes with

hanging nodes will receive particular attention. Next, in Sect. 3 we present details about local

mesh refinement, because some parts of the proofs rest on the subtleties of how elements are

split. The following Sect. 4 introduces the local multigrid method from the abstract perspective

of successive subspace correction.
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The proof of uniform convergence (Theorem 4.2) is tackled in Sect. 5, which forms the core of

the article. In particular, the investigation of the stability of the local multilevel splitting requires

several steps. The foundation is provided by a well-known stability result for the bilinear form

from (1.4) and linear finite elements. Another ingredient are continuous and discrete Helmholtz-

type decompositions covered in Sect. 5.1. Many developments are rather technical and to aid

the reader important notations are listed in Table 1.1. Eventually, in Sect. 6, we report two

numerical experiments to show the competitive performance of the local multigrid method and

the relevance of the convergence theory.

Remark 1.1. In this article we forgo generality and do not discuss the more general bi-linear

form

a(u,v) := (α curl u, curl v)L2(Ω) + (βu,v)L2(Ω) , ∀u,v ∈ HΓD
(curl,Ω) , (1.5)

with uniformly positive coefficient functions α, β ∈ L∞(Ω). We do this partly for the sake of

lucidity and partly, because the current theory cannot provide estimates that are robust with

respect to large variations of α and β, cf. [29]. We refer to [55] for further information and

references.

2. Finite Element Spaces

Whenever we refer to a finite element mesh in this article, we have in mind a tetrahedral

triangulation of Ω, see [18, Ch. 3]. In certain settings, it may feature hanging nodes, that is, the

face of one tetrahedron can coincide with the union of faces of other tetrahedra. Further, the

mesh is supposed to resolve the Dirichlet boundary in the sense that ΓD is the union of faces of

tetrahedra. The symbol M with optional subscripts is reserved for finite element meshes and

the sets of their elements alike.

We write h ∈ L∞(Ω) for the piecewise constant function, which assumes value hK :=

diam(K) in each element K ∈ M. The ratio of diam(K) to the radius of the largest ball

contained in K is called the shape regularity measure ρK [18, Ch. 3, §3.1]. The shape regularity

measure ρM of M is the maximum of all ρK , K ∈ M.

2.1. Conforming meshes

Provisionally, we consider only finite element meshes M that are conforming, that is, each

face of a tetrahedron is either contained in ∂Ω or a face of another tetrahedron, see [18, Ch. 2,

§ 2.2]. In particular, this rules out hanging nodes. Following [12, 38], we introduce the space

of lowest order HΓD
(curl,Ω)-conforming edge finite elements, also known as Whitney-1-forms

[51],

U(M) := {vh ∈ HΓD
(curl,Ω) : ∀K ∈ M : ∃a, b ∈ R

3 : (2.1)

vh(x) = a + b × x, x ∈ K} . (2.2)

For a detailed derivation and description please consult [26, Sect. 3] or the monographs [13,37].

Notice that curlU(M) is a space of piecewise constant vector fields. We also remark that

appropriate global degrees of freedom (d.o.f.) for U(M) are given by

{
U(M) 7→ R

vh 7→
∫

E
vh · d~s

, E ∈ E(M) , (2.3)
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where E(M) is the set of edges of M not contained in ΓD. We write BU(M) for the nodal

basis of U(M) dual to the global d.o.f. (2.3). Basis functions are associated with active edges.

Hence, we can write BU(M) = {bE}E∈E(M). The support of the basis function bE is the union

of tetrahedra sharing the edge E. We recall the simple formula for local shape functions

bE |K = λigradλj − λjgradλi E = [ai,aj ] ⊂ K (2.4)

for any tetrahedronK ∈ M with vertices ai, i = 1, 2, 3, 4, and associated barycentric coordinate

functions λi.

The edge element space U(M) with basis BU(M) is perfectly suited for the finite element

Galerkin discretization of (1.1). The discrete problem based on U(M) reads: seek uh ∈ U(M)

such that

(curl uh, curl vh)L2(Ω) + (uh,vh)L2(Ω) = (f ,vh)L2(Ω) ∀vh ∈ U(M) . (2.5)

The properties of U(M) will be key to constructing and analyzing the local multigrid method

for the large sparse linear system of equations resulting from (2.5). Next, we collect important

facts.

The basis BU(M) enjoys uniform L2-stability, meaning the existence of a constant1) C =

C(ρM) > 0 such that for all vh =
∑

E∈E(M)

αEbE ∈ U(M), αE ∈ R,

C−1 ‖vh‖
2
L2(Ω) ≤

∑

E∈E(M)

α2
E ‖bE‖

2
L2(Ω) ≤ C ‖vh‖

2
L2(Ω) . (2.6)

The global d.o.f. induce a nodal edge interpolation operator

Πh :






dom(Πh) ⊂ HΓD
(curl,Ω) 7→ U(M)

v 7→
∑

E∈E(M)

(∫
E

v · d~s
)
· bE . (2.7)

Obviously, Πh provides a local projection, but it turns out to be unbounded even on (H1(Ω))3.

Only for vector fields with discrete rotation the following interpolation error estimate is avail-

able, see [26, Lemma 4.6]:

Lemma 2.1. The interpolation operator Πh is bounded on {Ψ ∈ (H1(Ω))3, curlΨ ∈ curl

U(M)}⊂ (H1(Ω))3, and for any conforming mesh there is C = C(ρM) > 0 such that

∥∥h−1(Id− Πh)Ψ
∥∥

L2(Ω)
≤ C|Ψ|H1(Ω) ∀Ψ ∈ (H1(Ω))3, curlΨ ∈ curlU(M) .

If Ω is homeomorphic to a ball, then

gradH1(Ω) = H(curl 0,Ω) := {v ∈ H(curl,Ω), curl v = 0},

that is, H1(Ω) provides scalar potentials for H(curl,Ω). To state a discrete analogue of this

relationship we need the Lagrangian finite element space of piecewise linear continuous functions

on M

V (M) := {uh ∈ H1
ΓD

(Ω) : uh|K ∈ P1(K) ∀K ∈ M} , (2.8)

1) The symbol C will stand for generic positive constants throughout this article. Its value may vary between

different occurrences. We will always specify on which quantities these constants may depend.
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where Pp(K) is the space of 3-variate polynomials of degree ≤ p on K. The global degrees

of freedom for V (M) boil down to point evaluations at the vertices of M away from ΓD (set

N (M)). The dual basis of “tent functions” will be denoted by BV (M) = {bp}p∈N (M). Its

unconditional L2-stability is well known: with a universal constant C > 0 we have for all

uh =
∑

p∈N (M)

αpbp ∈ V (M), αp ∈ R,

C−1 ‖uh‖
2
L2(Ω) ≤

∑

p∈N (M)

α2
p ‖bp‖

2
L2(Ω) ≤ C ‖uh‖

2
L2(Ω) . (2.9)

For the nodal interpolation operator related to BV we write Ih : dom(Ih) ⊂ H1
ΓD

(Ω) 7→ V (M).

Recall the standard estimate for linear interpolation on conforming meshes (i.e., no hanging

nodes allowed), [18, Thm. 3.2.1], that asserts the existence of C = C(k, ρM) > 0 such that

∥∥hk−2(Id− Ih)u
∥∥

Hk(Ω)
≤ C|u|H2(Ω) ∀u ∈ H2(Ω) ∩H1

ΓD
(Ω), k ∈ {0, 1} . (2.10)

Obviously, gradV (M) ⊂ U(M), and immediate from Stokes theorem is the crucial commuting

diagram property

Πh ◦ grad = grad ◦ Ih on dom(Ih) . (2.11)

This enables us to give an elementary proof of Lemma 2.1.

Proof. [of Lemma 2.1] Pick one K ∈ M and, without loss of generality, assume 0 ∈ K. Then

define the lifting operator, cf. the “Koszul lifting” [3, Sect. 3.2],

w 7→ Lw , Lw(x) := 1
3w(x) × x , x ∈ K . (2.12)

Elementary calculations reveal that for any constant vectorfield w ∈ (P0(K))3

curlLw = w , (2.13)

‖Lw‖L2(K) ≤ hK ‖w‖L2(K) , (2.14)

Lw ∈ U(K) . (2.15)

The continuity (2.14) permits us to extend L to (L2(K))3.

Given Ψ ∈ (H1(K))3 with curlΨ ≡ const3, by (2.15) we know L curlΨ ∈ (P1(K))3. Thus,

an inverse inequality leads to

|L curlΨ|H1(K) ≤ Ch−1
K ‖L curlΨ‖L2(K)

(2.14)

≤ C ‖curlΨ‖L2(K) , (2.16)

with C = C(ρK) > 0. Next, (2.13) implies

curl(Ψ − L curlΨ) = 0 ⇒ ∃p ∈ H1(K) : Ψ − L curlΨ = gradp . (2.17)

From (2.16) we conclude that p ∈ H2(K) and |p|H2(K) ≤ C|Ψ|H1(K). Moreover, thanks to the

commuting diagram property we have

Ψ − ΠhΨ = L curlΨ− Πh L curlΨ︸ ︷︷ ︸
=0 by (2.15)

+grad(p− Ihp) , (2.18)

which means, by the standard estimate (2.10) for linear interpolation on K,

‖Ψ − ΠhΨ‖L2(K) = |p− Ihp|H1(K) ≤ ChK |p|H2(K) ≤ ChK |Ψ|H1(K) .
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Summation over all elements finishes the proof. �

As theoretical tools we need “higher order” counterparts of the above finite element spaces.

We recall the quadratic Lagrangian finite element space

V2(M) := {uh ∈ H1
ΓD

(Ω) : uh|K ∈ P2(K) ∀K ∈ M} , (2.19)

and its subspace of quadratic surpluses

Ṽ2(M) := {uh ∈ V2(M) : Ihuh = 0} . (2.20)

This implies a direct splitting

V2(M) = V (M) ⊕ Ṽ2(M) , (2.21)

which is unconditionally H1-stable: there is a C = C(ρM) > 0 such that

C−1|uh|
2
H1(Ω) ≤ |(Id− Ih)uh|

2
H1(Ω) + |Ihuh|

2
H1(Ω) ≤ C|uh|

2
H1(Ω) , (2.22)

for all uh ∈ V2(M).

Next, we examine the space (V (M))3 of continuous piecewise linear vector fields that vanish

on ΓD. Standard affine equivalence techniques for edge elements, see [26, Sect. 3.6], confirm

∃C = C(ρM) > 0 : ‖ΠhΨh‖L2(Ω) ≤ C ‖Ψh‖L2(Ω) ∀Ψh ∈ (V (M))3 . (2.23)

Lemma 2.2. For all Ψh ∈ (V (M))3 we can find ṽh ∈ Ṽ2(M) such that

Ψh = ΠhΨh + gradṽh ,

and, with C = C(ρM) > 0,

C−1 ‖Ψh‖
2
L2(Ω) ≤ ‖ΠhΨh‖

2
L2(Ω) + ‖gradṽh‖

2
L2(Ω) ≤ C ‖Ψh‖

2
L2(Ω) .

For the proof we rely on a very useful insight, which relieves us from all worries concerning

the topology of Ω:

Lemma 2.3. If v ∈ HΓD
(curl 0,Ω) and Πhv = 0, then v ∈ gradH1

ΓD
(Ω).

Proof. Since the mesh covers Ω, the relative homology group H1(Ω; ΓD) is generated by a

set of edge paths. By definition (2.3) of the d.o.f. of U(M), the path integrals of v along all

these paths vanish. As an irrotational vector field with vanishing circulation along a complete

set of ΓD-relative fundamental cycles, v must be a gradient. �

Proof [of Lemma 2.2]. Given Ψh ∈ (V (M))3, we decompose it according to

Ψh = ΠhΨh + (Id− Πh)Ψh︸ ︷︷ ︸
=:gradṽh

. (2.24)

Note that curl(Id − Πh)Ψh is piecewise constant with vanishing flux through all triangular

faces of M. Then Stokes’ theorem teaches that curl(Id− Πh)Ψh = 0.
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By the projector property of Πh, (Id − Πh)Ψh satisfies the assumptions of Lemma 2.3.

Taking into account that, moreover, the field is piecewise linear, it is clear that (Id−Πh)Ψh =

gradψ with ψ ∈ V2(M). Along an arbitrary edge path γ in M we have

∫

γ

(Id− Πh)Ψh · d~s = 0

so that ψ attains the same value (w.l.o.g. = 0) on all vertices of M. The stability of the splitting

is a consequence of (2.23). �

By definition, the spaces U(M) and V (M) accommodate the homogeneous boundary con-

ditions on ΓD. Later, we will also need finite element spaces oblivious of boundary conditions,

that is, for the case ΓD = ∅. These will be tagged by a bar on top, e.g., U(M), V (M), etc.

The same convention will be employed for notions and operators associated with finite element

spaces: if they refer to the particular case ΓD = ∅, they will be endowed with an overbar, e.g.

Πh, Ih, BU(M), N (M), etc.

2.2. Meshes with Hanging Nodes

Now, general tetrahedral meshes with hanging nodes are admitted. We simply retain the def-

initions (2.8) and (2.19) of the spaces V (M) and V2(M) of continuous finite element functions.

Degrees of freedom for V (M) are point evaluations at active vertices of M. A vertex is called

active, if it is not located in the interior of an edge/face of M or on ΓD. A 2D1) illustration is

given in Fig. 2.1.

M0 M1 M2 M3

Fig. 2.1. Active vertices (red•) of 2D triangular meshes with hanging nodes, Ω =]0, 1[2, ΓD = ∂Ω. In

M1,M2,M3 active edges are marked with green arrows.

The values of a finite element function at the remaining (“slave”) vertices are determined

by recursive affine interpolation. A dual nodal basis BV (M) and corresponding interpolation

operator Ih can be defined as above.

In principle, the definition (2.1) of the edge element space could be retained on non-

conforming meshes, as well. Yet, for this choice an edge interpolation operator Πh that satisfies

the commuting diagram property (2.11) is not available. Thus, we construct basis functions

directly and rely on the notion of active edges, see Fig. 2.1.

Definition 2.1. An edge of M is active, if it is an edge of some K ∈ M, not contained in

ΓD, and connects two vertices that are either active or located on ΓD.

1) For ease of visualization, we will often elucidate geometric concepts in two-dimensional settings. Their

underlying ideas are the same in 2D and 3D.
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We keep the symbol E(M) to designate the set of active edges of M. To each E ∈ E(M)

we associate a basis function bE , which, locally on the tetrahedra of M, is a polynomial of the

form (2.2). In order to fix this basis function completely, it suffices to speficify its path integrals

(2.3) along all edges of M. In the spirit of duality, we demand

∫

F

bE · d~s =

{
1, if F = E ,

0, if F ∈ E(M) \ {E} .
(2.25)

For the non-active (“slave”) edges of M the path integrals of bE (subsequently called “weights”)

are chosen to fit (2.11), keeping in mind that BU(M) := {bE}E∈E(M), and that the d.o.f. and

Πh are still defined according to (2.3) and (2.7), respectively. Ultimately, we set U(M) :=

Span {BU(M)}.

Let us explain the policy for setting the weights in the case of the subdivided tetrahedron

of Fig. 2.2 with hanging nodes at the midpoints of edges, which will turn out to be the only

relevant situation, cf. Sect. 5.1.

Weights have to be assigned to the “small edges” of the refined tetrahedron, some of which

will be active, and some of which will have “slave” status, see the caption of Fig. 2.2.

We write the direction vectors of slave edges as linear combinations of active edges, for

instance,

q1 − p3 = 1
2 (p4 − p3) ,

q1 − q2 = 1
2 (p4 + p3) −

1
2 (p2 + p3) = 1

2 (p4 − p2) ,

p5 − q4 = p5 −
1
2 (p1 + p3) = p5 − p1 + 1

2 (p1 − p3) ,

q4 − q3 = 1
2 (p1 + p3) −

1
2 (p4 + p2) = 1

2 (p1 − p2) + 1
2 (p3 − p4) .

p1

p2

p3

p4

p5

p6

q1

q2

q3

q4

E

Fig. 2.2. Subdivided tetrahedron, active vertices (•) p1, . . . , p6, slave vertices (red◦) q1, . . . , q4, active

edges [p1, p5], [p1, p6], [p4, p5], [p2, p6], [p2, p3], [p2, p4], [p3, p4], [p5, p6], [p1, p3], slave edges [p1, q4],

[q4, p3], [p2, q2], [q2, p3], [p3, q1], [q1, p4], [p6, q4], [q2, q4], [p6, q2], [q1, q2], [q2, q3], [q1, q3], [q1, p5],

[q3, p5], [q4, p5]



582 R. HIPTMAIR AND W.-Y. ZHENG

In a sense, we express slave edges as “linear combinations” of active edges. In a different

context, this policy is explained in more detail in [24].

The coefficients in the combinations tell us the weights. For example, for the active edge

E = [p3,p4] in Fig. 2.2 they are given in Table 2.1. Using these weights and the formula (2.4),

bE can be assembled on the tetrahedron by imposing (see Table 2.1 for notations)

∫

S

bE · d~s =

{
wS for any contributing slave edge S ,

0 for all other (slave) edges,
S ∈ {“small edges”} .

Table 2.1: Weights for slave edges in Fig. 2.2 relative to active edge E = [p3, p4]. Only slave edges with

non-zero weights are listed.

Slave edge S [q1,p4] [p3, q1] [q2, q3] [q4,p5] [q3, q4]

weight wS
1
2

1
2

1
2

1
2 − 1

2

Firstly, the procedure for the selection of weight guarantees that gradV (M) ⊂ U(M). For

illustration, we single out the gradient wh of the nodal basis function belonging to vertex p5 in

Fig. 2.2. Its path integral equals 1 along the (oriented) edges [p1,p5], [p3,p5], [p6,p5], [q4,p5],

[q3,p5], [q1,p5], and vanishes on all other edges. Hence we expect

wh = b[p1,p5] + b[p3,p5]
+ b[p6,p5]

. (2.26)

This can be verified through showing equality of path integrals along slave edges. We take a

close look at the slave edge [q4,p5]. By construction the basis functions belonging to active

edges satisfy

∫

[q4,p5]

b[p1,p5]
· d~s = 1 ,

∫

[q4,p5]

b[p5,p4]
· d~s = 0 ,

∫

[q4,p5]

b[p3,p4]
· d~s = 0 ,

∫

[q4,p5]

b[p1,p3]
· d~s = − 1

2 ,

∫

[q4,p5]

b[p1,p6]
· d~s = 0 ,

∫

[q4,p5]

b[p2,p6]
· d~s = 0 ,

∫

[q4,p5]

b[p2,p3]
· d~s = 0 .

Then, evidently,

1 =

∫

[q4,p5]

wh · d~s

=

∫

[q4,p5]

b[p1,p5] · d~s+

∫

[q4,p5]

b[p3,p5] · d~s+

∫

[q4,p5]

b[p6,p5]
· d~s = 1 + 0 + 0 .

The same considerations apply to all other slave edges and (2.26) is established. Secondly, the

construction ensures the commuting diagram property (2.11): again appealing to Fig. 2.2 we

find, for example,
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∫

[q3,q4]

gradIhu · d~s = Ihu(q4) − Ihu(q3)

= 1
2 (u(p4) + u(p2)) −

1
2 (u(p1) + u(p3))

= 1
2

∫

[p3,p4]

gradu · d~s+ 1
2

∫

[p1,p2]

gradu · d~s

= 1
2

∫

[p3,p4]

gradu · d~s+ 1
4

∫

[p1,p6]

gradu · d~s+ 1
4

∫

[p6,p2]

gradu · d~s .

In words, combining the path integrals of gradu along active edges with the relative weights

of the slave edge [q3, q4] yields the same result as evaluating the path integral of the gradient

of the interpolant Ihu along [q3, q4].

The definitions (2.19) and (2.20) also carry over to meshes with hanging nodes. This remains

true for the splitting asserted in Lemma 2.2. However, though the algebraic relationships like

(2.11) remain valid, the estimates and norm equivalences of the previous section do not hold

for general families of meshes with hanging nodes. This entails restrictions on the location of

hanging nodes, whose discussion will be postponed until Sect. 3.2, cf. Assumption 3.1.

Remark 2.1. Our presentation is confined to tetrahedral meshes and lowest order edge ele-

ments for the sake of simplicity. Extension of all results to hexahedral meshes and higher order

edge elements is possible, but will be technical and tedious.

3. Local Mesh Refinement

We study the case where the actual finite element mesh Mh of Ω has been created by

successive local refinement of a relatively uniform initial mesh M0. Concerning Mh and M0

the following asumptions will be made:

1. Given M0 and Mh we can construct a virtual refinement hierarchy of L + 1 nested1) tetra-

hedral meshes, L ∈ N:

M0 ≺ M1 ≺ M2 ≺ · · · ≺ ML = Mh . (3.1)

Please note that the virtual refinement hierarchy may be different from the actual sequence

of meshes spawned during adaptive refinement2) .

2. Inductively, we assign to each tetrahedron K ∈ Ml a level ℓ(K) ∈ N0 by counting the number

of subdivisions it took to generate it from an element of M0.

3. For all 0 ≤ l < L the mesh Ml+1 is created by subdividing some or all of the tetrahedra in

{K ∈ Ml : ℓ(K) = l}.

4. The shape regularity measures of the meshes Ml are uniformly bounded independently of L.

1) two finite element meshes M and T are nested, M ≺ T , if every element of M is the union of elements

of T . 2) For the local multigrid algorithm examined in this article the implementation must provide access to

the virtual refinement hierarchy. This entails suitable bookkeeping data structures, which are available in the

ALBERTA package used for the numerical experiments in Sect. 6
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Refinement may be local, but it must be regular in the following sense, cf. [39, Sect. 4.2.2]

and [52]: we can find a second sequence of nested tetrahedral meshes of Ω

M0 = M̂0 ≺ M̂1 ≺ M̂2 ≺ · · · ≺ M̂L (3.2)

that satisfies

1. Ml ≺ M̂l and {K ∈ Ml : ℓ(K) = l} ⊂ M̂l, l = 0, . . . , L,

2. that the shape regularity measure ρ
M̂l

is bounded independently of l,

3. and that there exist two constants C > 0 and 0 < θ < 1 independent of l and L such

that

C−1θl ≤ hK ≤ Cθl ∀K ∈ M̂l , 0 ≤ l ≤ L . (3.3)

This means that the family {M̂l}l is quasi-uniform. Hence, it makes sense to refer to

a mesh width hl := max{hK , K ∈ M̂l} of M̂l. It decreases geometrically for growing

l.

Our analysis targets two popular tetrahedral refinement schemes that generate sequences of

meshes that meet the above requirements.

3.1. Local regular refinement

This scheme produces Ml+1 by splitting some of the tetrahedra of the current mesh Ml

into eight smaller ones, possibly creating hanging nodes in the process [1]. An illustrative 2D

example with hanging nodes is depicted in Figure 3.1. The accompanying sequence {M̂l}0≤l≤L

is produced by global regular refinement, which implies (3.3) with θ = 1
2 . Uniform shape-

regularity can also be guaranteed for repeated regular refinement of tetrahedra, see [9].

M0 M1 M2 M3 = Mh

Fig. 3.1. Virtual refinement hierarchy for 2D triangular meshes. The quasi-uniform sequence {M̂l}0≤l≤L

is sketched in blue. Elements of Ml eligible for further subdivision are marked yellow.

The meshes occurring in the virtual refinement hierarchy need not agree with the meshes

that arise during adaptive refinement in an actual computation. Yet, given Mh, the virtual re-

finement hierarchy can always be found a posteriori. Write Mhier for the union of all tetrahedra

ever created during the refinement process. Then, for 0 < l < L, define

Ml :=

{
K ∈ Mhier :

ℓ(K) ≤ l and K does not contain a

K ′ ∈ Mhier \ {K} with ℓ(K ′) ≤ l

}
. (3.4)
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Using the construction of finite element spaces detailed in Sect. 2.2, the local multigrid

algorithms can handle any kind of local regular refinement. Yet, convergence may degrade

unless we curb extreme jumps of local meshwidth. Thus, we assume the following throughout

the remainder of this paper.

Assumption 3.1. Any edge of Mh may contain at most one hanging node.

This will automatically be satisfied for all meshes Ml of the virtual refinement hierarchy.

Consequently, hanging nodes can occur only in a few geometric configurations, one of which is

depicted in Fig. 2.2. This paves the way for using mapping techniques and scaling arguments,

see [26, Sect. 3.6], which confirm the following generalization of results of Sect. 2.1. Of course,

we rely on the constructions of finite element spaces and interpolation operators described in

Sect. 2.2.

Proposition 3.1. Under Assumption 3.1 the L2-stability of bases, see (2.6) and (2.9), carries

over uniformly to meshes created by local regular refinement. So do Lemmas 2.1 and 2.2, and

Estimates (2.22) and (2.23).

Summing up, Assumption 3.1 makes it possible to use the results obtained in Sect. 2.1 in

the case of local regular refinement as well. To avoid a proliferation of labels, we are going to

quote the statements from Sect. 2.1 even when we mean their generalization to meshes with

hanging nodes.

3.2. Recursive bisection refinement

This procedure involves splitting a tetrahedron into two by promoting the midpoint of

the so-called refinement edge to a new vertex. Variants of bisection differ by the selection

of refinement edges: The iterative bisection strategy by Bänsch [4, 6] needs the intermediate

handling of hanging nodes. The recursive bisection strategies of [33, 34, 49] do not create such

hanging nodes and, therefore, are easier to implement. But for special M0, the two recursive

algorithms result in exactly the same tetrahedral meshes as the iterative algorithm. Since our

implementation relies on the bisection algorithm of [33], we outline its bisection policy in the

following. For more information on bisection algorithms, we refer to [42, 48].

For the recursive bisection algorithm of [33], the bisections of tetrahedra are totally de-

termined by the local vertex numbering of M0, plus a prescribed type for every element in

M0. Each tetrahedron K is endowed with the local indices 0, 1, 2, and 3 for its vertices. The

refinement edge of each element is always set to be the edge connecting vertex 0 and vertex

1. After bisection of K, the “child tetrahedron” of K which contains vertex 0 of K is denoted

by Child[0] and the other one is denoted by Child[1]. The types of Child[0] and Child[1] are

defined by

type(Child[0]) = type(Child[1]) = (type(K) + 1) mod 3.

The new vertex at the midpoint of the refinement edge of K is always numbered by 3 in

Child[0] and Child[1]. The four vertices of K are numbered in Child[0] and Child[1] as follows

(see Fig. 3.2):

In Child[0] : (0, 2, 3) → (0, 1, 2),

In Child[1] : (0, 2, 3) → (0, 2, 1), if type(K) = 0,

In Child[1] : (0, 2, 3) → (0, 1, 2), if type(K) > 0.
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This recursive bisection creates only a small number of similarity classes of tetrahedra, see

[33, 42, 49].
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Fig. 3.2. Bisection of tetrahedra in the course of recursive bisection. Assignment of types to children

Fig 3.3 shows a 2D example of the recursive bisection refinement (the algorithm for 2D case

is called “the newest vertex bisection” in [36]). Similar to the 3D algorithm, for any element K,

its three vertices are locally numbered by 0, 1, and 2, its refinement edge is the edge between

vertex 0 and 1. The newly created vertex in the two children of K are numbered by 2. In

the child element containing vertex 0 of K, vertex 0 and 2 of K are renumbered by 1 and

0 respectively. In the other child element, vertex 1 and 2 of K are renumbered by 0 and 1

respectively.

In order to keep the mesh conforming during refinements, the bisection of an edge is only

allowed when such an edge is the refinement edge for all elements which share this edge. If

a tetrahedron has to be refined, we have to loop around its refinement edge and collect all

elements at this edge to create an refinement patch. Then this patch is refined by bisecting the

common refinement edge. A more detailed discussion can be found in [33].

For any mesh Ml an associated “quasi-uniform” mesh M̂l according to (3.2), Ml ≺ M̂l, is

obtained as follows: the elements in {K ∈ Ml : ℓ(K) < l} undergo bisection until ℓ(K) = l for

any K ∈ M̂l.

We still have to make sure that the recursive bisection allows the definition of a virtual
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M1 M2 M3

M4 M5 M6

Fig. 3.3. Virtual refinement hierarchy for 2D triangular meshes emerging in the course of successive

local newest vertex bisection refinement of M0 from Fig. 3.1. Accompanying quasi-uniform meshes

outlined in blue, maximally refined triangles marked yellow.

refinement hierarchy. Thus, let Mh = ML be generated from the initial mesh M0 by the

bisection algorithm in [33]. Denote by Mhier the set of all tetrahedra created during the bisection

process, i.e., for any K ∈ Mhier, there is a K ′ ∈ Mh such that either K ′ = K or K ′ is created

by refining K. Then, the virtual meshes Ml, 0 < l < L can again be defined according to (3.4).

In the following, we are going to prove that each Ml is a conforming mesh, that is, no

hanging nodes occur in Ml, 0 ≤ l ≤ L. The proof depends on some mild assumptions on M0

(see assumptions (A1) and (A2) in [33]), which will be taken for granted.

Lemma 3.1. [33, Lemmas 2,3] Let T, T ′ ∈ Mh be a pair of tetrahedra sharing a face F =

K ∩K ′. It holds true that

1. if T contains the refinement edge of T ′ and vice versa, then they have the same refinement

edge,

2. if F contains the refinement edges of both K and K ′, then ℓ(K) = ℓ(K ′),

3. if F contains the refinement edge of K, but does not contain the refinement edge of K ′,

then ℓ(K) = ℓ(K ′) + 1,

4. if F does not contain the refinement edges of K and K ′, then ℓ(K) = ℓ(K ′).

Lemma 3.2. The meshes Ml, 0 ≤ l ≤ L, according to (3.4) are conforming meshes.

Proof. We are going to prove the lemma by backward induction starting from l = L. Since

ML = Mh is conforming, for any K ∈ ML satisfying ℓ(K) = L, there exists a brother of K,
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A
new

 

0 0 

1 1

E E 
K 

K’ 

K
p
 

K’
p
 

Fig. 3.4. The patch around a refinement edge E with vertex 0 and 1. ℓ(K) = ℓ(K′) = L and ℓ(Kp) =

ℓ(K′
p) = L − 1.

denoted by K ′ ∈ ML, such that ℓ(K ′) = L and Kp := K ∪K ′ ∈ ML−1. Here Kp is called the

parent of K and K ′ with ℓ(Kp) = L− 1 (see Fig. 3.4).

Let E be the refinement edge of Kp. By the recursive bisection algorithm, E must be the

common refinement edge of all tetrahedra in the refinement patch:

PE =
⋃

{K ′
p : K ′

p ∈ ML−1 and E ⊂ K ′
p }.

By Lemma 3.1, ℓ(K ′
p) = L − 1 for any K ′

p ⊂ PE and the midpoint of E, denoted by Anew, is

the unique new vertex of ML in PE . We conclude that

PE =
⋃

{K : K ∈ ML, ℓ(K) = L, and Anew is a vertex of K }.

Coarsen the sub-mesh ML|PE
by removing the vertexAnew and all edges related to it and adding

E to this patch. Thus a conforming sub-mesh ML−1|PE
is obtained. Do the above coarsening

process for every element K ∈ ML with ℓ(K) = L. This proves that ML−1 is conforming.

Finally, an induction argument confirms that Ml is conforming, l = L− 2, · · · , 1. �

4. Local Multigrid

To begin with, we introduce nested refinement zones as open subsets of Ω:

ωl := interior
(⋃

{K : K ∈ Mh, ℓ(K) ≥ l}
)
⊂ Ω , (4.1)

see Fig. 4.1 and Fig. 4.2. The notion of refinement zones allows a concise definition of the local

multilevel decompositions of the finite element spaces V (Mh) and U(Mh) that underly the

local multigrid method.
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“Refinement strips”: set differences of refine-

ment zones

Fig. 4.1. Refinement zones for the 2D refine-

ment hierarchy of Figure 3.1.

: Σ0 := ω0 \ ω1
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“Refinement strips”: set differences of refine-

ment zones

: Σ0 := ω0 \ ω1
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Fig. 4.2. Refinement zones for the 2D refinement hierarchy of Figure 3.3.

We introduce local multigrid from the perspective of multilevel successive subspace correc-

tion (SSC) [53, 54, 56]. First, we give an abstract description for a linear variational problem

u ∈ H : a(u, v) = f(v) ∀v ∈ H , (4.2)

involving a positive definite bilinear form a on a Hilbert space H . The method is completely

defined after we have provided a finite subspace decomposition

H =
J∑

j=0

Hj , Hj ⊂ H closed subspaces, j = 0, . . . , J, J ∈ N . (4.3)
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Then the correction scheme implementation of one step of SSC acting on the iterate um−1

reads:

for m = 1, 2, · · ·

um−1
−1 = um−1

for j = 0, 1, · · · , J

Let ej ∈ Hj solve

a(ej, vj) = f(vj) − a(um−1
j−1 , vj) ∀ vj ∈ Hj

um−1
j = um−1

j−1 + ej

endfor

um = um−1
J

endfor

This amounts to a stationary linear iterative method with error propagation operator

E = (I − PJ )(I − PJ−1) · · · (I − P0) , (4.4)

where Pj : H 7→ Hj stands for the Galerkin projection defined through

a(Pjv, vj) = a(v, vj) ∀ vj ∈ Hj . (4.5)

The convergence theory of SSC for an inner product a and induced energy norm ‖·‖A rests

on two assumptions. The first one concerns the stability of the space decomposition. We assume

that there exists a constant Cstab independent of J such that

inf
{ J∑

j=0

‖vj‖
2
A :

J∑

j=0

vj = v
}
≤ Cstab ‖v‖

2
A ∀ v ∈ H. (4.6)

The second assumption is a strengthened Cauchy-Schwartz inequality, namely, there exist two

constants 0 ≤ q < 1 and Corth independent of j and k such that

a(vj , vk) ≤ Corthq
|k−j| ‖vj‖A ‖vk‖A ∀ vj ∈ Hj , vk ∈ Hk . (4.7)

The above inequality states a kind of quasi-orthogonality between the subspaces. From [53,

Theorem 4.4] and [57, Theorem 5.1] we cite the following central convergence theorem:

Theorem 4.1. Provided that (4.6) and (4.7) hold, the convergence rate of Algorithm SSC is

bounded by

‖E‖2
A ≤ 1 −

1

Cstab(1 + Θ)2
with Θ = Corth

1 + q

1 − q
, (4.8)

where the operator norm is defined by

‖E‖A := sup
v∈H,v 6=0

‖Ev‖A

‖v‖A

.
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The bottom line is that the subspace splitting (4.3) already provides a full description of

the method. Showing that both constants Cstab from (4.6) and Corth from (4.7) can be chosen

independently of the number L of refinement levels is the challenge in asymptotic multigrid

analysis.

In concrete terms, the role of the linear variational problem (4.2) is played by (1.1) considered

on the edge element space U(Mh), which replaces the Hilbert space H . To define the local

multilevel decomposition of U(Mh), we define “sets of new basis functions” on the various

refinement levels

B
0
V := BV (M0), B

l
V := {bh ∈ BV (Ml) : supp bh ⊂ ωl} ,

B
0
U := BU(M0), B

l
U := {bh ∈ BU(Ml) : suppbh ⊂ ωl} ,

1 ≤ l ≤ L . (4.9)

A 2D drawing of the sets B
l
V is given in Fig. 4.3 where ΓD = ∂Ω. Note that we also have to deal

with V (Mh), because, as suggested by the reasoning in [25], a local multilevel decomposition

of U(Mh) has to incorporate an appropriate local multilevel decomposition of V (Mh).

l = 0 l = 1 l = 2 l = 3
Fig. 4.3. Active vertices (redred) carrying “tent functions” in B

l
V , ΓD = ∂Ω, refinement hierarchy of

Fig. 3.1

Then, a possible local multigrid iteration for the linear system of equations arising from a

finite element Galerkin discretization of a H1
ΓD

(Ω)-elliptic variational problem boils down to a

successive subspace correction method based on the local multilevel decomposition

V (Mh) = V (M0) +

L∑

l=1

∑

bh∈Bl

V

Span {bh} . (4.10)

Similarly, the local multilevel splitting of U(Mh) is based on the multilevel decomposition

U(Mh) = U(M0) +

L∑

l=1

∑

bh∈Bl

V

Span {gradbh} +

L∑

l=1

∑

bh∈Bl

U

Span {bh} . (4.11)

These splittings induce SSC iterations that can be implemented as non-symmetric multigrid

V-cycles with only one (hybrid) Gauss-Seidel post-smoothing step, see [25, Sect. 6]. Duplicating

components of (4.11) results in more general multigrid cycles with various numbers of pre- and

post-smoothing steps.

The splitting (4.11) is motivated both by the design of multigrid methods for (1.1) and U(M)

in the case of uniform refinement and local multigrid approaches to H1
ΓD

(Ω)-elliptic variational

problems after discretization by means of linear finite elements [36, 52]. The occurrence of

gradients of “tent functions” bh in (4.11) is related to the hybrid local relaxation, which is

essential for the performance of multigrid in H(curl,Ω), see [25] for a rationale. A rigorous



592 R. HIPTMAIR AND W.-Y. ZHENG

justification will emerge during the theoretical analysis in the following sections. It will establish

the following main theorem.

Theorem 4.2 (Asymptotic convergence of local multigrid for edge elements)

Under the assumptions on the meshes made above and allowing at most one hanging node per

edge, the decomposition (4.11) leads to an SSC iteration whose convergence rate is bounded

away from 1 uniformly in the number L of refinement steps.

Proving stability estimate (4.6) is the chief challenge, whereas the strengthened Cauchy-

Schwarz inequality (4.7) for the local multilevel decomposition (4.11) is amenable to exactly

the same proof as in the case of global refinement. The reader is referred to [27, Sect. 4]

and [30, Sect. 6].

5. Stability

First we recall the stability estimate (4.6) for the local multilevel decomposition (4.10),

which is implicitly contained in (4.11). Proofs can be found in [39, Ch. 4] and [30, Sect. 5].

Theorem 5.1. For any uh ∈ V (Mh) we can find ul ∈ V (Ml) such that

uh =
L∑

l=0

ul, supp(ul) ⊂ ωl , (5.1)

and

|u0|
2
H1(Ω) +

L∑

l=1

h−2
l ‖ul‖

2
L2(Ω) ≤ C|uh|

2
H1(Ω) ,

with C > 0 independent of L.

Notice that in combination with the L2-stability (2.9) of nodal bases and inverse inequalities,

this theorem asserts an L-uniform estimate of the form (4.6) for the splitting (4.10) w.r.t. the

energy norm |·|H1(Ω). From (5.1) it is clear that the basis functions admitted in (4.10) can

represent the functions ul of Thm. 5.1.

5.1. Helmholtz-type decompositions

Helmholtz-type decompositions, also called regular decompositions , have emerged as a pow-

erful tool for answering questions connected with H(curl,Ω). In particular, they have paved

the way for a rigorous multigrid theory for H(curl,Ω)-elliptic problems [17,23,25,27–29,32,40].

We refer to [26, Sect. 2.4] for more information.

We will need a very general version provided by the following theorem.

Theorem 5.2. Let Ω meet the requirements stated in Sect. 1. Then, for any v ∈ HΓD
(curl,Ω),

there exists a p ∈ H1
ΓD

(Ω) and Ψ ∈ (H1
ΓD

(Ω))3 such that

v = ∇p+ Ψ, (5.2)

|p|H1(Ω) ≤ C‖v‖H(curl,Ω), ‖Ψ‖H1(Ω) ≤ C‖ curl v‖L2(Ω), (5.3)

where the constant C depends only on Ω.
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Proof. Given u ∈ HΓD
(curl,Ω), we define ũ ∈ H(curl, Ω̃), Ω̃ := interior(Ω∪Ω1 ∪Ω2 ∪ . . . )

(see Sect. 1 and Fig. 5.1 for the meaning of Ωi), by

ũ(x) =

{
u(x) for x ∈ Ω ,

0 for x ∈ Ωi for some i .
(5.4)

Notice that the tangential components of ũ are continuous across ∂Ω, which ensures ũ ∈

H(curl, Ω̃). Then extend ũ to u ∈ H(curl,R3), see [16].

Since curl u ∈ H(div 0,R3), Fourier techniques [22, Sect. 3.3] yield a Φ ∈ (H1(R3))3 that

fulfills

curlΦ = curl u , ‖Φ‖H1(R3) ≤ C ‖curl u‖L2(R3) , (5.5)

with C = C(Ω) > 0. As a consequence

curl(u− Φ) = 0 ⇒ u − Φ = gradq in R
3 . (5.6)

On every Ωi, by definition u = 0, which implies q|Ωi
∈ H2(Ωi). As the attached domains Ωi

are well separated Lipschitz domains, see Fig. 5.1, the H2-extension of q|
⋃

i
Ωi

to q ∈ H2(R3)

is possible. Moreover, it satisfies

‖q‖H2(R3) ≤ C‖q‖H2(
⋃

i
Ωi)

≤ C‖Φ‖H1(R3) ≤ ‖curl u‖L2(Ω) . (5.7)

u = Φ− gradq + grad(q + q) . (5.8)

Finally, set Ψ := (Φ− gradq)|Ω, p := q + q, and observe

‖Ψ‖H1(Ω) ≤ ‖Φ‖H1(R3) + ‖q‖H2(R3) ≤ C ‖curl u‖L2(Ω) . (5.9)

The constants may depend on Ω, ΓD, and the chosen Ωi. �

Ω

Ω1

Ω2

Ω3

Fig. 5.1. Buffer zones attached to connected components of (red) Dirichlet boundary part ΓD
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The stable Helmholtz-type decomposition (5.2) immediately suggests the following idea:

when given vh ∈ U(Mh), first split it according to (5.2) and then attack both components by

the uniformly H1-stable local multilevel decompositions explored in the previous section. Alas,

the idea is flawed, because neither of the terms in (5.2) is guaranteed to be a finite element

function, even if this holds for vh.

Fortunately, the idea can be mended by building a purely discrete counterpart of (5.2) as

in [29, Lemma 5.1] (called there “discrete regular decomposition”). For the sake of completeness

we elaborate the proof below.

Lemma 5.1. For any vh ∈ U(Mh), there is Ψh ∈ (V (Mh))3, ph ∈ V (Mh), and ṽh ∈ U(Mh)

such that

vh = ṽh + ΠhΨh + ∇ph , (5.10)

‖ph‖H1(Ω) ≤ C ‖vh‖H (curl,Ω) , (5.11)
∥∥h−1ṽh

∥∥
L2(Ω)

+ ‖Ψh‖H1(Ω) ≤ C ‖curl vh‖L2(Ω) , (5.12)

where the constant C depends only on Ω, ΓD, and the shape regularity of Mh.

Proof. (cf. [29, Lemma 5.1]) We fix a vh ∈ U(Mh) and use the stable regular decomposition

of Thm. 5.2 to split it according to

vh = Ψ + gradp , Ψ ∈ (H1
ΓD

(Ω))3 , p ∈ H1
ΓD

(Ω) . (5.13)

We have already known that the functions Ψ and p satisfy

‖Ψ‖H1(Ω) ≤ C ‖curl vh‖L2(Ω) , ‖gradp‖L2(Ω) ≤ C ‖vh‖H(curl,Ω) , (5.14)

with constants depending only on Ω and ΓD.

Next, note that in (5.13) curlΨ = curl vh ∈ curlU(Mh), and, owing to Lemma 2.1, ΠhΨ

is well defined. Further, a commuting diagram property together with Lemma 2.3 implies

curl(Id− Πh)Ψ = 0 ⇒ ∃q ∈ H1
ΓD

(Ω) : (Id− Πh)Ψ = gradq . (5.15)

The estimate of Lemma 2.1 together with (5.14) yields

∥∥h−1gradq
∥∥

L2(Ω)
=
∥∥h−1(Id− Πh)Ψ

∥∥
L2(Ω)

≤ C|Ψ|H1(Ω) ≤ C ‖curl vh‖L2(Ω) . (5.16)

In order to push Ψ into a finite element space, a quasi-interpolation operator Qh :

(L2(Ω))3 7→ (V (Mh))3 is the right tool. We simply get it from componentwise application of a

standard quasi-interpolation operator for linear Lagrangian finite elements, see [39, Sect. 2.1.1]

and [43]. Thus, we can define the terms in the decomposition (5.10) as

ṽh := Πh(Ψ − QhΨ) ∈ U(Mh) , (5.17)

Ψh := QhΨ ∈ (V (Mh))3 , (5.18)

gradph := grad(p+ q) , ph ∈ V (Mh) . (5.19)

Indeed, grad(p + q) ∈ U(Mh) such that p + q ∈ V (Mh). The stability of the decomposition

(5.10) can be established as follows: first, make use of Lemma 2.1, quasi-interpolation error
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estimates, and the H1(Ω)-stability of quasi-interpolation to obtain, with C = C(ρMh
) > 0,

∥∥h−1ṽh

∥∥
L2(Ω)

≤
∥∥h−1(Id− Πh)(Ψ − QhΨ)

∥∥
L2(Ω)

+
∥∥h−1(Id− Qh)Ψ

∥∥
L2(Ω)

≤ C|(Id− Qh)Ψ|H1(Ω) + |Ψ|H1(Ω)

≤ C|Ψ|H1(Ω) ≤ C ‖curl vh‖L2(Ω) .

Due to the definition (5.18), the next estimate is a simple consequence of the H1(Ω)-continuity

of Qh and Thm. 5.2

‖Ψh‖H1(Ω) ≤ C‖Ψ‖H1(Ω) ≤ C ‖curl vh‖L2(Ω) . (5.20)

Finally, the estimates established so far plus the triangle inequality yield

‖gradph‖L2(Ω) ≤ C ‖vh‖H(curl,Ω) . (5.21)

5.2. Local multilevel splitting of U(Mh)

With the discrete Helmholz-type decomposition of Lemma 5.1 at our disposal, we can now

tackle its piecewise linear and continuous components with Thm. 5.1.

Lemma 5.2. For any vh ∈ U(Mh), there exists a constant C only depending on the domain,

the Dirichlet boundary part ΓD, the shape regularity of the meshes Ml, M̂l, 0 ≤ l ≤ L, and the

constants in (3.3), such that

vh =

L∑

l=0

(
vl + ∇pl

)
, vl ∈ Span

{
B

l
U

}
, pl ∈ Span

{
B

l
V

}
, (5.22)

and

‖v0‖
2
H(curl,Ω) + |p0|

2
H1(Ω) +

L∑

l=1

h−2
l

(
‖vl‖

2
L2(Ω) + ‖pl‖

2
L2(Ω)

)
(5.23)

≤ C ‖vh‖
2
H(curl,Ω) ,

where B
l
V and B

l
U are defined in (4.9).

Proof. We start from the discrete Helmholtz-type decomposition of vh in (5.10):

vh = ṽh + ΠhΨh + ∇ph, Ψh ∈ (V (Mh))3, ph ∈ V (Mh), ṽh ∈ U(Mh).

We apply the result of Thm. 5.1 about the existence of stable local multilevel splittings of

V (Mh) componentwise to Ψh: this gives

Ψh =

L∑

l=0

Ψl , Ψl ∈ Span
{
B

l
V

}3
, (5.24)

|Ψ0|
2
H1(Ω) +

L∑

l=1

h−2
l ‖Ψl‖

2
L2(Ω) ≤ C|Ψh|

2
H1(Ω) . (5.25)
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Observe that the functions Ψl do not belong to U(Ml). Thus, we target them with edge

element interpolation operators Πl onto U(Ml), see (2.7), and obtain the splitting described

in Lemma 2.2:

Ψl = ΠlΨl + ∇wl , wl ∈ Ṽ2(Ml) . (5.26)

The gradient terms introduced by (5.26) are well under control: writing sh :=
∑L

l=0 wl, the

L2-stability of (5.26), see Lemma 2.2, yields

‖ΠlΨl‖L2(Ω) ≤ C ‖Ψl‖L2(Ω) ,

|sh|
2
H1(Ω) ≤ C

( L∑

l=0

‖Ψl‖L2(Ω)

)2

≤ C

L∑

l=0

h2
l ·

L∑

l=0

h−2
l ‖Ψl‖

2
L2(Ω)

(5.25)

≤ C|Ψh|
2
H1(Ω) .

Because of curlΠ0Ψ0 = curlΨ0, we infer from (5.25)

‖Π0Ψ0‖
2
H(curl,Ω) +

L∑

l=1

h−2
l ‖ΠlΨl‖

2
L2(Ω) ≤ C|Ψh|

2
H1(Ω) . (5.27)

Above and throughout the remainder of the proof, constants are independent of L.

By the projector property Πh ◦Πl = Πl, l = 0, . . . , L, and the commuting diagram property

(2.11), we arrive at

vh = ṽh +

L∑

l=0

ΠlΨl + grad(Ihsh + ph) , (5.28)

where Ih is the nodal linear interpolation operator onto V (Mh). Recall (2.22) to see that

|Ihsh + ph|H1(Ω) ≤ C|sh|H1(Ω) + |ph|H1(Ω) ≤ C ‖vh‖H(curl,Ω) .

The local multilevel splitting of Ihsh + ph according to Thm. 5.1 gives

Ihsh + ph =

L∑

l=0

pl , pl ∈ Span
{
B

l
V

}
, (5.29)

|p0|
2
H1(Ω) +

L∑

l=1

h−2
l ‖pl‖

2
L2(Ω) ≤ C|Ihsh + ph|

2
H1(Ω) ≤ C ‖vh‖

2
H(curl,Ω) . (5.30)

Still, the contribution ṽh does not yet match (4.11). The idea is to distribute ṽh to the terms

ΠlΨl by scale separation. To that end, we assign a level to each active edge of Mh

ℓ(E) := min{ℓ(K) : K ∈ Mh, E is edge of K} , E ∈ E(Mh) . (5.31)

Thus, we distinguish parts of ṽh on different levels: given the basis representation

ṽh =
∑

E∈E(Mh)

αEbE , {bE}E∈E(Mh) = BU(Mh) , (5.32)
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we split

ṽh =

L∑

l=0

ṽl , ṽl :=
∑

E∈E(Mh)

ℓ(E)=l

αEbE , supp(ṽl) ⊂ ωl . (5.33)

The estimate ∥∥h−1ṽh

∥∥
L2(Ω)

≤ C ‖curl vh‖L2(Ω)

from Lemma 5.1 means that ṽh is “small on fine scales”. Thanks to the L2-stability (2.6) of

the edge bases, this carries over to ṽl:

L∑
l=0

h−2
l ‖ṽl‖

2
L2(Ω) ≤ C

L∑

l=0

h−2
l

∑

E∈E(Mh),ℓ(E)=l

α2
E ‖bE‖

2
L2(Ω)

≤ C

L∑

l=0

h−2
l

∑

E∈E(Mh),ℓ(E)=l

α2
E ‖bE‖

2
L2(TE)

≤ C

L∑

l=0

h−2
l ‖ṽh‖

2
L2(Σl)

≤ C
∥∥h−1ṽh

∥∥2

L2(Ω)
, (5.34)

where TE ∈ Mh is coarsest element adjacent to E, cf. (5.31), and refinement strips are defined

by

Σl := ωl \ ωl+1 , 0 ≤ l < L, ΣL := ωL , (5.35)

see Figs. 4.1 and 4.2.

Yet, in the case of bisection refinement, ṽl may not be spanned by basis functions in B
l
U,

because the basis functions of U(Mh) attached to each edge on Σl

⋂
ωl+1, 0 ≤ l < L do not

belong to any B
l
U!

E

Edge E, support of basis function

bE

E

Support of b
l
E

E1

E2

Edges supporting b
l+1
E1

, b
l+1
E2

Fig. 5.2. Basis function with which bE can be represented

Take any E ⊂ Σl

⋂
ωl+1. Let bE , bl

E , and bl+1
E be the basis functions of U(Mh), U(Ml),

and U(Ml+1) associated with E, see Fig. 5.2 for a 2D illustration. Denote by K1, . . . ,Kn all

elements in ωl+1 and Ml which contain E, and by E1, . . . , Em their new edges connecting E but
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not contained in the refinement edges of K1, . . . ,Kn (see Fig. 5.3). Supposing the orientations

of each Ei and E point to their common endpoint, we have

bE = bl
E +

1

2

m∑

i=1

bl+1
Ei

. (5.36)

This decomposition is L2-stable with constants merely depending on shape regularity.

E 

K
i
 

E
j

Fig. 5.3. Situation at an edge E lying on the interface between Σl and ωl+1.

Since
∑m

i=1 bl+1
Ei

∈ B
l+1
U , we may move the component of ṽl associated with this term to

ṽl+1 for any E. Then the decomposition (5.33) and the stability estimate (5.34) remain valid.

Summing up, the stability estimate (5.27) is preserved after replacing ΠlΨh with ΠlΨh +

ṽl ∈ U(Ml). �

Eventually, the proof of Thm. 4.2 is readily accomplished. With Lemma 5.2 at our disposal,

we merely appeal to the L2-stabilities expressed in (2.6) and (2.9) and inverse inequalities to

see that all components in (5.22) can be split into local contributions of basis functions in B
l
U

and B
l
V , respectively.

6. Numerical Experiments

In the reported numerical experiments the implementation of adaptive mesh refinement was

based on the adaptive finite element package ALBERTA [41], which uses the bisection strategy

of [33], see Sect. 3.

Let M0 be an initial mesh satisfying the two assumptions (A1) and (A2) in [33, P. 282],

the adaptive mesh refinements are governed by a residual based a posteriori error estimator.

In the experiments we assume the current density f ∈ H(div,Ω) and use the estimator given

by [17, §5]: given a finite element approximation uh ∈ U(Mh), for any T ∈ Mh

η2
T := h2

T ‖f − uh‖
2
H(div,T ) +

hT

2

∑

F⊂∂T

{
‖[uh]F ‖

2
0,F + ‖[curl uh × ν]F ‖

2
0,F

}
,
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where F is a face of T , ν is the unit normal of F , and [uh]F is the jump of uh across F . The

global a posteriori error estimate and the maximal estimated element error on Mh are defined

by

ηh :=

(
∑

T∈Mh

η2
T

)1/2

, ηmax = max
T∈Mh

ηT . (6.1)

Using ηh and ηmax, we use [17, Algorithm 5.1] to mark and refine Mh adaptively.

In the following, we report two numerical experiments to demonstrate the competitive be-

havior of the local multigrid method and to validate our convergence theory.

Example 6.1. We consider the Maxwell equation on the three-dimensional “L-shaped” domain

Ω = (−1, 1)3\{(0, 1)×(−1, 0)×(−1, 1)}. The Dirichlet boundary condition and the righthand

side f are chosen so that the exact solution is

u := ∇
{
r1/2 sin(φ/2)

}

in cylindrical coordinates (r, φ, z).

Table 6.1 shows the numbers of multigrid iterations required to reduce the initial residual by

a factor 10−8 on different levels. We observe that the multigrid algorithm converges in almost

the same small number of steps, though the number of elements varies from 156 to 100,420.

Table 6.1: The number of adaptive iterations Nit, the number of elements Nel, the number of multigrid

iterations Nitrs required to reduce the initial residual by a factor 10−8, the relative error between the

true solution u and the discrete solution uh: Erel = ‖u − uh‖H(curl,Ω) / ‖u‖
H(curl,Ω) (Example 6.1).

Nit 2 5 10 15 20 25 30 35

Nel 156 388 1,900 4,356 9608 19,424 48,088 100,420

Erel 0.4510 0.3437 0.2456 0.1919 0.1600 0.1350 0.1094 0.0915

Nitrs 11 21 19 19 19 19 19 19

Fig. 6.1 (left) plots the CPU time versus the number of degrees of freedom on different

adaptive meshes. It shows that the CPU time of solving the algebraic system increases roughly

linearly with respect to the number of elements. Fig. 6.1 (rught) depicts a locally refined mesh

of 100,420 elements created by the adaptive finite element algorithm.
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Fig. 6.1. Example 6.1, left: execution time for local multigrid method, right: instance of a locally refined

mesh (100,420 elements)
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Table 6.2: The number of adaptive iterations Nit, the number of elements Nel, the number of multigrid

iterations Nitrs required to reduce the initial residual by a factor 10−8, the relative error between the

true solution u and the discrete solution uh: Erel = ‖u − uh‖H(curl,Ω) / ‖u‖
H(curl,Ω) (Example 6.2).

Nit 2 5 10 15 20 25 30 33

Nel 128 404 1,236 3,416 12,420 29,428 81,508 135,876

Erel 0.4616 0.3762 0.2992 0.2347 0.1752 0.1394 0.1095 0.0958

Nitrs 14 30 25 26 26 27 27 27

Example 6.2. This example uses the same solution as Example 6.1

u := ∇
{
r1/2 sin(φ/2)

}

in cylindrical coordinates (r, φ, z). But the computational domain is changed to a three-

dimensional non-Lipschitz domain with an inner crack-type boundary, which is defined by

Ω = (−1, 1)3 \ {(x, 0, z) : 0 ≤ x < 1, −1 < z < 1}.

The Dirichlet boundary condition and the source function f are the same as above.

Table 6.2 records the numbers of multigrid iterations required to reduce the initial residual

by a factor 10−8 on different levels. We observe that the multigrid algorithm converges in less

than 30 steps, with the number of elements soaring from 128 to 135,876.

Fig. 6.2 (left) shows the CPU time versus the number of degrees of freedom on different

adaptive meshes. Obviously, the CPU time for solving the algebraic system increases nearly

linearly with respect to the number of elements.

Fig. 6.2 (right) displays a locally refined mesh of 135,876 elements using adaptive finite

element algorithm. In addition, the restriction of the mesh to the cross-section {y = 0}, which

contains the inner boundary, is drawn. This reveals strong local refinement.

This experiment bears out that the local multigrid is also efficient for the problems in non-

Lipschitz doamins, which are outside the scope of our theory.
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Fig. 6.2. Example 6.2, left: CPU time for solving the algebraic system by multigrid method, right: a

locally refined mesh (135,876 elements)
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