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Abstract

We study the smooth LU decomposition of a given analytic functional λ-matrix A(λ)

and its block-analogue. Sufficient conditions for the existence of such matrix decomposi-

tions are given, some differentiability about certain elements arising from them are proved,

and several explicit expressions for derivatives of the specified elements are provided. By

using these smooth LU decompositions, we propose two numerical methods for computing

multiple nonlinear eigenvalues of A(λ), and establish their locally quadratic convergence

properties. Several numerical examples are provided to show the feasibility and effective-

ness of these new methods.
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1. Introduction

The importance of constant matrix decompositions cannot be overstressed, as they are not
only basic methods in matrix computations and analyses, but also applicable tools in other
areas beyond mathematics. However, the smooth decompositions of matrices depending on
some parameters are by no means less important.

In fact, fundamental theory on decompositions of a matrix-valued function A(λ) is given in
Kato’s book [21], in which one of the strongest results is that A(λ) has an analytic spectral
decomposition in the case that A(λ) is real, analytic and Hermitian. Here, A(λ) = (aij(λ))
denotes an n-by-n matrix with all elements aij(λ), i, j = 1, 2, . . . , n, being analytic functions
with respect to a real or a complex parameter λ; it is called a functional λ-matrix in [20] or a
matrix-valued function in [26]; in particular, if aij(λ) are polynomials in λ, then it is called a
λ-matrix or a matrix polynomial in [25]. Based on the work in [20,23,34], Li [27,28] developed
QR decomposition and its block-analogue for a differentiable matrix-valued function, and gave
sufficient conditions for guaranteeing the existence of a differentiable QR decomposition. In [6]
the authors showed that a real analytic matrix-valued function admits an analytic singular
value decomposition, and Wright further presented a numerical method in [43] for finding a
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smooth singular value decomposition of a matrix solely depending on a single parameter. It
is noticed that Gingold and Hsieh [13] used a different approach to show that a real analytic
matrix-valued function with only real eigenvalues admits an analytic Schur decomposition.
Then, Dieci and Eirola [10] considered smooth QR, smooth Schur, and smooth singular value
decompositions as well as their block-analogues, gave sufficient conditions for guaranteeing the
existence of such matrix decompositions, and derived differential equations for the involved
factors. Recently, Rebaza [33] applied smooth block Schur decompositions of matrix-valued
functions to numerical computations of the separatrices in dynamical systems, and analyzed
the actual implementations of the correspondingly induced numerical method.

One important application of the above-described smooth matrix decompositions is that
they may lead to effective numerical methods for solving nonlinear eigenvalue problems (NEPs)
of the form

A(λ)x = 0, (1.1)

where λ and x, known as the eigenvalue and the eigenvector, respectively, are the variables to
be determined. The NEP (1.1), including the typical linear and quadratic eigenvalue problems
as special cases, is of great importance in a large number of disciplines of scientific comput-
ing and engineering applications such as density functional theory calculations [4], vibration of
viscoelastic structures [9], dynamic finite element method [11], photonic band structure calcu-
lations [38], vibration of fluid-solid structures [40], and so on.

When A(λ) is a matrix polynomial, the NEP (1.1) can be reformulated as a linear eigenvalue
problem [24, 31] and, hence, it may be effectively solved by the Jacobi-Davidson method; see,
e.g., [19,36]. In general, the NEP (1.1) may be first reformulated as a system of nonlinear equa-
tions through either adding a normalization equation v∗x = 1 or computing the characteristic
polynomial c(λ) := det(A(λ)), and then solve the so-obtained nonlinear system by utilizing the
classical Newton method, see [2, 22, 25, 34], where and in the sequel, det(·) is used to represent
the determinant of the corresponding matrix. Here, the vector v∗, the conjugate transpose of
the complex vector v, can be chosen flexibly so that either the nonlinear function may satisfy
certain desired property or various iteration methods can be produced. For example, for v = x

we can obtain the Rayleigh quotient iteration, see [24,25,34].
It was shown in [34] that the Newton method resulted from the first approach is equivalent to

the inverse iteration discussed in [39], which converges quadratically under the nondegeneracy
condition [37, 38]. However, the inverse iteration requires to solve a linear system with the
coefficient matrix A(λ(k)) at each iteration step k. The Newton method resulted from the
second approach has the succinct expression

λ(k+1) = λ(k) − 1
tr

(
A(λ(k))−1A′(λ(k))

) , k = 0, 1, 2, . . . ,

where tr(·) denotes the trace of the corresponding matrix and A′(λ(k)) the derivative with
respect to the variable λ of the matrix-valued function A(λ) at λ = λ(k). For details, we refer
to [22, 25]. Once the eigenvalues are available, the eigenvectors can be approximated by the
inverse iteration [32, 37]. However, we should mention that the latter approach is less efficient
for larger matrices. We refer to [1] for another elegant derivation of a scalar function having
the same zeros as c(λ) and for several iteration methods.

To overcome the disadvantages of the afore-described Newton-type methods, many authors
have presented and analyzed various iteration methods such as the modified inverse itera-
tion [29], the Arnoldi method [41], the rational Krylov subspace method [35], and the Jacobi-
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Davidson method [5]. However, none of these methods can exempt from the intrinsic difficulties
caused from the nonlinearity.

Differently, based on the QR decomposition of the matrix-valued function A(λ) with col-
umn pivoting, Kublanovskaya [23] developed a more implicit strategy for constructing iterative
methods of the Newton-type for finding eigenvalues of the NEP (1.1). Let

A(λ)P (λ) = Q(λ)R(λ)

be the column-pivoting QR decomposition of A(λ), where P (λ) is a permutation matrix, Q(λ)
a unitary matrix, and R(λ) = (rij(λ)) an upper-triangular matrix with the diagonal elements
being ordered as

r11(λ) ≥ r22(λ) ≥ · · · ≥ rnn(λ).

Then the zero points of the function e(λ) := rnn(λ) are the eigenvalues of the NEP (1.1). The
classical Newton method can be employed to compute the zero points of e(λ), which is well
defined by using the smooth QR decomposition developed in [27] for a differentiable A(λ).

Of course, a Newton-type method based on the smooth singular value decomposition was
also discussed for solving the NEP (1.1) in [15], but it could be computationally too complicated
and costly to be used in actual applications.

Because an LU decomposition of a constant matrix is more efficient and easily realizable than
a QR or a singular value decomposition, we can alternatively establish Newton-type methods
for solving the NEP (1.1) through computing the zeros of f(λ) := unn(λ) determined by the
following LU decomposition of the matrix-valued function A(λ) with partial pivoting:

P (λ)A(λ) = L(λ)U(λ),

where P (λ) is a permutation matrix, L(λ) a unit lower-triangular matrix, and U(λ) = (uij(λ))
an upper-triangular matrix; see [20,42]. Note that a theoretical guarantee for the well-definiteness
of the so-derived Newton-type methods is the continuous differentiability of the decomposition
factor unn(λ). Here, we remark that in general it is not necessary for every eigenvalue of A(λ)
to be a zero point of f(λ), but a complete pivoting strategy may guarantee the validity of this
statement. For example, we consider the matrix-valued function

A(λ) =
(

λ− 1 1
0 λ− 3

)

of an upper-triangular form. Evidently, f(λ) := u22(λ) = λ − 3 only has a single zero point,
whereas A(λ) has two eigenvalues 1 and 3. However, when a complete pivoting strategy is
adopted, the correspondingly obtained function f(λ) := u22(λ) just have two zero points 1 and
3 with respect to different initial values, which gives exactly all eigenvalues of the A(λ).

In this paper, we will develop the smooth LU decomposition and its block-analogue for
the matrix-valued function A(λ), so that a theoretical foundation for using the Newton-type
methods to solve the NEP (1.1) can be established. Moreover, we will give sufficient conditions
for guaranteeing the existence of such a matrix decomposition, derive several explicit expressions
for derivatives of certain elements in the decomposition factors, and present efficient procedures
for computing these derivatives. Based on the smooth LU decomposition and its theory, we will
establish new Newton-type methods for computing the multiple eigenvalues of the NEP (1.1),
and prove their locally quadratic convergence.

The organization of the paper is as follows. In Section 2, we develop the smooth LU decom-
position and its block-analogue for the matrix-valued function, prove the existence theorems,
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and give derivative expressions of certain involved elements. In Section 3, two Newton-type
methods based on the smooth LU decompositions with complete pivoting are established for
computing the multiple eigenvalues of the NEP (1.1). The locally quadratic convergence of
these new methods are analyzed in Section 4, and several numerical examples are given in
Section 5 to show the feasibility, effectiveness and accuracy of the new methods. Finally, in
Section 6, we use some conclusions and remarks to end this paper.

2. The Smooth LU Decompositions

In this section, we will develop the smooth LU decomposition and its block-analogue for the
matrix-valued function A(λ).

For convenience, we introduce the following notations. Rm×n and Cm×n represent the sets
of all real and complex m×n matrices, respectively. In particular, it stands that Rm = Rm×1,
Cm = Cm×1, R = R1 and C = C1. Ln and Un denote the sets of all n × n unit lower-
triangular matrices and all n × n upper-triangular matrices, respectively. We use I to denote
the identity matrix of suitable size, ej the j-th column vector of I, I(j) = [e1, e2, . . . , ej ], and
K(j) = [en−j+1, en−j+2, . . . , en]. In addition, ‖ · ‖2 and ‖ · ‖F represent the Euclidean and the
Frobenius matrix norms, respectively, and ‖ · ‖ is used to simply denote the Euclidean vector
or matrix norm without causing any confusion. An m × n matrix A can be partitioned into
columns as A = [a1, a2, . . . , an], with aj its j-th column vector. Then we can define the vector
col(A) := [aT

1 , aT
2 , . . . , aT

n ]T , where (·)T denotes the transpose of either a vector or a matrix.

2.1. The Smooth LU Decompositions

We first develop the smooth LU decomposition in the pointwise form for the matrix-valued
function A(λ). To this end, we need the following preparatory lemmas.

Lemma 2.1. Let D be a domain in R or C, and A(λ) be an analytic matrix-valued function
defined on D. Then there exist a unit lower-triangular matrix L(λ) and an upper-triangular
matrix U(λ), both unique and analytic in D, such that

A(λ) = L(λ)U(λ),

provided all leading principal minors of A(λ) are nonzero for any λ ∈ D.

Lemma 2.1 can be easily proved by induction. By directly extending Lemma 2.1 in [10], we
can get the following result.

Lemma 2.2. Assume that B(λ) ∈ Cm×m, C(λ) ∈ Cn×n and F (λ) ∈ Cm×n are analytic
matrix-valued functions defined on a domain D ⊆ C, and both B(λ) and C(λ) are invertible on
D. Then the solution of the matrix equation

B(λ)X(λ)C(λ) = F (λ)

is analytic on D.

Now, we establish the main theorem about the existence of the smooth LU decomposition
in the pointwise form for the matrix-valued function A(λ).
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Theorem 2.1. Let A(λ) ∈ Cn×n be a differentiable matrix-valued function on the domain
D ⊆ C such that det(A(λ0)) 6= 0 holds at a given point λ0 ∈ D. Assume that there exists an
n× n permutation matrix P such that PA(λ0) has an LU decomposition

PA(λ0) = L0U0, (2.1)

with L0 ∈ Ln and U0 ∈ Un. Then there exists a neighborhood of λ0, say, N(λ0) ⊆ D, such that
for all λ ∈ N(λ0) the matrix-valued function PA(λ) has an LU decomposition

PA(λ) = L(λ)U(λ), for λ ∈ N(λ0),

which satisfies
L(λ0) = L0 and U(λ0) = U0.

In addition, both L(λ) and U(λ) are differentiable at the point λ0. Moreover, it holds that

eT
nU(λ)en =eT

nU0en + eT
nL−1

0 PA′(λ0)
(
en − I(n−1)(I(n−1)T

U0I
(n−1))−1I(n−1)T

U0en

)

· (λ− λ0) + o(|λ− λ0|). (2.2)

Proof. Clearly, A(λ) can be expressed as

A(λ) = A(λ0) + A′(λ0)(λ− λ0) + o(|λ− λ0|). (2.3)

Denote
E(λ) = A′(λ0)(λ− λ0) + o(|λ− λ0|)

satisfying E(λ0) = 0. Hence, it holds that

L−1
0 PA(λ) = L−1

0 PA(λ0) + L−1
0 PE(λ) := U0 + Ê(λ),

with
Ê(λ) = L−1

0 PA′(λ0)(λ− λ0) + o(|λ− λ0|)
satisfying

Ê(λ0) = lim
λ→λ0

Ê(λ) = 0.

Now, partition the matrices U0 and Ê(λ) into the blockwise forms as

U0 =
(

U11 U12

0 unn

)
and Ê(λ) =

(
Ê11(λ) Ê12(λ)
Ê21(λ) ênn(λ)

)
,

respectively, with U11, Ê11(λ) ∈ C(n−1)×(n−1). Then we know from the hypothesis det(A(λ0)) 6=
0 that U11 is invertible and unn is nonzero. Therefore, there exists a neighborhood of λ0, say,
N(λ0) ⊆ D, such that

Û11(λ) := U11 + Ê11(λ)

is invertible. Moreover, because A(λ) is differentiable on the domain D ⊆ C, the matrix-valued
functions Ê11(λ), Ê12(λ) and Ê21(λ) as well as the λ-function ênn(λ) are differentiable at λ0.
It follows from Lemma 2.2 that the matrix-valued function

L1(λ) :=

(
I 0

−Ê21(λ)(U11 + Ê11(λ))−1 1

)
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is differentiable at λ0. Moreover, straightforward operations can yield

L1(λ)−1L−1
0 PA(λ) =

(
Û11(λ) Û12(λ)

0 unn(λ)

)
,

where

Û12(λ) = U12 + Ê12(λ)

and

unn(λ) = unn + ênn(λ)− Ê21(λ)(U11 + Ê11(λ))−1(U12 + Ê12(λ))

= unn + eT
nL−1

0 PA′(λ0)
(
en − I(n−1)U−1

11 U12

)
(λ− λ0) + o(|λ− λ0|). (2.4)

Therefore, Û11(λ), Û12(λ) and unn(λ) are differentiable at λ0, and satisfy

Û11(λ0) = U11, Û12(λ0) = U12 and unn(λ0) = unn.

Here, we have used the fact that Ê(λ0) = 0.
By Lemma 2.1, there exist a unit lower-triangular matrix L̂2(λ) and an upper-triangular

matrix Û2(λ), both unique and differentiable at λ0, such that

Û11(λ) = L̂2(λ)Û2(λ)

holds true, with
L̂2(λ0) = I and Û2(λ0) = U11.

Define the matrix-valued functions

L(λ) = L0L1(λ)

(
L̂2(λ) 0

0 1

)
and U(λ) =

(
Û2(λ) L̂2(λ)−1Û12(λ)

0 unn(λ)

)
.

Then it holds that
L(λ0) = L0 and U(λ0) = U0,

and PA(λ) possesses the LU decomposition

PA(λ) = L(λ)U(λ), for λ ∈ N(λ0).

Moreover, both L(λ) and U(λ) are differentiable at λ0. Finally, the expression (2.2) about the
last diagonal element of U(λ) follows directly from (2.1) and (2.4). 2

The proof of Theorem 2.1 readily implies the following observation.

Remark 2.1. If A(λ) ∈ Cn×n is further assumed to be twice continuously differentiable on
the domain D ⊆ C, then the term o(|λ− λ0|) involved in (2.2), as well as (2.3) and (2.4), may
be replaced by a higher-order quantity O(|λ− λ0|2).

Furthermore, through a slight and technical modification of the demonstration of Theo-
rem 2.1, we can obtain the following result about the smooth LU decomposition for the rank-
deficient case.

Corollary 2.1. Let A(λ) ∈ Cn×n be a differentiable matrix-valued function on the domain
D ⊆ C such that rank(A(λ0)) = n − 1 holds at a given point λ0 ∈ D. Assume that there exist
two n× n permutation matrices Pl and Pr such that PlA(λ0)Pr has an LU decomposition

PlA(λ0)Pr = L0U0,
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with L0 ∈ Ln and U0 ∈ Un. Then there exists a neighborhood of λ0, say, N(λ0) ⊆ D, such that
for all λ ∈ N(λ0) the matrix-valued function PlA(λ)Pr has an LU decomposition

PlA(λ)Pr = L(λ)U(λ), for λ ∈ N(λ0),

which satisfies L(λ0) = L0 and U(λ0) = U0. In addition, both L(λ) and U(λ) are differentiable
at the point λ0.

2.2. The Smooth Block LU Decomposition

We now turn to develop the smooth LU decomposition in the blockwise form for the matrix-
valued function A(λ).

Given a positive integer m (1 ≤ m < n). For a constant matrix A ∈ Cn×n, we may define
its block LU decomposition of index m, abbreviated as BLU(m) decomposition, as follows:

A = LU, with L =
(

L11 0
L21 I

)
and U =

(
U11 U12

0 U22

)
, (2.5)

where L11 ∈ Ln−m, U11 ∈ Un−m, and U22 ∈ Cm×m. Note that U22 is a general matrix block.
The set of all matrices L ∈ Ln of the special form shown in (2.5) is denoted by Ln,m.

The definition of the BLU(m) decomposition is, in spirit, similar to the QR-like decompo-
sition presented in [8, 28]. In particular, when m = 1, it naturally reduces to the standard LU
decomposition. Alternatively, we may perform a BLU(m) decomposition by only constructing
a so-called “partial” LU decomposition; see, e.g., [14].

It is obvious that a matrix with a singular leading principal sub-matrix may still admit a
BLU(m) decomposition, but this decomposition may not be unique.

By using the uniqueness of the standard LU decomposition, we can easily prove the existence
and uniqueness of the BLU(m) decomposition defined in the above.

Theorem 2.2. Let A ∈ Cn×n be a matrix with its first n −m (1 ≤ m ≤ n) leading principal
minors being nonzero. Then it has a unique BLU(m) decomposition.

By making use of Lemma 2.2, analogously to the proof of Theorem 2.1 we can demonstrate
the existence of a locally smooth BLU(m) decomposition for the matrix-valued function A(λ).

Theorem 2.3. Given a positive integer m (1 ≤ m < n). Let A(λ) ∈ Cn×n be a differentiable
matrix-valued function on the domain D ⊆ C such that rank(A(λ0)) ≥ n−m holds at a given
point λ0 ∈ D. Let there exist two n×n permutation matrices Pl and Pr such that the first n−m

leading principal minors of the matrix PlA(λ0)Pr are nonzero, and PlA(λ0)Pr has a BLU(m)
decomposition

PlA(λ0)Pr = L0U0,

with L0 ∈ Ln,m and

U0 =
(

U11 U12

0 U22

)
, U11 ∈ Un−m.

Then there exists a neighborhood of λ0, say, N(λ0) ⊆ D, such that for all λ ∈ N(λ0) the
matrix-valued function PlA(λ)Pr has a BLU(m) decomposition

PlA(λ)Pr = L(λ)U(λ), for λ ∈ N(λ0),
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where L(λ) ∈ Ln,m and

U(λ) =
(

U11(λ) U12(λ)
0 U22(λ)

)
, with U11(λ) ∈ Un−m.

Moreover, this BLU(m) decomposition has the following properties:

(a) L(λ0) = L0 and U(λ0) = U0;

(b) both L(λ) and U(λ) are differentiable at the point λ0; and

(c) if the following condition is satisfied:

L−1
0 PlA

′(λ0)Pr =

(
Ã11 Ã12

Ã21 Ã22

)
, with Ã11 ∈ C(n−m)×(n−m),

then it holds that

U22(λ) = U22 + (Ã22 − Ã21U
−1
11 U12)(λ− λ0) + o(|λ− λ0|). (2.6)

Similar to Remark 2.1 about the smooth LU decomposition, we also have the following
observation about the smooth BLU(m) decomposition.

Remark 2.2. If A(λ) ∈ Cn×n is further assumed to be twice continuously differentiable on the
domain D ⊆ C, then the term o(|λ − λ0|) involved in (2.6) may be replaced by a higher-order
quantity O(|λ− λ0|2).

3. The Gauss-Newton-Type Methods for NEPs

In this section, we construct numerical methods of the Gauss-Newton-type for finding a
multiple eigenvalue λ? of the NEP (1.1), for which the matrix A(λ?) has rank n−m (1 ≤ m < n),
through repeatedly using the smooth BLU(m) decomposition with complete pivoting.

To this end, we will further assume in the sequel that the matrix-valued function A(λ) ∈
Cn×n, defined on the domain D ⊆ C, is twice continuously differentiable in a neighborhood
N(λ?) of λ?.

For an eigenvalue λ? of A(λ), if there exists a positive integer µ and a function q(λ) differ-
entiable at λ? such that

det(A(λ)) = (λ− λ?)µq(λ) (3.1)

holds, then the largest positive integer µ satisfying (3.1) is called the algebraic multiplicity of
λ?. We remark that the eigenvalue λ? is said to be simple if µ = 1, and multiple if µ ≥ 2.
For example, the rational polynomial (λ − λ?)5/2 has a zero of algebraic multiplicity 2 at λ?;
our definition, however, does not apply to the rational polynomial (λ − λ?)1/2 as it is not
differentiable at λ?, though it also vanishes at λ = λ?. The geometric multiplicity of the
eigenvalue λ? is defined to be the dimension of the null space ker(A(λ?)) of the matrix A(λ?).

Because rank(A(λ?)) = n − m, with 1 ≤ m < n, from [16] we know that there exist two
n× n permutation matrices P ?

l and P ?
r such that

P ?
l A(λ?)P ?

r = L(λ?)U(λ?), (3.2)
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where L(λ?) ∈ Ln,m and

U(λ?) =
(

U11(λ?) U12(λ?)
0 0

)
, with U11(λ?) ∈ Un−m nonsingular. (3.3)

Let λ(c) ∈ N(λ?) be the current approximation to λ?, and

P
(c)
l A(λ(c))P (c)

r = L(λ(c))U(λ(c))

be the BLU(m) decomposition of the matrix A(λ(c)), where P
(c)
l and P

(c)
r are two n × n

permutation matrices, L(λ(c)) ∈ Ln,m, and

U(λ(c)) =
(

U11(λ(c)) U12(λ(c))
0 U22(λ(c))

)
, with U11(λ(c)) ∈ Un−m.

Then by making use of Theorem 2.3 and Remark 2.2 at the point λ0 := λ(c), we know that the
matrix-valued function P

(c)
l A(λ)P (c)

r has the smooth BLU(m) decomposition

P
(c)
l A(λ)P (c)

r = L(λ)U(λ), for λ ∈ N(λ?),

provided the neighborhood N(λ?) is small enough, where L(λ) ∈ Ln,m and

U(λ) =
(

U11(λ) U12(λ)
0 U22(λ)

)
, with U11(λ) ∈ Un−m.

Moreover, if

L(λ(c))−1P
(c)
l A′(λ(c))P (c)

r =

(
Ã11(λ(c)) Ã12(λ(c))
Ã21(λ(c)) Ã22(λ(c))

)
,

with Ã11(λ(c)) ∈ C(n−m)×(n−m), then it holds that

U22(λ) = U22(λ(c)) + U ′
22(λ

(c))(λ− λ(c)) +O(|λ− λ(c)|2), (3.4)

where

U ′
22(λ

(c)) = Ã22(λ(c))− Ã21(λ(c))U11(λ(c))−1U12(λ(c)). (3.5)

Recalling from Theorem 2.3 that U(λ) is differentiable at the point λ?, by continuity we
may anticipate that U(λ(c)) ≈ U(λ?). It follows immediately from the BLU(m) decomposition
(3.2)-(3.3) of the matrix A(λ?) that U11(λ(c)) is nonsingular and U22(λ(c)) ≈ 0. Therefore, a
feasible strategy for computing a multiple eigenvalue of the matrix-valued function A(λ) may
be to minimize the Frobenius norm of the linear part of U22(λ). This naturally results in the
following Gauss-Newton-type iteration [12] for solving the NEP (1.1):

λ(+) = λ(c) − ‖U ′
22(λ

(c))‖−2
F [col(U ′

22(λ
(c)))]∗col(U22(λ(c))).

Here, we have applied the formulas (3.4)-(3.5), and used (·)∗ to denote the conjugate transpose
of a vector.
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Method 3.1 (The Gauss-Newton-type Method). Assume that λ? is an eigenvalue of
the NEP (1.1) with geometric multiplicity m, and let λ(0) be an initial guess of λ?. Then,
for k = 0, 1, 2, . . . until the sequence {λ(k)} is convergent,

Step 1. evaluate the matrix A(λ) and compute its derivative A′(λ) at λ = λ(k);
Step 2. compute a BLU(m) decomposition of the matrix A(λ(k)) with complete pivoting:

P
(k)
l A(λ(k))P (k)

r = L(λ(k))U(λ(k)),

where P
(k)
l and P

(k)
r are two n× n permutation matrices, L(λ(k)) ∈ Ln,m, and

U(λ(k)) =
(

U11(λ(k)) U12(λ(k))
0 U22(λ(k))

)
, with U11(λ(k)) ∈ Un−m;

Step 3. compute the derivative of U22(λ) at λ = λ(k) by

U ′
22(λ

(k)) = K(m)T

(λ(k))−1P
(k)
l A′(λ(k))P (k)

r (K(m) − I(n−m)U11(λ(k))−1U12(λ(k)));

Step 4. compute

λ(k+1) = λ(k) − ‖U ′
22(λ

(k))‖−2
F [col(U ′

22(λ
(k)))]∗col(U22(λ(k)));

Step 5. if the prescribed accuracy is achieved, then stop. Otherwise, go to Step 1.

Evidently, a practically important problem in the actual implementation of Method 3.1 is
how to determine the geometric multiplicity m of the target eigenvalue λ?. Theoretically, this
problem is equivalent to the determination of rank(A(λ?)). The rank-revealing LU decompo-
sition based on the Gaussian elimination [30] can be used to effectively compute a numerical
rank of the matrix A(λ?); see also [7, 17,18].

Alternatively, we can give a simpler strategy for numerically approximating rank(A(λ?)).
Assume that λ(k) is a good approximation to λ? and

P
(k)
l A(λ(k))P (k)

r = L(λ(k))U(λ(k))

is a BLU(m) decomposition with complete pivoting; see Theorem 2.3. Then the entries of
U(λ(k)) := (uij(λ(k))) possess the property

min
1≤i≤n−m

|uii(λ(k))| À max
n−m+1≤i,j≤n

|uij(λ(k))|.

This property may be useful for approximately determining a numerical rank of the matrix
A(λ(k)), although we have realized that a small U22(λ(k)) (small in the sense of certain norm)
does not generally guarantee that the numerical rank of A(λ(k)) is n−m.

Based on this observation, we have the following strategy for estimating the geometric
multiplicity m of λ?:

Choose a threshold ε > 0, and find the largest integer m such that

max
n−m+1≤i,j≤n

|uij(λ(k))| < ε max
1≤i≤n−m

|uii(λ(k))| ≤ min
1≤i≤n−m

|uii(λ(k))|.
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By incorporating this strategy with Method 3.1, we can obtain the following modified Gauss-
Newton-type method for solving the NEP (1.1).

Method 3.2 (The Modified Gauss-Newton-type Method). Assume that λ? is an
eigenvalue of the NEP (1.1) with geometric multiplicity m, and let λ(0) be an initial guess
of λ?. Then, for k = 0, 1, 2, . . . until the sequence {λ(k)} is convergent,

Step 0. set a threshold ε > 0;
Step 1. evaluate the matrix A(λ) and compute its derivative A′(λ) at λ = λ(k);
Step 2. compute a BLU(m) decomposition of the matrix A(λ(k)) with complete pivoting:

P
(k)
l A(λ(k))P (k)

r = L(λ(k))U(λ(k)),

where P
(k)
l and P

(k)
r are two n× n permutation matrices, L(λ(k)) ∈ Ln,m, and

U(λ(k)) := (uij(λ(k))) =
(

U11(λ(k)) U12(λ(k))
0 U22(λ(k))

)
, with U11(λ(k)) ∈ Un−m;

Step 3. find the largest integer ` (1 ≤ ` < n) such that

max
n−`+1≤i,j≤n

|uij(λ(k))| < ε max
1≤i≤n−`

|uii(λ(k))| ≤ min
1≤i≤n−`

|uii(λ(k))|

and set m := `. If there does not exist such an `, then set m := 1;
Step 4. partition U(λ(k)) into

U(λ(k)) =
(

U11(λ(k)) U12(λ(k))
0 U22(λ(k))

)
, with U11(λ(k)) ∈ Un−m;

Step 5. compute the derivative of U22(λ) at λ = λ(k) by

U ′
22(λ

(k)) = K(m)T

L(λ(k))−1P
(k)
l A′(λ(k))P (k)

r

(
K(m)−I(n−m)U11(λ(k))−1U12(λ(k))

)
;

Step 6. compute

λ(k+1) = λ(k) − ‖U ′
22(λ

(k))‖−2
F [col(U ′

22(λ
(k)))]∗col(U22(λ(k)));

Step 7. if the prescribed accuracy is achieved, then stop. Otherwise, go to Step 1.

In actual implementations of Method 3.2, it is expected that the integer m increases as the
iteration index k is growing. Therefore, we can set m := 1 as the initial choice and use it in the
first few iterates. Then, m may be modified after each number of several iteration steps, and
the threshold ε may be periodically reassessed with proceeding of the computation, too.

Remark 3.1. When m ≡ 1, both Methods 3.1 and 3.2 reduce to the approach given in [20,42].
In this case, Steps 3-4 in Method 3.2 is correspondingly skipped.
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Remark 3.2. The standard LU and QR decompositions require about 1
3n3 and 2

3n3 multipli-
cations, respectively; see [14]. Therefore, Methods 3.1 and 3.2 are generally cheaper than those
given in [28].

4. Convergence Theory

We first establish the perturbation theories about the standard LU and the BLU(m) decom-
positions for a constant matrix, which are necessary for demonstrating the local convergence of
the Gauss-Newton-type methods in Section 3.

Lemma 4.1. Let B ∈ Cn×n be a constant matrix, with its first n− 1 leading principal minors
being nonzero, and ∆B ∈ Cn×n be a given perturbation increment to the matrix B. For a given
sufficiently small ε > 0, assume that ‖∆B‖ < ε.

(a) If B = LBUB is an LU decomposition of the matrix B, then the matrix B := B + ∆B

possesses an LU decomposition B = LBUB such that

‖LB − LB‖ ≤ κLε and ‖UB − UB‖ ≤ κUε,

where κL and κU are constants independent of B.

(b) If B = LBUB is a BLU(m) decomposition of the matrix B, with 1 ≤ m < n being a
prescribed integer, then the matrix B := B + ∆B possesses a BLU(m) decomposition
B = LBUB such that

‖LB − LB‖ ≤ κLε and ‖UB − UB‖ ≤ κUε,

where κL and κU are constants independent of B.

Proof. We only prove (a), as (b) can be demonstrated in an analogous fashion. Let L be
any unit lower-triangular matrix, and define

LB = LBL and UB = L
−1

(UB + L−1
B ∆B).

Then it holds that
LBUB = LBUB + ∆B = B.

Note that

LB − LB = LB(I − L) and UB − UB = (I − L
−1

)UB − L
−1

L−1
B ∆B.

We now partition the matrices UB and L−1
B ∆B into blocks as

UB =

(
U

(B)
11 U

(B)
12

0 u
(B)
nn

)
and L−1

B ∆B =
(

∆E11 ∆E12

∆E21 ∆enn

)
,

where U
(B)
11 , ∆E11 ∈ C(n−1)×(n−1). It then follows that all leading principal minors of U

(B)
11 +

∆E11 are nonzero, provided ε is small enough. Therefore, we have the LU decomposition
U

(B)
11 +∆E11 = L̂1Û1, with L̂1 ∈ Ln−1 and Û1 ∈ Un−1. According to [3, Theorem 3.1], we know

that there exist positive constants ν1 and ν2, independent of ∆E11, such that there hold

‖L̂1 − I‖ ≤ ν1ε and ‖Û1 − U
(B)
11 ‖ ≤ ν2ε.
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Hence, we can further obtain the estimates

‖L̂−1
1 − I‖ ≤ κ1ε and ‖∆E21(U

(B)
11 + ∆E11)−1‖ ≤ κ2ε,

where κ1 and κ2 are constants independent of ∆B.
By constructing the unit lower-triangular matrix

L =

(
L̂1 0

∆E21(U
(B)
11 + ∆E11)−1L̂1 1

)
,

we can easily verify that LB ∈ Ln and UB = L
−1

(UB + L−1
B ∆B) ∈ Un hold true, and LB and

UB possess the required properties. 2

Let A(λ) ∈ Cn×n be a twice continuously differentiable matrix-valued function on the
domain D ⊆ C, and λ? ∈ D be an eigenvalue of A(λ) with geometric multiplicity m (1 ≤ m < n).
Then we easily know from Theorem 2.2 that the BLU(m) decomposition of the matrix-valued
function PlA(λ)Pr, defined in Theorem 2.3 by setting λ0 = λ?, is uniquely determined for
all λ ∈ N(λ?), a neighborhood of λ?, provided the permutation matrices Pl and Pr have been
finally computed by a complete pivoting. In general, the permutation matrices are not uniquely
determined by a complete pivoting during the BLU(m)-decomposition process. This may cause
some difficulty in the convergence analyses of Methods 3.1 and 3.2. However, the following
lemma about the property of the function

f(λ,m, Pl, Pr) := ‖U ′
22(λ)‖2F

affords a tool for overcoming such a difficulty.

Lemma 4.2. Let A(λ) ∈ Cn×n be a twice continuously differentiable matrix-valued function
on the open connected domain D ⊆ C, and λ? ∈ D be an eigenvalue of A(λ) with geometric
multiplicity m (1 ≤ m < n).

(a) If the first n − 1 leading principal minors of A(λ) are nonzero, then f(λ,m,Pl, Pr) is
continuous with respect to λ ∈ D.

(b) If (P (1)
l , P

(1)
r ) and (P (2)

l , P
(2)
r ) are two pairs of permutation matrices with respect to two

BLU(m) decompositions of the matrix A(λ?) with complete pivoting, respectively, then it
holds that

f(λ?,m, P
(1)
l , P (1)

r ) > 0 ⇐⇒ f(λ?,m, P
(2)
l , P (2)

r ) > 0. (4.1)

Proof. (a) is a straightforward conclusion of Theorem 2.3 and Lemma 4.1, as well as (2.6).
So, now we turn to prove (b).

Assume on the contrary that (4.1) does not hold true. Without loss of generality, we suppose
that

f(λ?,m, P
(1)
l , P (1)

r ) > 0, and f(λ?,m, P
(2)
l , P (2)

r ) = 0.

According to (3.2) and (3.3), we have

P
(`)
l A(λ?)P (`)

r = L(`)(λ?)U (`)(λ?), ` = 1, 2,

where L(`)(λ?) ∈ Ln,m and

U (`)(λ?) =

(
U

(`)
11 (λ?) U

(`)
12 (λ?)

0 0

)
, with U

(`)
11 (λ?) ∈ Un−m nonsingular.
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It follows from Theorem 2.3 that there exists a neighborhood N(λ?) of λ? such that for any
λ ∈ N(λ?) the matrix-valued functions P

(`)
l A(λ)P (`)

r , ` = 1, 2, have the BLU(m) decompositions

P
(`)
l A(λ)P (`)

r = L(`)(λ)U (`)(λ), ` = 1, 2,

with L(`)(λ) ∈ Ln,m and

U (`)(λ) =

(
U

(`)
11 (λ) U

(`)
12 (λ)

0 U
(`)
22 (λ)

)
, U

(`)
11 (λ) ∈ Un−m,

which possess the properties:

(P1) for ` = 1, 2, U
(`)
11 (λ) are invertible;

(P2) U
(1)
22 (λ) = d U

(1)
22 (λ?)
d λ (λ− λ?) +O(|λ− λ?|2), with d U

(1)
22 (λ?)
d λ 6= 0; and

(P3) U
(2)
22 (λ) = O(|λ− λ?|2).

Now, denote by

V (`)(λ) =

(
U

(`)
11 (λ) U

(`)
12 (λ)

0 I

)
and D(`)(λ) =

(
I 0
0 U

(`)
22 (λ)

)
, ` = 1, 2.

Then it holds that

A(λ) = L
(`)
l (λ)D(`)(λ)M (`)(λ), ` = 1, 2,

where
L

(`)
l (λ) = P

(`)T

l L(`)(λ) and M (`)(λ) = V (`)(λ)P (`)T

r ,

which are invertible when N(λ?) is sufficiently small. Hence,

D(1)(λ)N (1)(λ) = N (2)(λ)D(2)(λ),

where
N (1)(λ) = M (1)(λ)M (2)(λ)−1 and N (2)(λ) = L

(1)
l (λ)−1L

(2)
l (λ).

Based on the above investigation, by following a similar way to that in [28] we can deduce
the inequalities

0 6= dU
(1)
22 (λ?)
d λ

= lim
λ→λ?

U
(1)
22 (λ)

λ− λ?
= 0,

which is obviously a contradiction. Thus, the statement (4.1) holds true. 2

Just before stating the convergence theorem, we introduce the following useful index, which
is similar to Definition 4.1 in [28].

To this end, we again let A(λ) ∈ Cn×n be a continuously differentiable matrix-valued
function on the domain D ⊆ C, and λ? ∈ D an eigenvalue of A(λ) with geometric multiplicity
m (1 ≤ m < n). Let Pl and Pr be permutation matrices from a BLU(m) decomposition of the
matrix A(λ?) with complete pivoting. If m = n, then we define

Ind(λ?) =
{

1, for ‖A′(λ?)‖ > 0,

0, otherwise;
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and if 1 ≤ m < n, then we define

Ind(λ?) =
{

1, for f(λ?,m, Pl, Pr) > 0,

0, otherwise.

At present, Theorem 2.3 and Lemma 4.2 have readily led to the locally quadratic convergence
for Method 3.1 and, hence, for Method 3.2, too.

Theorem 4.1. (The Local Convergence Theorem). Let A(λ) ∈ Cn×n be a twice continuously
differentiable matrix-valued function on the open connected domain D ⊆ C, and λ? ∈ D be
an eigenvalue of A(λ) with geometric multiplicity m (1 ≤ m < n). Let in Method 3.1 the
initial guess λ(0) satisfy λ(0) ∈ N(λ?), the permutation matrices P

(k)
l and P

(k)
r be independent

of k, and the index Ind(λ?) be constantly equal to 1 for λ(k) ∈ N(λ?), where N(λ?) ⊆ D is
a neighborhood of λ?. Then the iteration sequence {λ(k)}, generated by Method 3.1, is locally
quadratically convergent to λ?, with {λ(k)} ⊂ N(λ?).

Proof. The proof is similar to that of Theorem 4.1 in [28]. Hence, it is omitted. 2

Remark 4.1. By appropriately choosing the threshold ε such that Ind(λ?) ≡ 1, we can anal-
ogously obtain the locally quadratic convergence of Method 3.2, too.

5. Numerical Results

In this section, we use numerical experiments to show the feasibility and effectiveness of
Methods 3.1 and 3.2 for computing the eigenvalues of the NEP (1.1), and also their advantages
over the methods given in [28], in the sense of iteration step, the absolute solution error |λ?−λ(k)|
and the absolute residual error ‖U22(λ(k))‖F (for Methods 3.1 and 3.2) or ‖R22(λ(k))‖F (for
Methods 3.1 and 3.2 in [28]).

In our implementations, all iterations are started from initial guesses close to the exact
solution λ? so that a few iterations are required for the iteration sequences to achieve the
convergence, and terminated once the current iterate satisfies ‖U22(λ(k))‖F ≤ 10−8 (for Methods
3.1 and 3.2) or ‖R22(λ(k))‖F ≤ 10−8 (for Methods 3.1 and 3.2 in [28]). In addition, all codes
are run in MATLAB (version 6.5) with machine precision 10−16 on a Pentium IV personal
computer.

With the numerical results, we are interested in practically verifying the locally quadratic
convergence for the case that λ? is either a distinct or a multiple eigenvalue of the matrix-valued
function A(λ). Besides, in the tables, we use k(m) to denote the value of m determined at the
k-th iteration step.

Example 5.1. ([25]) Consider the quadratic eigenvalue problem A(λ) = λ2G + λB + C, where

G =




−4 4 0 8
−8 8 0 16
4 −4 3 −8
−12 12 −3 25


 , B =




12 −12 0 −24
24 −26 −4 −50
−12 14 −5 26
36 −40 1 −78


 ,
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Table 5.1: Numerical results for Example 5.1 using Method 3.1

Method 3.1 Method 3.1 in [28]
λ? λ(0) k

|λ? − λ(k)| ‖U22(λ
(k))‖F |λ? − λ(k)| ‖R22(λ

(k))‖F

0 2.50e-01 1.72e-01 2.50e-01 1.50e-01

1 1.25 1 2.44e-02 1.71e-02 9.20e-03 6.04e-03

2 1.28e-04 9.04e-05 3.20e-05 2.09e-05

3 4.43e-09 3.13e-09 3.84e-10 2.51e-10

0 4.61e-02 6.42e-01 4.61e-02 5.54e-01

1 1.62e-02 2.90e-01 4.66e-02 6.00e-01

2 2.14e-03 4.15e-02 3.59e-02 4.84e-01
3+
√

7ı
2

1.46 + 1.3ı 3 3.65e-05 7.12e-04 2.26e-02 3.60e-01

4 1.08e-08 2.10e-07 4.50e-03 7.76e-02

5 1.11e-15 2.49e-14 5.34e-05 9.27e-04

6 1.75e-09 3.05e-08

and

C =




−16 16 0 32
−32 34 4 66
16 −18 8 −34
−48 52 −4 101


 .

We can easily check that the matrix-valued function A(λ) has a real and multiple eigenvalue
λ? = 1 of algebraic multiplicity 3 and geometric multiplicity m = 2, and two complex and
multiple eigenvalues λ? = 1

2 (3 ± √
7ı) of algebraic multiplicity 2 and geometric multiplicity

m = 2, where ı is used to represent the imaginary unit.
In Tables 5.1 and 5.2, we list the numerical results computed by Methods 3.1 and 3.2,

respectively, for m = 2. In the implementations of Method 3.2 we take the threshold ε = 10−2

and set m := 1 as the initial value. Then m is adaptively determined by the procedure.
From Tables 5.1 and 5.2 we easily see that both Methods 3.1 and 3.2 show locally quadratic
convergence rates. Moreover, Table 5.2 shows that the geometric multiplicity of the eigenvalues
adaptively determined by Method 3.2 can rapidly achieve the exact ones.

Example 5.2. ([25]) Consider the quadratic eigenvalue problem A(λ) = λ2G + λB + C, where
G = I is the 4× 4 identity matrix, and

B =




3α −(1 + α2 + 2β2) α(1 + 2β2) −β2(α2 + β2)
2 0 0 0
0 2 0 0
0 0 2 0




and

C =




−1 + 2α2 α(1− α2 − 2β2) 2α2β2 −αβ2(α2 + β2)
2α −(α2 + 2β2) 2αβ2 −β2(α2 + β2)
1 0 0 0
0 1 0 0


 ,
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Table 5.2: Numerical results for Example 5.1 using Method 3.2

Method 3.2 Method 3.2 in [28]
λ? λ(0)

k(m) |λ? − λ(k)| ‖U22(λ
(k))‖F k(m) |λ? − λ(k)| ‖R22(λ

(k))‖F

0(1) 2.50e-01 1.75e-01 0(1) 2.50e-01 1.50e-01

1 1.25 1(2) 1.68e-02 1.18e-02 1(2) 9.20e-03 6.04e-03

2(2) 6.60e-05 4.66e-05 2(2) 3.20e-05 2.09e-05

3(2) 1.18e-09 8.34e-10 3(2) 3.84e-10 2.51e-10

0(1) 4.61e-02 1.66e-01 0(1) 4.61e-02 1.09e-01

1(1) 5.34e-03 8.02e-02 1(1) 3.31e-03 5.74e-02
3+
√

7ı
2

1.46 + 1.3ı 2(2) 2.30e-04 4.48e-03 2(2) 1.82e-05 3.16e-04

3(2) 4.26e-07 8.30e-06 3(2) 2.12e-10 3.69e-09

4(2) 1.46e-13 2.85e-11

Table 5.3: Numerical results for Example 5.2 using Method 3.1, α = 0

Method 3.1 Method 3.1 in [28]
λ? λ(0) k

|λ? − λ(k)| ‖U22(λ
(k))‖F |λ? − λ(k)| ‖R22(λ

(k))‖F

0 2.00e-01 4.71e-02 2.00e-01 3.33e-02

1 1.14e-01 1.38e-02 1.14e-01 9.70e-03

2 6.01e-02 3.66e-03 5.99e-02 2.57e-03

3 3.05e-02 9.31e-04 3.04e-02 6.55e-04

4 1.53e-02 2.34e-04 1.52e-02 1.65e-04

5 7.65e-03 5.85e-05 7.63e-03 4.12e-05

6 3.83e-03 1.46e-05 3.82e-03 1.03e-05

0 -0.2 7 1.91e-03 3.66e-06 1.91e-03 2.57e-06

8 9.56e-04 9.15e-07 9.54e-04 6.44e-07

9 4.78e-04 2.29e-07 4.77e-04 1.61e-07

10 2.39e-04 5.72e-08 2.39e-04 4.02e-08

11 1.20e-04 1.43e-08 1.19e-04 1.01e-08

12 5.98e-05 3.57e-09 5.96e-05 2.51e-09

0 2.00e-01 3.80e-01 2.00e-01 3.35e-01

1 3.02e-02 5.20e-02 2.13e-02 3.33e-02

ı 1.2ı 2 4.43e-04 7.54e-04 1.41e-04 2.19e-04

3 7.59e-08 9.29e-09 5.34e-09 8.31e-09

with β = 1 + α and α a problem parameter.

It is clear that the corresponding NEP (1.1) becomes more ill-conditioned and difficult when
|α| is approaching zero; see [1].

We can easily check that the matrix-valued function A(λ) has eight eigenvalues as follows:

−α, −α± (1 + α)ı, ±(1 + α)ı, ±ı, and 0.

In particular, when α = 0, it has three eigenvalues: λ? = ±ı of algebraic multiplicity 3 and
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Table 5.4: Numerical results for Example 5.2 using Method 3.1, α = −1

Method 3.1 Method 3.1 in [28]λ? λ(0) k
|λ? − λ(k)| ‖U22(λ

(k))‖F |λ? − λ(k)| ‖R22(λ
(k))‖F

0 2.00e-01 2.98e-01 2.00e-01 2.55e-01

1 6.30e-02 7.15e-02 4.88e-02 4.73e-02

0 -0.2 2 7.70e-03 7.82e-03 4.96e-03 4.35e-03

3 1.19e-04 1.19e-04 5.87e-05 5.08e-05

4 2.83e-08 8.83e-09 8.33e-09 7.21e-09

0 2.00e-01 2.97e-01 2.00e-01 2.74e-01

1 3.03e-02 4.08e-02 3.30e-02 3.92e-02

1 1.2 2 3.75e-04 5.01e-04 9.29e-04 1.07e-03

3 4.13e-08 5.51e-08 7.19e-07 8.31e-07

4 4.44e-16 5.92e-16 4.31e-13 4.98e-13

0 2.00e-01 1.95e-01 2.00e-01 1.38e-001

1 5.85e-02 4.21e-02 5.68e-02 2.89e-02

ı 1.2ı 2 6.83e-03 4.38e-03 6.46e-03 2.93e-03

3 1.07e-04 6.78e-05 9.69e-05 4.34e-05

4 2.68e-08 9.69e-09 2.23e-08 9.95e-09

geometric multiplicity m = 2, and λ? = 0 of algebraic multiplicity 2 and geometric multiplicity
1; and when α = −1, it has four eigenvalues: λ? = 1 of algebraic multiplicity 3 and geometric
multiplicity 2, λ? = ±ı of both algebraic and geometric multiplicities 1, and λ? = 0 of algebraic
multiplicity 3 and geometric multiplicity 2.

In the computations, we choose the initial guesses λ(0) as follows:

λ(0) =

{
−0.2 or 1.2ı, for α = 0,

−0.2 or 1.2 or 1.2ı, for α = −1.

In Tables 5.3 and 5.4 we list the numerical results computed by Method 3.1 for the exact
geometric multiplicity, and in Tables 5.5 and 5.6 those computed by Method 3.2 for the adap-
tively determined geometric multiplicity. In the implementations of Method 3.2 we again take
the threshold ε = 10−2 and set m := 1 as the initial value. Then m is adaptively determined by
the procedure. From these tables we can see again that both Methods 3.1 and 3.2 show locally
quadratic convergence rates, except for the case λ? = 0 when α = 0, for which only linear
convergence rate is observed. Moreover, Tables 5.5-5.6 show that the geometric multiplicity of
the eigenvalues adaptively determined by Method 3.2 can rapidly achieve the exact ones.

In fact, when α = 0, the eigenvalue λ? = 0 has algebraic multiplicity 2 and geometric
multiplicity 1. Through straightforward calculations we have

P (3, 4)P (1, 2)A(0)P (1, 2)P (3, 4)

=




1 0 0 0

0 1 0 0

−0.5 0 1 0

0 −1 0 1







−2 0 −1 0

0 −1 0 0

0 0 −0.5 0

0 0 0 0




,

where P (i, j) is the elementary matrix that exchanges the i-th and the j-th rows or columns of
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Table 5.5: Numerical results for Example 5.2 using Method 3.2, α = 0

Method 3.2 Method 3.2 in [28]λ? λ(0)

k(m) |λ? − λ(k)| ‖U22(λ
(k))‖F k(m) |λ? − λ(k)| ‖R22(λ

(k))‖F

0(1) 2.00e-01 4.71e-02 0(1) 2.00e-01 3.33e-02

1(1) 1.14e-01 1.38e-02 1(1) 1.14e-01 9.70e-03

2(1) 6.01e-02 3.66e-03 2(1) 5.99e-02 2.57e-03

3(1) 3.05e-02 9.31e-04 3(1) 3.04e-02 6.55e-04

4(1) 1.53e-02 2.34e-04 4(1) 1.52e-02 1.65e-04

5(1) 7.65e-03 5.85e-05 5(1) 7.63e-03 4.12e-05

6(1) 3.83e-03 1.46e-05 6(1) 3.82e-03 1.03e-05

0 -0.2 7(1) 1.91e-03 3.66e-06 7(1) 1.91e-03 2.57e-06

8(1) 9.56e-04 9.15e-07 8(1) 9.54e-04 6.44e-07

9(1) 4.78e-04 2.29e-07 9(1) 4.77e-04 1.61e-07

10(1) 2.39e-04 5.72e-08 10(1) 2.39e-04 4.02e-08

11(1) 1.20e-04 1.43e-08 11(1) 1.19e-04 1.01e-08

12(1) 5.98e-05 3.57e-09 12(1) 5.96e-05 2.51e-09

0(1) 2.00e-01 5.38e-02 0(1) 2.00e-01 3.14e-02

1(1) 1.01e-01 1.36e-02 1(1) 1.03e-01 8.06e-03

2(1) 5.05e-02 3.40e-03 2(1) 5.24e-02 2.05e-03

ı 1.2ı 3(1) 2.53e-02 3.66e-02 3(1) 2.65e-02 4.15e-02

4(2) 6.71e-04 1.14e-03 4(2) 2.25e-04 3.51e-04

5(2) 1.74e-07 2.96e-07 5(2) 1.37e-08 2.13e-08

6(2) 1.18e-14 2.00e-14 6(2) 4.35e-15 1.14e-15

the identity matrix, i, j = 1, 2, 3, 4. It then follows that

P (3, 4)P (1, 2)A(λ)P (1, 2)P (3, 4)

=




1 0 0 0

− 3λ
λ2−2 1 0 0
1

λ2−2 − 2λ
λ4+3λ2+2 1 0

2λ
λ2−2 − 3λ2+2

λ4+3λ2+2
2λ−λ3

(λ2−1)2(λ2+2)−2λ2 1




·




λ2 − 2 2λ −1 0

0 λ4+3λ2+2
λ2−2 −λ3+λ

λ2−2 0

0 0 (λ2−1)2(λ2+2)−2λ2

(λ2−2)(λ2+2) 2λ

0 0 0 λ2[(λ2−1)2(λ2+2)−4]
(λ2−1)2(λ2+2)−2λ2




.

Clearly, it holds that Ind(λ?) = 0. Therefore, the convergence rates of both Methods 3.1 and
3.2 are only linear for the eigenvalue λ? = 0.

6. Concluding Remarks

We have established the existence theories for the smooth LU decomposition and its block-
analogue about a matrix-valued function. Moreover, based on these matrix decompositions we
have presented and analyzed two numerical methods for computing multiple eigenvalues of the



764 H. DAI AND Z.-Z. BAI

Table 5.6: Numerical results for Example 5.2 using Method 3.2, α = −1

Method 3.2 Method 3.2 in [28]
λ? λ(0)

k(m) |λ? − λ(k)| ‖U22(λ
(k))‖F k(m) |λ? − λ(k)| ‖R22(λ

(k))‖F

0(1) 2.00e-01 2.14e-02 0(1) 2.00e-01 1.48e-02

1(1) 1.06e-01 5.72e-03 1(1) 9.72e-02 3.63e-03

2(1) 5.39e-02 1.46e-03 2(1) 4.73e-02 8.87e-04

0 -0.2 3(1) 2.71e-02 3.68e-04 3(1) 2.33e-02 2.13e-02

4(1) 1.36e-02 1.39e-02 4(2) 1.23e-03 1.07e-03

5(2) 3.61e-04 3.61e-04 5(2) 3.65e-06 3.16e-06

6(2) 8.60e-08 9.60e-09 6(2) 3.22e-11 2.79e-11

0(1) 2.00e-01 4.07e-02 0(1) 2.00e-01 2.33e-02

1(1) 1.01e-01 1.03e-02 1(1) 1.01e-01 5.87e-03

2(1) 5.10e-02 2.60e-03 2(1) 5.05e-02 1.47e-03

1 1.2 3(1) 2.55e-02 2.42e-02 3(1) 2.53e-02 2.98e-02

4(2) 2.21e-04 2.94e-04 4(2) 5.42e-04 6.26e-04

5(2) 1.43e-08 9.90e-09 5(2) 2.44e-07 2.82e-07

6(2) 5.00e-14 5.78e-14

0(1) 2.00e-01 1.95e-01 0(1) 2.00e-01 1.38e-01

1(1) 5.85e-02 4.21e-02 1(1) 5.68e-02 2.89e-02

ı 1.2ı 2(1) 6.83e-03 4.38e-03 2(1) 6.46e-03 2.93e-03

3(1) 1.07e-04 6.78e-05 3(1) 9.69e-05 4.34e-05

4(1) 2.68e-08 9.69e-09 4(1) 2.23e-08 9.95e-09

nonlinear eigenvalue problems. The new methods possess locally quadratic convergence rates,
in the viewpoints of both theory and applications. Hence, they are effective solvers for nonlinear
eigenvalue problems.

We remark that the smooth LU decompositions for the matrix-valued functions analytically
depending on several parameters and their applications to solving the corresponding multipa-
rameter eigenvalue problems, in particular, the smooth LDLT decompositions of symmetric
matrix-valued functions and their applications, may be developed in an analogous fashion.
Moreover, the obtained results can be easily specified to the real field.
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