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Abstract

In this paper we study the convergence of adaptive finite element methods for the gen-

eral non-affine equivalent quadrilateral and hexahedral elements on 1-irregular meshes with

hanging nodes. Based on several basic ingredients, such as quasi-orthogonality, estimator

reduction and Döfler marking strategy, convergence of the adaptive finite element methods

for the general second-order elliptic partial equations is proved. Our analysis is effective

for all conforming Qm elements which covers both the two- and three-dimensional cases in

a unified fashion.
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1. Introduction

The adaptive finite element method (AFEM) is an efficient and reliable tool in the numeri-

cal solution of partial differential equations. The typical structure of the adaptive algorithm is

made up of four modules: “Solve”, “Estimate”, “Mark”, and “Refine”. Even though adaptivity

has been a fundamental tool of engineering and scientific computing for about three decades,

the convergence analysis is rather recent. It started with Döfler [15], who introduced a crucial

marking (from now on called Döfler’s marking) and proved the strict energy reduction for the

Laplacian provided the initial mesh T0 satisfies a fineness assumption. By introducing the con-

cept of data oscillation and the interior node property, Morin et al. [21,22] removed restriction

on the initial mesh T0 and proved the convergence of AFEM. Very recently, Cascon et al. es-

tablished the convergence of the self-adjoint second order elliptic problem without interior node

property [9]. All of these results are based on an important tool, i.e., Galerkin-orthogonality.

There are some results about nonstandard finite element methods in the literature. Carstensen

and Hoppe proved the convergence of adaptive nonconforming and mixed finite element meth-

ods [7, 8]. One key ingredient of these papers is the so-called “quasi-orthogonality”. This
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technique is extended to the high order mixed finite element methods for the Poisson equation

in [11]. So far, all the theoretical results have been limited to triangular or tetrahedral meshes.

The objective of this paper is to study the convergence of the adaptive conforming quadri-

lateral and hexahedral element methods. Since quadrilateral and hexahedral elements have

been widely used in practical computing, it is important to study the adaptive algorithms for

these general non-affine equivalent finite elements. As we know, local refinements on triangular

or tetrahedral meshes are well developed, including newest-vertex-bisection, longest edge bisec-

tion and red-green refinement. However, the implementation of local refinement on quadrilateral

and hexahedral meshes is, in some sense, more difficult than that on triangular or tetrahedral

meshes. Nowadays, most researchers in the field of adaptive quadrilateral or hexahedral ele-

ment methods use the so called 1-irregular mesh (see Section 3). By establishing some lemmas

such as quasi-orthogonality, estimator reduction and so on, we finally prove the convergence

of adaptive finite element methods on 1-irregular quadrilateral and hexahedral meshes for the

general second-order elliptic partial equations, in which we can conquer the difficulties due to

the non-affine mapping.

The rest of this paper is organized as follows. In the next section, we present the preliminary

including the notation and the problem under consideration which is followed by the description

of some concepts like shape regularity, hanging node and 1-irregular mesh. In Section 4, we

prove the convergence of the corresponding adaptive algorithms. Since 1-irregular meshes are

not conforming, the degrees of freedom on edges with hanging nodes must be constrained. The

problem of how to assemble a symmetric positive definite stiff matrix will be discussed in Section

5 which also covers some numerical experiments. Conclusions will be presented in Section 6.

2. Problem and General Notations

Let Ω ∈ Rd (d ∈ {2, 3}) be a bounded, polyhedral domain with boundary Γ := ∂Ω. We

assume that the initial mesh T0 is a conforming quadrilateral or hexahedral partition of the

domain Ω. We consider a homogeneous Dirichlet boundary value problem for a linear second

order elliptic partial differential equation(PDE):

{
Lu := −div(A∇u) + b · ∇u+ cu = f, in Ω,

u = 0, on ∂Ω.
(2.1)

We assume

• A = (aij)d×d: Ω 7→ Rd×d is symmetric positive definite and V-elliptic on Ω and aij ∈

W 1,∞(Ω)(i, j = 1, 2, · · · , d);

• b = (bk)d×1 ∈ (W 1,∞(Ω))d; c ∈ L∞(Ω) and c ≥ 0; f ∈ L2(Ω).

The weak formulation of (2.1) reads as follows: Find u ∈ H1
0 (Ω) such that

a(u, v) := (A∇u,∇v) + (b · ∇u, v) + (cu, v) = (f, v), ∀v ∈ H1
0 (Ω). (2.2)

We denote by ‖ · ‖a,Ω the energy norm

‖w‖2
a,Ω :=

∫

Ω

A∇w · ∇w + cw2, ∀w ∈ H1
0 (Ω),
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which is equivalent to the H1 norm, i.e.,

ca‖w‖1,Ω ≤ ‖w‖a,Ω ≤ Ca‖w‖1,Ω, ∀w ∈ H1
0 (Ω). (2.3)

By using the Cauchy-Schwarz inequality, one can easily show the continuity of the bilinear form

a(·, ·), i.e.,

|a(w, v)| ≤ Ca‖w‖1,Ω‖v‖1,Ω, ∀w, v ∈ H1
0 (Ω).

Integrating by part leads to

∣∣(b · ∇v, v)
∣∣ =

∣∣1
2

∫

Ω

b · ∇(v2)dx
∣∣ =

∣∣ − 1

2

∫

Ω

(∇ · b)v2dx
∣∣

≤
‖∇ · b‖0,∞,Ω

2
‖v‖2

0,Ω ∀v ∈ H1
0 (Ω).

Therefore, one can easily obtain the following G̊arding’s inequality

a(v, v) ≥ ‖v‖2
a,Ω − γG‖v‖

2
L2(Ω) ∀v ∈ H1

0 (Ω), (2.4)

and

a(v, v) ≤ ‖v‖2
a,Ω + γG‖v‖

2
L2(Ω) ∀v ∈ H1

0 (Ω), (2.5)

where

γG =
1

2
‖∇ · b‖0,∞,Ω

is a constant.

We assume existence and uniqueness of the solution of (2.2) holds, which is equivalent to say,

0 is not the eigenvalue of the operator L by the Fredholm alternative theory (p. 303 in [16]).

By the way, if c > 0, the existence and uniqueness of the solution of (2.2) follows from the

maximum principle (p.124 in [18]). Note that if b = 0, then the existence and uniqueness of

the solution of (2.2) follows from Lax-Milgram theorem easily.

We use standard notations from Lebesgue and Sobolev space theory. For a measurable set

G ⊂ Ω, let (·, ·)G and ‖ · ‖0,G denote the inner product and the norm in L2(G). We also use

(·, ·) instead of (·, ·)Ω for simplicity. Furthermore, | · |m,G and ‖ · ‖m,G denote the seminorm and

norm in the Sobolev space Hm(G) respectively. In particular, the associated seminorm | · |1,Ω
on H1(Ω) is actually a norm on

V := H1
0 (Ω) =

{
v ∈ H1(Ω), v|Γ = 0

}
.

We use Cn(G) to denote the space of all the n-times continuously differentiable functions, Pn(G)

to denote the space of all polynomials of degree no more than n and Qn(G) to denote the space

of degree no more than n in each variable on the domain G ⊂ Rd. By the way, if E is an

edge in Rd then Pm(E) = Qm(E) . For a compactly supported function f , supp(f) denotes the

compactly supported set of f . #J stands for the cardinal number of a finite set J . For a finite

dimensional space S, we use dim(S) to express the dimension of S. For a set G ⊂ Rd, let G be

the closure of G and |G| be the d-dimensional measure of G. Unless otherwise specified, a set

G ⊂ Ω is an open set.
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3. Shape Regularity, 1-irregular Mesh and Hanging Node

Let the bounded domain Ω ⊂ Rd be decomposed by a mesh T0 of elements K ∈ T0 which

are assumed to be open convex quadrilaterals in the 2D-case or open convex hexahedrons in

the 3D-case such that Ω = ∪K∈T0K. In the 3D-case we also assume that each face of any

hexahedral element in T0 is in a plane, i.e., we do not consider the case of a hexahedron with

curved faces. Let T be a mesh generated by several times of a refinement from T0. For any

element K ∈ T , let FK : K̂ → K be the multilinear mapping between the reference element

K̂ := (−1, 1)d and the original element K. Obviously, FK ∈ (Q1(K̂))d. We follow the definition

of shape regular mesh condition in the sense of [17] (p.105). Let Pi (1 ≤ i ≤ 2d) be the vertex

of any element K ∈ T . We denote by si the subtriangle with the vertex Pi and two edges of

K containing Pi as their one end in 2D-case or subtetrahedron with the vertex Pi and three

edges of K containing Pi as their one end in 3D-case (see Figure 3.1). Let dK be the diameter

of K and ρi be the diameter or the largest ball inscribed in si. Define ρK := min1≤i≤2d ρi. We

denote by hK = |K|
1
d . Obviously,

ρK < hK <

(
π

6

) 1
d

dK .

Definition 3.1 (Shape regularity) A mesh T is regular if there exists a constant C0(C0 > 1)

such that

max
K∈T

dK
ρK

≤ C0. (3.1)

Next we will describe the type of meshes treated in this paper. We assume that T is a

multilevel adaptive mesh generated by a refinement process in the following way. We start

with a regular partition T0 of the domain Ω into elementsK ∈ T0 of mesh-level 0. The mesh T0 is

assumed to be conforming, i.e., for any different elements K1, K2 ∈ T0, the intersectionK1∩ K2

is either empty or a common (d −m)-dimensional face of K1 and K2 where m ∈ {1, · · · , d}.

Now, starting with the element K ∈ T0, an existing element K can be split into 2d new elements

called son-elements of K and denoted by Si(K), i = 1, · · · , 2d, cf., Figure 3.1.

K

s1

−→

S1(K) S2(K)

S3(K)S4(K)

P1

P2

P4

P3

P1

P2

P4

P3

Fig. 3.1. (left) The subtriangle s1 of element K; (right) Bisections on quadrilateral K and son-elements

Si(K) of K, i = 1, · · · , 2d, d = 2.

These son-elements are constructed by connecting the barycenters of opposite (d − 1)-

dimensional faces of K and additionally, in the 3-dimensional case, by connecting the midpoints

of opposite element edges in the 2-dimensional faces of K. For a new element K ′ = Si(K),

we will say that K is the father-element of K ′ and will write K = F(K ′). If an element K
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is refined then, in the partition of the domain Ω, it is replaced by the set of its son-elements

Si(K), i = 1, · · · , 2d. The new elements can be refined repeatedly and so the final partition

T of Ω is created. Obviously, this local regular refinement is just the usual bisection and T

satisfies the shape regular condition (3.1).

Lemma 3.1. Let T be a shape regular mesh, then there exists a constant χ ∈ (0, 1) such that

|Si(K)|

|K|
≤ χ < 1 ∀K ∈ T , i = 1, · · · , 2d. (3.2)

Proof. Let α(d) be the measure of unit ball B(0, 1) in Rd. Without loss of generality, we

consider S1(K) shown in Figure 3.1. Applying shape regular condition 3.1, one can get

|K| > |S1(K)| >
1

2d
|s1| >

α(d)

2d
ρdK ≥

α(d)

Cd02d
ddK >

6α(d)

2dCd0π
|K|.

Setting C′ := 6α(d)/(2dCd0π) leads to

|Si(K)|

|Sj(K)|
<

1

C′
for i 6= j and i, j = 1, · · · , 2d.

Summing over j = 1, · · · , 2d yields

|Si(K)|

|K|
<

1

1 + (2d − 1)C′
:= χ < 1, ∀K ∈ T , i = 1, · · · , 2d.

This completes the proof of the lemma. 2

Definition 3.2. For an element K ∈ T , generated from the initial mesh T0 by the refinement

process described above we define the refinement level L(K) as L(K) := 0 if K ∈ T0 and

L(K) := m ≥ 1 if there exists a chain of m father-elements Ki, i = 1, · · · ,m, starting from

K0 := K and defined by

Ki := F(Ki−1) for i = 1, · · · ,m,

such that Km ∈ T0.

The above defined refinement level L(K) is equal to the number of refinement steps that

are needed to generate element K from an element of the coarsest mesh T0.

Definition 3.3. A mesh T , which has generated by the above defined refinement process from

a regular initial mesh T0, is called k-irregular(k ≥ 0 and k ∈ Z) if

|L(K) − L(K ′)| ≤ k (3.3)

holds for any pair of neighbored elements K, K ′ ∈ T where ∂K ∩ ∂K ′ is a one- or two-

dimensional manifold.

Note that (3.3) need not be satisfied for pairs of element K, K ′ having only one vertex in

common. A 0-irregular mesh is a conforming mesh (without hanging nodes). Hereafter, we only

consider 1-irregular meshes and the corresponding local refinement is described in Algorithm

3.1.
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Algorithm3.1 Local bisection refinement

Input: A 1-irregular mesh Tℓ with the set of marked elements Mℓ (If ℓ = 0, then T0 is a

conforming mesh).

1. Bisect all elements in Mℓ shown in Figure 3.1;

2. If there is a pair of two neighbored elements which do not satisfy (3.3) with k = 1,

then bisect the element with lower refinement level.

3. Repeat step 2 until (3.3) holds with k = 1 for all pairs of neighbored elements in the

current mesh.

Output: The refined 1-irregular mesh Tℓ+1 = REFINE(Tℓ,Mℓ).

By the way, if we say T is shape regular, it means T is a 1-irregular multilevel adaptive mesh

satisfying shape regularity (3.1). Next we will give the abstract definition of hanging nodes.

Denote by E(K) the set of all (d− 1)-dimensional faces of an element K. Let E :=
⋃
K∈T E(K)

be the set of all element faces of the mesh. We split E as Fig.

E = E0 ∪ EΓ,

where EΓ describes the set of all faces located at the boundary Γ of Ω and E0 denotes the set

of the inner faces of E . For any face E ∈ E , we define

T (E) :=
{
K ∈ T | E ∈ E(K)

}
,

as the set of all elements having E as one of their faces. Let Er denote the set of the regular

inner faces defined as

Er :=
{
E ∈ E0 | #(T (E)) = 2

}
.

For each regular face E ∈ Er, there exist exactly two different elements denoted by K(E) and

K ′(E) such that E is their common face, i.e.,

T (E) :=
{
K(E), K ′(E)

}
∀E ∈ Er.

For all other faces E ∈ E\Er, there is only one element denoted by K(E) which has E as one

of its faces, i.e.,

T (E) :=
{
K(E)

}
∀E ∈ E\Er.

A face Ẽ ∈ E is called a son-face of a face E ∈ E if Ẽ ⊂ E and |Ẽ| < |E| (see Fig. 3.2). We

denote by S(E) the set of all son-faces of E. Note that for each regular face E ∈ Er, the set

S(E) is empty. We define the set Ei of all irregular inner faces as

Ei :=
{
E ∈ E0 | S(E) 6= ∅

}
.

Let Ẽ ∈ S(E) be a son-face of E ∈ Ei, then the face E is called the father-face of Ẽ and we

write E = F(Ẽ). We define the set of all son-faces by

Es :=
⋃

E∈Ei

S(E).
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Using these definitions, the set E0 of all inner faces can be decomposed as

E0 = Er ∪ Ei ∪ Es.

Let N (K) denote the vertices of any element K ∈ T . Obviously, #N (K) = 2d. The set of

all nodes of the mesh T reads N :=
∑

K∈T N (K).

Definition 3.4. A node A ∈ N is called a hanging node if there exists a son-face E ∈ Es
such that

A ∈ E and A ∈ N (K(E))\N (K(F(E))), (3.4)

where K(E) and K(F(E)) denote the uniquely determined elements associated with the face E

and its father-face F(E), respectively. A node P ∈ N is called a regular node if it is not a

hanging node.

The subset of N associated with the hanging nodes is denoted by Nh and Nr := N\Nh

denotes the set of all regular nodes. The corresponding local sets of regular and hanging nodes

of an element K ∈ T are defined as

Nh(K) := Nh ∩ N (K) and Nr(K) := Nr ∩ N (K).

A typical 2D-configuration with hanging node A and associated regular nodes A1, A2 ∈ Λ(A)

is depicted in Figure 3.2. A node A ∈ N is a hanging node if there exists an element K ∈ T

such that A ∈ ∂K but A is not a vertex of K. Furthermore, one can easily see the following

characterization of a hanging node.

K(E)K ′(E) E

−→

K(E)

E1

E2

K(E1)

K(E2)

E

A1

A2

A

Fig. 3.2. (left) regular inner face E ∈ Er with the two associated elements K(E) and K′(E); (right)

irregular inner face E ∈ Ei with the son-faces E1, E2 ∈ S(E) where to each face only one element

is associated and denoted by K(E1),K(E2); (right) hanging node A and associated regular nodes

A1, A2 ∈ Λ(A).

Lemma 3.2. Let T be a 1-irregular mesh consisting of quadrilateral or hexahedral elements.

Then a hanging node A ∈ Nh can be represented uniquely as a linear combination of some

regular nodes in the following way

A =
∑

Aj∈Λ(A)

c(A)Aj and Λ(A) ⊂ Nr, (3.5)

where either

Λ(A) := {A1, A2}, c(A) =
1

2
(3.6)
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and A is the midpoint of an element edge e with the two vertices A1 and A2 in the 2D-case or

3D-case, or

Λ(A) := {A1, A2, A3, A4}, c(A) =
1

4
, (3.7)

and A is the barycenter of a two-dimensional face E ∈ Ei with the four vertices A1, A2, A3, A4

in the 3D-case.

4. Convergence of AFEMs on 1-irregular Meshes

First, define the constrained approximation space with zero boundary as

V mT :=

{
v ∈ H1

0 (Ω) : v|K ◦ FK ∈ Qm(K̂), ∀K ∈ T

}
, (4.1)

where the degrees of freedom are taken with the usual Lagrange or Serendipity conforming

finite element spaces and then give the discrete weak formulation of the problem (2.1) as: Find

uT ∈ V mT such that

a(uT , vT ) = (f, vT ), ∀ vT ∈ V mT . (4.2)

The existence of uT of the discrete problem (4.2) is obvious since VmT is a finite dimensional

space. We only need to explain the uniqueness of uT . Schatz showed in [23] that the discrete

problem has a unique solution for triangulations if the mesh-size h is sufficiently small, i.e., h ≤ h̃

for some constant h̃ depending on the shape regularity and data but not computable. The key

of the proof is G̊arding’s inequality and Nitsche technique, which also holds for quadrilateral

and hexahedral meshes including 1-irregular meshes. Hence we know that if hT ≤ ~ for some

constant ~ then the discrete problem (4.2) has a unique solution.

We need an H1-interpolation operator like Clement-type or Scott-Zhang type interpolation

operator on 1-irregular meshes, which can be found in [19]. Here we describe the interpolation

operator in brief. Similar to Scott-Zhang [24], assign to each regular node Aj ∈ Nr a face

Ej ∈ Er ∪ Ei ∪ EΓ, such that the following conditions are satisfied:

Aj ∈ Ej ,

Aj ∈ ∂Ω ⇒ Ej ⊂ ∂Ω .

For a regular node Aj ∈ Nr, define the nodal functional Nj : H1(Ω) → R by

Nj(v) :=
1

|Ej |

∫

Ej

vds, ∀v ∈ H1(Ω), Aj ∈ Nr.

For a hanging node Ai ∈ Ni, define the nodal functional Ñi : H1(Ω) → R as the following linear

combination of nodal functionals for regular nodes

Ñi(v) :=
∑

Aj∈Λ(Ai)

c(Ai)Nj(v), ∀v ∈ H1(Ω), Ai ∈ Nh,

where the associated regular nodes set Λ(Ai) and the coefficients c(Ai) are defined in Lemma

3.2. Then for a given function v ∈ H1(Ω), we define the interpolation ΠT v ∈ V 1
T locally on

each element K ∈ T as

ΠT v|K :=
∑

Aj∈Nr(K)

Nj(v)ψ
K
j +

∑

Ai∈Nh(K)

Ñi(v)ψ
K
i . (4.3)
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Obviously, ΠT v ∈ V 1
T ⊂ V mT for any positive integer m and if v|∂Ω = 0, then ΠT v|∂Ω = 0.

Furthermore, the following local approximation properties hold (Theorem 9 in [19]).

Lemma 4.1. For K ∈ T , the operator ΠT defined in (4.3) satisfies

|ΠT v|1,K ≤ C|v|1,ΩK
∀v ∈ H1(Ω), (4.4)

‖v − ΠT v‖0,K ≤ ChK |v|1,ΩK
∀v ∈ H1(Ω), (4.5)

where

ΩK :=
⋃

K̃∈S(K)

δ(K̃) with δ(K̃) :=
⋃

K′∈S(K̃)

K ′

and

S(K) :=

{
K0 ∈ T : K ∩K0 6= ∅

}

is the set of all the neighboring elements of the element K ∈ T .

Corollary 4.1. For E ∈ E0, the operator ΠT defined in (4.4) satisfies

‖v − ΠT v‖0,E ≤ Ch
1
2

E |v|1,ΩE
∀v ∈ H1(Ω), (4.6)

where hE := |E|
1

d−1 and

ΩE :=
⋃

Ki∈T ,Ki∩E∈E0

ΩKi
.

Proof. If E ∈ Es, e.g., A0A1 is shown as in Figure 4.1, then using scaled trace inequality we

can obtain

‖v − ΠT v‖0,E ≤ C
(
h
− 1

2

E ‖v − ΠT v‖0,K2 + h
1
2

E‖∇(v − ΠT v)‖0,K2

)

≤ Ch
1
2

E‖∇v‖0,ΩK2
≤ Ch

1
2

E |v|1,ΩE
.

If E ∈ Ei (or E ∈ Er), e.g., A1A2 (or A0A7) shown in Figure 4.1, the proof will be similar to

the above and ΩE = ΩK1 ∪ ΩK2 ∪ ΩK3 (or ΩE = ΩK2 ∪ ΩK3). 2

K1

K2

K3

A1

A2

A0

A4

A3

A5

A7

A6

A8

Fig. 4.1. An illustration of hanging node, irregular inner face and son-face.

Notice that the finite overlapping of patches ΩK and ΩE also holds on 1-irregular meshes.

Next, we will present the residual-based a posteriori error estimate on 1-irregular meshes.
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Definition 4.1. For a mesh Tℓ and v ∈ V mTℓ
, we define the element residual and jump

residual for v by

RK(v) := (f − Lv)|K , ∀K ∈ Tℓ and J(v)|E := (A∇v · νE)|E , ∀E ∈ E0, (4.7)

where [g℄ is the jump of g across an interior face E, and νE denotes a unit normal vector

associated to face E. The error indicator for v on K ∈ Tℓ is given by

η2
Tℓ

(v,K) = η2
ℓ (v,K) := h2

K‖RK(v)‖2
L2(K) + hK‖J(v)‖2

L2(∂K∩Ω), (4.8)

where we recall hK = |K|
1
d . For a subset G ⊂ Tℓ we set

η2
Tℓ

(v,G) = η2
ℓ (v,G) :=

∑

K∈G

η2
Tℓ

(v,K). (4.9)

If uℓ is the discrete solution of (4.2) and G = Tℓ, let ηℓ := ηTℓ
(uℓ, Tℓ) for short. Hereafter,

we denote Vℓ = V mTℓ
(Vh = V mTh

) and set eh = u− uh, eH = u− uH and εH = uh − uH where u,

uh and uH are the exact solution of (2.2), discrete solutions of (4.2) on Th and TH respectively.

Notice “Galerkin-orthogonality” also holds for constrained finite element spaces defined on

1-irregular meshes, i.e.,

a(eh, vh) = 0 ∀vh ∈ Vh. (4.10)

which illustrates a(eh, εH) = 0 for VH ⊂ Vh, but a(εH , eh) 6= 0.

Theorem 4.1. If the initial mesh-size h0 is small enough, i.e., h0 < min{C2, ~} for a positive

constant C2, then there exists a positive constant C1 with

‖u− uℓ‖
2
a,Ω ≤ C1η

2
ℓ . (4.11)

The proof of Theorem 4.1 is similar to that for conforming triangular meshes [1,2,26]. The

key ingredients are orthogonality (4.10), (4.5), (4.6) and G̊arding’s inequality (2.4). Here we

omit the details.

Now we give the adaptive finite element algorithm as follows:

Algorithm AFEM

(0) Give the initial conforming quadrilateral or hexahedral mesh T0 and Döfler parameter

θ ∈ (0, 1], and set ℓ = 0;

(1) Solve (4.2) on Tℓ to get the solution uℓ;

(2) Compute the error estimator ηTℓ
(uℓ,K) for each element K ∈ Tℓ;

(3) Mark the minimal elements set Mℓ such that

ηTℓ
(uℓ,Mℓ) ≥ θηTℓ

(uℓ, Tℓ); (4.12)

(4) Refine Tℓ with Mℓ by Algorithm 3.1 to get Tℓ+1;

(5) Set ℓ := ℓ+ 1 and go to step (1).
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The following theorem highlights the relationship between eh and eH .

Lemma 4.2 (Quasi-orthogonality) There exists a constant C5 > 0 depending on the shape

regularity and the data A, b and c, and a number s ∈ (0, 1] dictated only by the regularity of

solution u of (2.2), such that if the initial mesh-size h0 satisfies hs0 ≤ min{C5, ~
s} then

‖eh‖
2
a,Ω ≤ σ‖eH‖

2
a,Ω − ‖εH‖2

a,Ω, (4.13)

where σ ≥ 1 given in (4.17) at the last of proof can be made arbitrarily close to 1 by decreasing

h0.

Proof. Expanding a(eH , eH) and noticing eH = eh + εH and (4.10) yield

a(eh, eh) = a(eH , eH) − a(εH , εH) − a(εH , eh).

Using (4.10), Green’s formula, Young’s inequality with parameter δ > 0 and (2.3) leads to

a(εH , eh) =a(eh, εH) + (b · ∇εH , eh) − (b · ∇eh, εH)

=2(b · ∇εH , eh) + (∇ · b eh, εH)

≤

(
2‖b‖0,∞,Ω‖∇εH‖0,Ω + ‖∇ · b‖0,∞,Ω‖εH‖0,Ω

)
‖eh‖0,Ω

≤C2
b δ‖εH‖

2
a,Ω + δ−1‖eh‖

2
0,Ω,

where the constant Cb = max{2‖b‖0,∞,Ω, ‖∇ · b‖0,∞,Ω}/(2ca). Furthermore, using G̊arding’s

inequality (2.4) and (2.5) to estimate terms a(eh, eh), a(eH , eH) and a(εH , εH) and combining

with the above estimate, one can obtain

‖eh‖
2
a,Ω − (γG + δ−1)‖eh‖

2
0,Ω

≤‖eH‖
2
a,Ω + γG‖eH‖2

0,Ω − (1 − C2
b δ)‖εH‖

2
a,Ω + γG‖εH‖2

0,Ω.

Taking the regularity u ∈ H1+s, s ∈ (0, 1] into account, and using the Aubin-Nitsche duality

technique [13], one can easily show

‖eh‖0,Ω ≤ C3h
s‖eh‖1,Ω

where the constant C3 depends only on the shape regularity and the data in (2.1). Hence

‖eh‖0,Ω ≤ C3h
s
0‖eh‖1,Ω ≤

C3

ca
hs0‖eh‖a,Ω.

Similarly, we have

‖eH‖0,Ω ≤
C3

ca
hs0‖eH‖a,Ω.

Noticing

‖εH‖2
0,Ω ≤ 2‖eh‖

2
0,Ω + 2‖eH‖

2
0,Ω

and setting C4 := C3/ca lead to
(

1 − C2
4 (3γG + δ−1)h2s

0

)
‖eh‖a,Ω

≤

(
1 + 3γGC

2
4h

2s
0

)
‖eH‖a,Ω −

(
1 − C2

b δ

)
‖εH‖a,Ω. (4.14)
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Let 1 − C2
4 (3γG + δ−1)h2s

0 = 1 − C2
b δ. We have

δ =
3γGC

2
4h

2s
0 +

√
9γ2
GC

4
4h

4s
0 + 4C2

bC
2
4h

2s
0

2C2
b

> 0.

We should further choose h0 sufficiently small so that 1 − C2
b δ > 0. Notice that

δ <
3γGC

2
4h

2s
0 + 3γGC

2
4h

2s
0 + 2CbC4h

s
0

2C2
b

, (4.15)

and if
3γGC

2
4h

2s
0 + 3γGC

2
4h

2s
0 + 2CbC4h

s
0

2C2
b

≤
1

C2
b

(4.16)

holds, then 1 − C2
b δ > 0 must hold, i.e., we only require hs0 ≤ C5, where the constant

C5 =
−CbC4 +

√
C2
bC

2
4 + 12γGC4

4

6γGC2
4

> 0

is the positive root of (4.16). Multiplying two sides of (4.14) by 1/(1 − C2
b δ) and using (4.15)

yield

‖eh‖
2
a,Ω ≤ σ‖eH‖

2
a,Ω − ‖εH‖

2
a,Ω with σ =

1 + 3γGC
2
4h

2s
0

1 − 3γGC2
4h

2s
0 − CbC4hs0

. (4.17)

This completes the proof of lemma. 2

Remark 4.1. If b = 0, then the following orthogonality holds without any restriction on h0:

‖eh‖
2
a,Ω = ‖eH‖

2
a,Ω − ‖εH‖

2
a,Ω. (4.18)

Lemma 4.3. Let Tℓ be a shape regular mesh. Then there exists a constant C depending only on

the shape regularity and polynomials degree m, such that for any v ∈ Vℓ the following inequality

holds:

‖D2v‖0,K ≤ Ch−1
K ‖∇v‖0,K ∀K ∈ Tℓ, (4.19)

where D2v is the Hessian of v.

Proof. We only prove the inequality in 2D-case and the 3D-case is similar. Since

∂v

∂x
=
∂v̂

∂x̂
·
∂x̂

∂x
+
∂v̂

∂ŷ
·
∂ŷ

∂x

and

∂2v

∂x2
=
∂2v̂

∂x̂2

(
∂x̂

∂x

)2

+
∂2v̂

∂ŷ2

(
∂ŷ

∂x

)2

+ 2
∂2v̂

∂x̂∂ŷ

∂ŷ

∂x

∂x̂

∂x
+
∂v̂

∂x̂

∂2x̂

∂x2
+
∂v̂

∂ŷ

∂2ŷ

∂x2
,

we obtain

‖vxx‖0,K ≤C|K|
1
2

(
(‖v̂x̂ŷ‖0,K̂ + ‖v̂x̂x̂‖0,K̂ + ‖v̂ŷŷ‖0,K̂)‖DF−1

K ‖2

+ ‖∇̂v̂‖0,K̂‖D2F−1
K ‖

)
.
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Notice that

‖v̂x̂ŷ‖0,K̂ + ‖v̂x̂x̂‖0,K̂ + ‖v̂ŷŷ‖0,K̂ ≤ C|∇̂v̂|1,K̂ ≤ C‖∇̂v̂‖1,K̂ ≤ C‖∇̂v̂‖0,K̂ ,

where the last inequality is due to the equivalence of norms of finite dimension space (polyno-

mials space (Qm(K̂))d) over reference element K̂. Furthermore, since Tℓ is shape regular, we

have

‖DF−1
K ‖ ≤ Ch−1

K , and ‖D2F−1
K ‖ ≤ ‖D2FK‖ · ‖DF−1

K ‖3 ≤ Ch−1
K .

Therefore, we arrive at

‖vxx‖0,K ≤ C|K|
1
2 (h−2

K + h−1
K )‖∇̂v̂‖0,K̂ ≤ Ch−1

K ‖∇̂v̂‖0,K̂ ≤ Ch−1
K ‖∇v‖0,K .

We can estimate other terms in D2v in the same way. 2

Lemma 4.4. Let Tℓ be a shape regular mesh. For all K ∈ Tℓ and any v, w ∈ Vℓ, we have

ηℓ(v,K) ≤ ηℓ(w,K) + C‖v − w‖1,ωK
, (4.20)

where

ωK :=
⋃

Ki∩E∈E0
Ki∈Tℓ,E∈E(K)

Ki

and C > 0 is a constant depending only on the shape regularity, the polynomial degree m and

the coefficients A, b and c in elliptic operator L.

Proof. By adding and subtracting w and using triangle inequality, we obtain

ηℓ(v,K) ≤ ηℓ(w,K) + hK‖L(v − w)‖L2(K) + h
1
2

K‖J(v − w)‖L2(∂K∩Ω).

Using

L(v − w) = divA∇(v − w) − b · ∇(v − w) − c(v − w),

we have

‖L(v − w)‖L2(K) ≤ ‖divA∇(v − w)‖L2(K) + ‖b · ∇(v − w)‖L2(K) + ‖c(v − w)‖L2(K).

Notice that

divA∇(v − w) = divA · ∇(v − w) + A : D2(v − w),

where D2(v − w) is the Hessian of v − w. Using Lemma 4.3, we can derive

‖L(v − w)‖L2(K) ≤‖divA‖0,∞,Ω‖∇(v − w)‖0,K + h−1
K ‖A‖0,∞,Ω‖∇(v − w)‖0,K

+ ‖b‖0,∞,Ω‖∇(v − w)‖0,K + ‖c‖0,∞,Ω‖v − w‖0,K .

We now deal with the jump residual. Let E be a face of K. For convenience, let K be the

element K2 and E be the edge A1A0 shown in Figure 4.1. Denote K ′ to be the quadrilateral

A0A1A4A5 where node A5 is the midpoint of edge A4A3. Then

J(v − w)|E = ((A∇(v − w))|K − (A∇(v − w))|K′ ) · νE .
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By scaled trace inequality and Lemma 4.3, we can obtain

‖(A∇(v − w))|K · νE‖0,E ≤ Ch
− 1

2

K ‖A‖0,∞,Ω‖∇(v − w)‖0,K .

The same argument holds for K ′ and since Tℓ is shape regular, we can replace hK′ by hK . If

K is the element K1 and E is the edge A1A2 shown in Figure 4.1, then we can choose K ′ to be

the quadrilateral A1A2A8A6 and prove the result similarly. Furthermore, we can also estimate

jump residual in 3D-case similarly. Finally, collecting the above estimates for K and all its

neighbors yields (4.20). 2

Lemma 4.5. For a 1-irregular mesh Tℓ and a subset Mℓ ⊂ Tℓ, let Tℓ+1 = REFINE(Tℓ,Mℓ).

Then there exist constants λ := 1 − χ
1
d ∈ (0, 1) and C2 > 0 depending only on the shape

regularity, the polynomial degree m and the coefficients A, b and c in elliptic operator L, such

that for any δ > 0, any vℓ ∈ Vℓ and any vℓ+1 ∈ Vℓ+1

η2
ℓ+1(vℓ+1, Tℓ+1) ≤(1 + δ)η2

ℓ (vℓ, Tℓ) − λ(1 + δ)η2
ℓ (vℓ,Mℓ)

+ C2(1 + 1/δ)‖vℓ+1 − vℓ‖
2
a,Ω. (4.21)

Proof. Applying Lemma 4.4 with vℓ ∈ Vℓ, vℓ+1 ∈ Vℓ+1 over K ∈ Tℓ+1, using Young’s

inequality with parameter δ and the summation over all elements K ∈ Tℓ+1 together with the

finite overlap property of patches ωK and the equivalence of the H1 norm and the energy norm

in Ω, one can get

η2
ℓ+1(vℓ+1, Tℓ+1) ≤ (1 + δ)η2

ℓ+1(vℓ, Tℓ+1) + C2(1 + 1/δ)‖vℓ+1 − vℓ‖
2
a,Ω .

For a marked element K ∈ Mℓ ⊂ Tℓ, we set Tℓ+1,K := {K ′ ∈ Tℓ+1 | K ′ ⊂ K}. Since

vℓ ∈ Vℓ ⊂ Vℓ+1, we see that J(vℓ) = 0 on sides of Tℓ+1,K in the interior of K. By Lemma 3.1,

we obtain

hK′ = |K ′|
1
d ≤ χ

1
dhK

which yields

η2
ℓ+1(vℓ,K) =

∑

K′∈Tℓ+1,K

η2
ℓ+1(vℓ,K

′) ≤ χ
1
d η2
ℓ (vℓ,K).

For an element K ∈ Tℓ+1\Mℓ, one can also obtain ηℓ+1(vℓ+1,K) ≤ ηℓ(vℓ+1,K). Hence, sum-

ming over all K ∈ Tℓ+1, we obtain

η2
ℓ+1(vℓ, Tℓ+1) =η2

ℓ+1(vℓ, Tℓ+1\Mℓ) + η2
ℓ+1(vℓ,Mℓ)

≤η2
ℓ (vℓ, Tℓ\Mℓ) + χ

1
d η2
ℓ (vℓ,Mℓ)

≤η2
ℓ (vℓ, Tℓ) − (1 − χ

1
d )η2

ℓ (vℓ,Mℓ) .

Setting λ = 1 − χ
1
d ∈ (0, 1) leads to the final result. 2

Set eℓ+1 = u−uℓ+1, eℓ = u−uℓ and εℓ = uℓ+1−uℓ. Then we have the following convergence

result.

Theorem 4.2 (Energy Reduction) Let {Tℓ, uℓ}ℓ≥0 be the sequence of meshes and discrete

solutions produced by AFEM . Then there exist constants β > 0 and 0 < α < 1 depending
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on the shape regularity of T0, the marking parameter 0 < θ ≤ 1, the polynomial degree m and

the coefficients A, b and c in elliptic operator L, such that if the initial mesh-size h0 is small

enough, we have

‖eℓ+1‖
2
a,Ω + βη2

ℓ+1 ≤ α

(
‖eℓ‖

2
a,Ω + βη2

ℓ

)
. (4.22)

Proof. For t ∈ (0, 1), using quasi-orthogonality (4.13), Lemma 4.5 and Theorem 4.1, we

have

‖eℓ+1‖
2
a,Ω + βη2

ℓ+1

≤σ‖eℓ‖
2
a,Ω − ‖εℓ‖

2
a,Ω + βη2

ℓ+1

≤σ‖eℓ‖
2
a,Ω − ‖εℓ‖

2
a,Ω + β

(
(1 + δ)η2

ℓ − λ(1 + δ)η2
ℓ (Mℓ) + C2(1 + 1/δ)‖εℓ‖

2
a,Ω

)

≤σ‖eℓ‖
2
a,Ω − ‖εℓ‖

2
a,Ω + β

(
(1 + δ)η2

ℓ − λθ(1 − t+ t)(1 + δ)η2
ℓ + C2(1 + 1/δ)‖εℓ‖

2
a,Ω

)

=σ‖eℓ‖
2
a,Ω − ‖εℓ‖

2
a,Ω + β(1 + δ)

(
1 − λθ(1 − t)

)
η2
ℓ − βλθt(1 + δ)η2

ℓ + C2β(1 + 1/δ)‖εℓ‖
2
a,Ω

≤
(
σ −

βλθt(1 + δ)

C1

)
‖eℓ‖

2
a,Ω + β(1 + δ)

(
1 − λθ(1 − t)

)
η2
ℓ +

(
C2β(1 + 1/δ) − 1

)
‖εℓ‖

2
a,Ω.

Now we need to choose appropriate values for each parameter to satisfy the following three

conditions.

(i) (1 + δ)
(
1 − λθ(1 − t)

)
< 1; This condition is equivalent to t < 1 − δ/λθ(1 + δ). Since

t ∈ (0, 1), we need to restrict δ small enough to satisfy

1 −
δ

λθ(1 + δ)
> 0.

(ii) C2β(1 + 1/δ) − 1 ≤ 0; to satisfy this condition we should restrict

0 < β <
1

C2(1 + 1/δ)
.

(iii) σ − βλθt(1 + δ)/C1 < 1; by setting C7 := βλθt(1 + δ)/C1 and noticing (4.17) we have

σ =
1 + 3γGC

2
4h

2s
0

1 − 3γGC2
4h

2s
0 − CbC4hs0

< 1 + C7,

which implies

hs0 <
−(C7 + 1)CbC4 +

√
(C7 + 1)2C2

bC
2
4 + 12(2γG + C7)C2

4C7

6(2γG + C7)C2
4

.

Denote by C6 := the right-hand side above (which is positive). Then we know choosing δ small

enough and taking hs0 < min{C6, C5, C
s
2 , ~

s} can yield

α := max

{
σ −

βλθt(1 + δ)

C1
, (1 + δ)

(
1 − λθ(1 − t)

)}
< 1,

which is the desired result. 2

Remark 4.2. If b = 0, then using the orthogonality (4.18), we can obtain the same convergence

result similarly without assuming that the initial meshsize h0 is small enough.
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5. Implementation on 1-irregular Meshes

As we know, for constrained finite element spaces on meshes with hanging nodes, if one uses

the original basis functions to assemble stiff matrix, then the resulting linear system will like

a “saddle system”. Hence it is not advisable to do this. In this section, we will first discuss

explicitly how to obtain a symmetric positive definite linear algebraic system, which is useful

for implementation. Define the discontinuous finite element spaces without any constraints on

1-irregular mesh T as:DmT :=

{
v ∈ L2(Ω) | v|K ◦ FK ∈ Qm(K̂), ∀K ∈ T

}
, (5.1)

where the degrees of freedom are taken with the usual Lagrange or Serendipity conforming

finite element spaces. Furthermore, we give the constrained finite element spaces with nonho-

mogeneous boundary as: VmT := DmT ∩H1(Ω). (5.2)

For an element K ∈ T , a finite element function u ∈ DmT restricted on K can be written as

u|K :=
∑s

i=0 u
K
i ψ

K
i where UK := {uK0 , u

K
1 , · · · , u

K
s } is the set of all the nodal variables(or

degrees of freedom) of K and ψK := {ψK0 , ψ
K
1 , · · · , ψ

K
s } is the set of all the usual local mapped

basis functions restricted on element K with respect to the degree of freedom uKi , i.e., ψKi ◦FK ∈Qm(K̂). We also denote by AK := {AK0 , A
K
1 , · · · , A

K
s } the set of the nodes with respect to ψK

which means ψKj (AKi ) = δij . In addition, let n := dim(DmT ) be the the number of all degrees

of freedom on the whole mesh T and denote by U := {u1, u2, · · · , un} the set of all the degrees

of freedom, ψ := {ψ1, ψ2, · · · , ψn} the set of all the basis functions and A := {A1, A2, · · · , An}

the set of all the nodes with respect to ψ. Obviously,

UK ⊂ U,AK ⊂ A and ψi =
∑

K∈T ,AK
j

=Ai

ψKj

for any basis function ψi ∈ ψ. By the way, if m = 1, then A = N based on the definition

of N in the last section. As we know, a piecewise infinitely differentiable function u in DmT
belongs to H1(Ω) if and only if u is continuous across any inter-element (d − 1)-dimensional

face which in fact implies the constraints on finite element spaces VmT . Obviously, any function

u ∈ DmT is continuous across any regular face E ∈ Er, i.e., constraints are only required on any

irregular face E ∈ Ei. Take Figure 3.2 as an example, where A is a hanging node, E ∈ Ei and

E1, E2 ∈ Es. Let uK0 , u
K
1 , · · · , u

K
m ∈ UK be the nodal variables (or degrees of freedom) of K

located on edge E. Similarly, let uK1
0 , uK1

1 , · · · , uK1
m ∈ UK1 be the nodal variables of K1 located

on edge E1 and uK2
0 , uK2

1 , · · · , uK2
m ∈ UK2 be the nodal variables of K2 located on edge E2. So

are the other quantities like basis function in ψ and node in A. In order to keep the continuity

across E, the following constraints should be satisfied:

uK1

i =

m∑

j=0

uKj ψ
K
j (AK1

i ), i = 0, 1, · · · ,m; (5.3)

uK2

i =
m∑

j=0

uKj ψ
K
j (AK2

i ), i = 0, 1, · · · ,m. (5.4)
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Fig. 5.1. A1 and A2 are regular nodes with respect to two unconstrained nodal variables u1 and u2;

A0 is a hanging node with respect to a constrained nodal variable u0; Green areas in (2),(3) and (4)

are to show supp(ψ1), supp(ψ0) and supp(ψ2) respectively.

5.1. Q1 element in 2D-case.

In order to keep the continuity on edge A1A2 shown in Figure 5.1, constraints (5.3) and

(5.4) should be satisfied which can be simplified as:

u0 =
u1 + u2

2
. (5.5)

Constrain (5.5) tells us u1 and u2 are really effective degrees of freedom while u0 is not. More-

over, if we drop the degree of freedom u0 and modify the basis functions ψ1 and ψ2 as follows:

ψ̃1 = ψ1 +
1

2
ψ0, ψ̃2 = ψ2 +

1

2
ψ0, (5.6)

then the continuity on edge A1A2 will be satisfied automatically. So is the edge A1A3. Similarly,

we can obtain explicit formulas of constraints for higher order and higher dimensional finite

element spaces as illustrated by Figure 5.2.

Fig. 5.2. Index i corresponds to a node Ai, a nodal variable ui and a basis function ψi; Solid balls stand

for the unconstrained nodal variables while hollow balls stand for the constrained nodal variables.

5.2. Q2 or reduced Q2 element in 2D-case.

In order to keep the continuity on edge A1A3 shown in Figure 5.2-(a), we let:

u4 =
3

8
u1 +

3

4
u2 −

1

8
u3, (5.7a)

u5 = −
1

8
u1 +

3

4
u2 +

3

8
u3. (5.7b)

Although vertex A2 shown in Figure 5.2-(a) is a hanging node, the corresponding degree of

freedom u2 is an unconstrained nodal variable in this case. We can also drop u4 and u5 and
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modify the basis functions to ensure the continuity on edge A1A3 automatically, i.e.,

ψ̃1 = ψ1 +
3

8
ψ4 −

1

8
ψ5, (5.8a)

ψ̃2 = ψ2 +
3

4
ψ4 +

3

4
ψ5, (5.8b)

ψ̃3 = ψ3 −
1

8
ψ4 +

3

8
ψ5. (5.8c)

5.3. Q3 or reduced Q3 element in 2D-case.

In order to keep the continuity on edge A1A4 shown in Figure 5.2-(b), we let:

u5 =
5

16
u1 +

15

16
u2 −

5

16
u3 +

1

16
u4, (5.9a)

u6 = −
1

8
u1 +

9

16
u2 +

9

16
u3 −

1

8
u4, (5.9b)

u7 =
1

16
u1 −

5

16
u2 +

15

16
u3 +

5

16
u4. (5.9c)

Notice u2 and u3 are two unconstrained nodal variables in this case. We can also drop u5, u6

and u7 and modify the basis functions to ensure the continuity on edge A1A4 automatically,

i.e.,

ψ̃1 = ψ1 +
5

16
ψ5 −

1

8
ψ6 +

1

16
ψ7, (5.10a)

ψ̃2 = ψ2 +
15

16
ψ5 +

9

16
ψ6 −

5

16
ψ7, (5.10b)

ψ̃3 = ψ3 −
5

16
ψ5 +

9

16
ψ6 +

15

16
ψ7, (5.10c)

ψ̃4 = ψ4 +
1

16
ψ5 −

1

8
ψ6 +

5

16
ψ7. (5.10d)

5.4. Q1 element in 3D-case.

In order to keep the continuity on face A1A2A3A4 shown in Figure 5.2-(c), we let:

u5 =
u4 + u1

2
, u6 =

u1 + u2

2
, (5.11a)

u7 =
u2 + u3

2
, u8 =

u3 + u4

2
, (5.11b)

u9 =
u1 + u2 + u3 + u4

4
. (5.11c)

We can also drop u5, u6, u7, u8 and u9 and modify the basis functions to ensure the continuity

on face A1A2A3A4 automatically, i.e.,

ψ̃1 = ψ1 +
1

2
ψ5 +

1

2
ψ6 +

1

4
ψ9, (5.12a)

ψ̃2 = ψ2 +
1

2
ψ6 +

1

2
ψ7 +

1

4
ψ9, (5.12b)

ψ̃3 = ψ3 +
1

2
ψ7 +

1

2
ψ8 +

1

4
ψ9, (5.12c)

ψ̃4 = ψ4 +
1

2
ψ5 +

1

2
ψ8 +

1

4
ψ9. (5.12d)
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Let us discuss the unified formulas of the above modified bases for constrained finite element

space VmT . For a basis function ψj and its corresponding node Aj , if there exists another basis

function ψi such that ψi(Aj) 6= 0, then the degree of freedom uj with respect to ψj must be

constrained by the degree of freedom ui with respect to ψi. We use the index set Ic to indicate

all the actually constrained degrees of freedom, i.e., if i ∈ Ic, then ui is a constrained degree

of freedom. Similarly, we use Ir to indicate all the actually unconstrained degrees of freedom

(Ic ∪ Ir = {1, · · · , n}). Then the above modified (constrain-free) basis can be written as

ψ̃i = ψi +
∑

j∈Ic,ψi(Aj) 6=0

ψi(Aj)ψj ∀i ∈ Ir. (5.13)

Denote by u1, u2, · · · , ur all the actually unconstrained degrees of freedom and ψ̃1, · · · , ψ̃r all

the corresponding modified basis functions. Then any function u =
∑n
i=1 uiψi ∈ VmT can be

written as:

u =

r∑

i=1

uiψ̃i. (5.14)

Notice any function with the formula (5.14) must belong to C0(Ω). More importantly, using

the above modified basis functions to assemble stiff matrix will yield a symmetric positive

definite linear system. In fact, the technique herein to expand the compactly supported set

of some original basis functions is in some sense, like the well-known “macro-element”(Hsieh-

Clough-Tocher element) technique [14].

Fig. 5.3. (Top left) Initial mesh; (Bottom left) Convergence history of algorithm AFEM for L-shaped

domain problem with Döfler parameter θ = 0.3; (Top right) A medial adaptive mesh of level 25 with

1808 elements; (Bottom right) The surface plot of finite element solution on the final mesh with 372116

elements.
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Fig. 5.4. (Top left) Initial mesh; (Bottom left) Convergence history of algorithm AFEM for Crack

problem with Döfler parameter θ = 0.8; (Bottom right) A medial adaptive mesh of level 10 with 1599

elements; (Top right) The surface plot of finite element solution on the final mesh with 393297 elements.

Now we give several numerical experiments with quadrialteral Q1 element.

Example 5.1. (L-shaped domain) The first experiment is to solve the Laplace equation

−∆u = 0 with Dirichlet boundary condition in the L-shaped domain Ω = (−1, 1) × (0, 1) ∪

(−1, 0) × (−1, 0], where the exact solution is given in polar coordinates by

u(r, θ) = r
2
3 sin(2θ/3).

We compute the posteriori error estimator, energy error and the L2 error on each mesh,

respectively. Figure 5.3 evidently shows our adaptive algorithm is optimally convergent.

Example 5.2. (Crack problem) Let Ω = {|x|+ |y| < 1}\{0 ≤ x ≤ 1, y = 0} with a crack and

assume that the solution u satisfies the Poisson equation

−△u = 1, in Ω and u = g on ∂Ω.

We choose g such that the exact solution u in polar coordinates is

u(r, θ) = r
1
2 sin

θ

2
−

1

4
r2.

From Figure 5.4, one can see the advantage of algorithm AFEM for the Crack problem

which is optimally convergent.
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Fig. 5.5. The performance of algorithm AFEM with original error estimator: (Top left) The final mesh

with 338851 elements; (Bottom left) Convergence history with the parameter θ = 0.5; (Top right)The

surface plot of the final discrete solution uh with 338851 elements; (Bottom right) The surface plot of

the relative error (u − uh)/‖u‖L∞(Ω) of the final discrete solution uh with 338851 elements and the

maximum of the relative error is 0.0069.

Example 5.3. (Kellogg problem) We choose the following elliptic problem with piecewise

constant coefficients and vanishing right-hand side f to compute. Let Ω = (−1, 1)2, A = RI

in the first and third quadrants, and A = I in the second and fourth quadrants, where R is a

constant to be given later. Consider the following problem

−div(A∇u) = 0, in Ω and u = gD on ∂Ω.

We choose gD to fit the exact solution u which is given in polar coordinates by u(r, φ) = rτµ(φ),

where

µ(φ) =





cos((π2 − σ)τ) · cos((φ − π
2 + ρ)τ), if 0 ≤ φ ≤ π

2 ,

cos(ρτ) · cos((φ− π + σ)τ), if π
2 ≤ φ ≤ π,

cos(στ) · cos((φ − π + ρ)τ), if π ≤ φ ≤ 3π
2 ,

cos((π2 − ρ)τ) · cos((φ− 3π
2 − σ)τ), if 3π

2 ≤ φ ≤ 2π.
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Fig. 5.6. The performance of algorithm AFEM with modified error estimator: (Top left) The final

mesh with 333433 elements; (Bottom left) Convergence history with the parameter θ = 0.9; (Top right)

The surface plot of the final discrete solution uh with 333433 elements; (Bottom right) The surface

plot of the relative error (u− uh)/‖u‖L∞(Ω) of the final discrete solution uh with 333433 elements and

the maximum of the relative error is 0.0028.

and the numbers τ, ρ, σ satisfy the nonlinear relations





R = − tan((π2 − σ)τ) · (ρτ),

1/R = − tan(ρτ) · cot(στ),

R = − tan(στ) · cot(π2 − ρ)τ),

0 < τ < 2,

max{0, πτ − π} < 2τρ < min{πτ, π},

max{0, π − πτ} < −2τσ < min{πτ, 2π − πτ}.

(5.15)

The solution u is in H1+s with s < τ . For τ = 0.1, solving the above nonlinear equation (5.15)

yields

R ≈ 161.4476387975881, ρ =
π

4
, σ ≈ −14.92256510455152.

We firstly solve this problem with the a posteriori error estimator (4.8). The four pictures

in Figure 5.5 are the final mesh with 338851 elements, the corresponding discrete solution uh,

the convergence history with θ = 0.5 and the relative error (u − uh)/‖u‖L∞(Ω) with 338851

elements respectively.
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Second, we solve this problem with a modified posteriori error estimator which reads:

η̃2
ℓ (v,K) := h2

K ‖ R̃K(v) ‖2
L2(K) +hK ‖ J̃(v) ‖2

L2(∂K∩Ω), ∀K ∈ Tℓ, (5.16)

where

R̃K(v) := Λ
− 1

2

K (f + ∆v)|K , ∀K ∈ Tℓ,

J̃(v)|E := Λ
− 1

2

E ([A∇v℄ · νE)|E , ∀E ∈ E0,

and

ΛK := min
K′∈ΩK

(A|K′) and ΛE := min
K′∈ΩE

(A|K′).

For this modified estimator, one can show that

‖A
1
2∇(u− uℓ)‖

2
0,Ω ≤ C5η̃

2
ℓ (uℓ, Tℓ), (5.17)

where C5 is a constant dependent only on the shape regularity of mesh Tℓ.

The four pictures in Figure 5.6 are the final mesh with 333433 elements, the correspond-

ing discrete solution uh, the convergence history with θ = 0.9 and the relative error (u −

uh)/‖u‖L∞(Ω) with 333433 elements respectively. The maximum of the relative error using this

modified estimator on the final mesh with 333433 elements is 0.0028 while the maximum of the

relative error using this original estimator on the final mesh with 338851 elements is 0.0069.

Obviously, the modified error estimator (5.16) can capture the singularity more efficiently and

lead to a better result.

6. Conclusion

In this paper we proved the convergence of adaptive conforming Qm element methods on

general quadrilateral and hexahedral 1-irregular meshes. The implementations verified our

theoretical findings. In our future work, we will extend our results to adaptive mixed and non-

conforming quadrilateral FEMs [27,28], where new difficulties are involved and new techniques

need to be developed.
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