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Abstract

The Hermitian and skew-Hermitian splitting (HSS) method is an unconditionally con-

vergent iteration method for solving large sparse non-Hermitian positive definite system of

linear equations. By making use of the HSS iteration as the inner solver for the Newton

method, we establish a class of Newton-HSS methods for solving large sparse systems of

nonlinear equations with positive definite Jacobian matrices at the solution points. For this

class of inexact Newton methods, two types of local convergence theorems are proved under

proper conditions, and numerical results are given to examine their feasibility and effec-

tiveness. In addition, the advantages of the Newton-HSS methods over the Newton-USOR,

the Newton-GMRES and the Newton-GCG methods are shown through solving systems

of nonlinear equations arising from the finite difference discretization of a two-dimensional

convection-diffusion equation perturbed by a nonlinear term. The numerical implemen-

tations also show that as preconditioners for the Newton-GMRES and the Newton-GCG

methods the HSS iteration outperforms the USOR iteration in both computing time and

iteration step.
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1. Introduction

Large sparse systems of nonlinear equations arise in many areas of scientific computing and
engineering applications, e.g., in discretizations of nonlinear differential and integral equations,
numerical optimization and so on; see [10,26,27] and references therein.

Let F : D ⊂ Cn → Cn be a nonlinear and continuously differentiable mapping defined on
the open convex domain D in the n-dimensional complex linear space Cn, and consider systems
of nonlinear equations of the form

F (x) = 0. (1.1)

We assume that the Jacobian matrix of the nonlinear function F (x) at the solution point x? ∈ D,
denoted as F ′(x?), is sparse, non-Hermitian, and positive definite. Here, the matrix F ′(x), for
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x ∈ D, is said to be positive definite if its Hermitian part

H(F ′(x)) :=
1
2
(F ′(x) + F ′(x)∗)

is positive definite, where F ′(x)∗ represents the conjugate transpose of F ′(x). For notational
convenience, we also denote by

S(F ′(x)) :=
1
2
(F ′(x)− F ′(x)∗)

the skew-Hermitian part of F ′(x); see [7, 12, 15, 18]. In this paper, we will study effective
iteration methods and their convergence properties for solving this class of nonlinear systems.

The most classic and important solver for the system of nonlinear equations (1.1) may be
the Newton method, which can be formulated as

x(k+1) = x(k) − F ′(x(k))−1F (x(k)), k = 0, 1, 2, . . . , (1.2)

where x(0) ∈ D is a given initial vector; see [11,26,27,29]. Obviously, at the k-th iteration step
we need to solve the so-called Newton equation

F ′(x(k))s(k) = −F (x(k)), with x(k+1) := x(k) + s(k), (1.3)

which is the dominant task in implementations of the Newton method. When the Jacobian
matrix F ′(x) is large and sparse, iterative methods either of the splitting relaxation form
(e.g., Gauss-Seidel, SOR 1) and USOR 2) ; see [19, 26]) or of the Krylov subspace form (e.g.,
GMRES, BiCGSTAB and GCG 3) ; see [4,25,28]) are often the methods of choice for effectively
computing an approximation to the update vector s(k); see also [1, 2, 5, 6, 13]. This naturally
results in the following inexact version of the Newton method for solving the system of nonlinear
equations (1.1):

x(k+1) = x(k) + s(k), with F ′(x(k))s(k) = −F (x(k)) + r(k), (1.4)

where r(k) is a residual yielded by the inner iteration due to the inexact solving; see [10,11,21,23].
Note that the convergence of the splitting relaxation methods is guaranteed only for Hermitian
positive definite matrices or H-matrices, while this class of methods often requires much less
computing operations at each iteration step and also much less computer storage than the
Krylov subspace methods in actual implementations.

Recently, a Hermitian and skew-Hermitian splitting (HSS) iteration method was presented
in [15] for solving large sparse system of linear equations with a non-Hermitian positive definite
coefficient matrix, say A ∈ Cn×n; see also [12, 18]. Theoretical analysis has demonstrated that
the HSS iteration method converges unconditionally to the exact solution, with the bound on
the rate of convergence about the same as that of the conjugate gradient method when applied to
the Hermitian matrix H(A) := 1

2 (A+A∗), and numerical experiments have shown that the HSS
iteration method is very efficient and robust for solving non-Hermitian positive definite linear
systems. Moreover, the HSS iteration method possesses a comparative memory requirement,
but faster convergence rate, than the USOR iteration method, especially for matrices having
strong skew-Hermitian parts.

1) SOR represents the successive overrelaxation method.
2) USOR represents the unsymmetric successive overrelaxation method.
3) GCG represents the generalized conjugate gradient method.
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In this paper, instead of the classical splitting relaxation and the modern Krylov subspace
iterations, we use the HSS iteration to solve approximately the Newton equation (1.3), obtaining
a class of inexact Newton methods, called the Newton-HSS methods, for solving the system
of nonlinear equations (1.1). Two types of local convergence theorems are established for
the Newton-HSS methods, and numerical results are given to show their effectiveness and
robustness. Moreover, numerical comparisons among the Newton-HSS, the Newton-USOR, the
Newton-GMRES and the Newton-GCG methods show that the Newton-HSS method is much
superior to the others in actual computations. It is also shown that as preconditioners for
the Newton-GMRES and the Newton-GCG methods the HSS iteration outperforms the USOR
iteration in both computing time and iteration step.

2. The Newton-HSS Methods

When F : D ⊂ Cn → Cn is particularly a linear mapping, i.e., F (x) = Ax − b, with
A ∈ Cn×n a non-Hermitian positive definite matrix and b ∈ Cn a given right-hand-side vector,
the system of nonlinear equations (1.1) reduces to the system of linear equations

Ax = b, A ∈ Cn×n and x, b ∈ Cn. (2.1)

Based on the Hermitian and skew-Hermitian (HS) splitting

A = H + S, with H =
1
2
(A + A∗) and S =

1
2
(A−A∗),

of the coefficient matrix A, Bai et al. [15] established the following HSS iteration method for
solving the system of linear equations (2.1); see also [12,18].

The HSS Iteration Method. Given an initial guess x(0) ∈ Cn, compute x(`+1) for ` =
0, 1, 2, . . . using the following iteration scheme until {x(`)} satisfies the stopping criterion:

{
(αI + H)x(`+ 1

2 ) = (αI − S)x(`) + b,

(αI + S)x(`+1) = (αI −H)x(`+ 1
2 ) + b,

where α is a given positive constant and I denotes the identity matrix.

In matrix-vector form, the above HSS iteration method can be equivalently rewritten as

x(`+1) =T (α)x(`) + G(α)b

=T (α)`+1x(0) +
∑̀

j=0

T (α)jG(α)b, ` = 0, 1, 2, . . . , (2.2)

where

T (α) = (αI + S)−1(αI −H)(αI + H)−1(αI − S) (2.3)

and

G(α) = 2α(αI + S)−1(αI + H)−1. (2.4)

Here, T (α) is the iteration matrix of the HSS method. In fact, (2.2) may also result from the
splitting

A = B(α)− C(α)
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of the coefficient matrix A, with

B(α) =
1
2α

(αI + H)(αI + S),

C(α) =
1
2α

(αI −H)(αI − S).

Notice that

(αI −H)(αI + H)−1 = (αI + H)−1(αI −H).

It evidently holds that

T (α) = B(α)−1C(α) and G(α) = B(α)−1.

The following theorem established in [15] describes the unconditional convergence property
of the HSS iteration.

Theorem 2.1. Let A ∈ Cn×n be a positive definite matrix,

H =
1
2
(A + A∗) and S =

1
2
(A−A∗)

be its Hermitian and skew-Hermitian parts, respectively, and α be a positive constant. Then the
spectral radius ρ(T (α)) of the iteration matrix T (α) of the HSS iteration (see (2.3)) is bounded
by

σ(α) = max
λj∈λ(H)

|α− λj |
|α + λj | ,

where λ(·) represents the spectrum of the corresponding matrix. Consequently, we have

ρ(T (α)) ≤ σ(α) < 1, ∀α > 0,

i.e., the HSS iteration converges to the exact solution x? ∈ Cn of the system of linear equations
(2.1). Moreover, if γmin and γmax are the lower and the upper bounds of the eigenvalues of the
matrix H, respectively, then

α̃ ≡ arg min
α

{
max

γmin≤λ≤γmax

∣∣∣∣
α− λ

α + λ

∣∣∣∣
}

=
√

γminγmax

and

σ(α̃) =
√

γmax −√γmin√
γmax +

√
γmin

=

√
κ(H)− 1√
κ(H) + 1

,

where κ(H) is the spectral condition number of H.

Based on the above preparation, we can now establish the Newton-HSS method for solving
the system of nonlinear equations (1.1), which uses the Newton iteration (1.2) as the outer
iteration and the HSS iteration as the inner iteration.

The Newton-HSS Method. Let F : D ⊂ Cn → Cn be a continuously differentiable function
with the positive-definite Jacobian matrix F ′(x) at any x ∈ D, and

H(x) =
1
2
(F ′(x) + F ′(x)∗) and S(x) =

1
2
(F ′(x)− F ′(x)∗)

be its Hermitian and skew-Hermitian parts, respectively. Given an initial guess x(0) ∈ D and
a sequence {lk}∞k=0 of positive integers, compute x(k+1) for k = 0, 1, 2, . . . using the following
iteration scheme until {x(k)} satisfies the stopping criterion:
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(a) Set s(k,0) := 0;

(b) For ` = 0, 1, . . . , lk − 1, solve the following linear systems to obtain s(k,`+1):
{

(αI + H(x(k)))s(k,`+ 1
2 ) = (αI − S(x(k)))s(k,`) − F (x(k)),

(αI + S(x(k)))s(k,`+1) = (αI −H(x(k)))s(k,`+ 1
2 ) − F (x(k)),

where α is a given positive constant;

(c) Set x(k+1) := x(k) + s(k,lk).

In fact, the Newton-HSS method affords one feasible way of utilizing the HSS iteration to
approximate solutions of the Newton equations in the Newton method for solving systems of
nonlinear equations. In this case, we obtain a composite or multistep iteration scheme with the
Newton method as the primary iteration and the HSS method as the secondary iteration.

By making use of (2.2), after straightforward operations we can obtain a uniform expression
for s(k,lk) as follows:

s(k,lk) = −
lk−1∑

j=0

T (α; x(k))jG(α;x(k))F (x(k)),

where

T (α;x) = (αI + S(x))−1(αI −H(x))(αI + H(x))−1(αI − S(x)) (2.5)

G(α; x) = 2α(αI + S(x))−1(αI + H(x))−1;

see (2.3) and (2.4). It follows that the Newton-HSS method can be rewritten as the matrix-
vector form

x(k+1) = x(k) −
lk−1∑

j=0

T (α; x(k))jG(α; x(k))F (x(k)), k = 0, 1, 2, . . . . (2.6)

Define matrices

B(α; x) =
1
2α

(αI + H(x))(αI + S(x)), (2.7a)

C(α; x) =
1
2α

(αI −H(x))(αI − S(x)). (2.7b)

Then it holds that

F ′(x) = B(α; x)− C(α;x) (2.8)

is a splitting of the Jacobian matrix F ′(x),

T (α; x) = B(α;x)−1C(α; x), B(α; x) = G(α; x)−1, (2.9)

F ′(x)−1 = (I − T (α; x))−1G(α; x).

Hence, from (2.6) we can equivalently express the Newton-HSS method as the alternative form

x(k+1) = x(k) −
(
I − T (α; x(k))lk

)
F ′(x(k))−1F (x(k))

= x(k) − F ′(x(k))−1(F (x(k))− r(α;x(k), lk)), k = 0, 1, 2, . . . , (2.10)
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which is evidently of the form of the inexact Newton method (1.4), with

r(α; x, l) := F ′(x) T (α; x)lF ′(x)−1F (x). (2.11)

To end this section, we remark that the inner iterations of the Newton-Krylov methods, e.g.,
Newton-GMRES and Newton-GCG, may rely only on Jacobian-vector products, which can be
approximated by a finite difference scheme and, hence, the actual Jacobian matrices need not
be computed and stored in actual computations. The Newton-HSS method, however, requires
the explicit Jacobian matrices. In addition, each inner HSS iteration requires solving two sub-
systems of linear equations with respect to a shifted Hermitian and a shifted skew-Hermitian
coefficient matrices and, hence, could be expensive if they are solved by direct methods. This
seems a price that should be paid in using the Newton-HSS method to solve large sparse systems
of nonlinear equations. A feasible remedy may be to solve these special sub-systems of linear
equations inexactly by certain iteration methods, e.g., the conjugate gradient method or its
variants, GMRES, BiCGSTAB, GCG and so on; see [17].

3. The Local Convergence Theory

First of all, for any x ∈ Cn and any X ∈ Cn×n we define the vector norm ‖x‖ by

‖x‖ := ‖(αI + S(x?))x‖2

and denote by
‖X‖ := ‖(αI + S(x?))X(αI + S(x?))−1‖2

the induced matrix norm, where x? ∈ D is a zero point of the nonlinear function F : D ⊂ Cn →
Cn. Obviously, these norms are well defined as the matrix αI + S(x?) is positive definite and,
hence, is nonsingular.

A mapping F : D ⊂ Cn → Cn is Gateaux- (or G-) differentiable at an interior point x of D
if there exists a linear operator J ∈ Cn×n such that, for any h ∈ Cn,

lim
t→0

1
t
‖F (x + th)− F (x)− tJh‖ = 0.

F : D ⊂ Cn → Cn is said to be G-differentiable on an open set D0 ⊂ D if it is G-differentiable
at any point in D0. Note that the above limit is independent of the particular norm on Cn;
that is, if F is G-differentiable in some norm, then it is G-differentiable in any norm.

The following perturbation lemma plays a fundamental role in the subsequent discussion;
see Lemma 2.3.2 in [26, p. 45].

Lemma 3.1. [26] Let M,N ∈ Cn×n and assume that M is nonsingular, with ‖M−1‖ ≤ æ. If
‖M −N‖ ≤ δ and δæ < 1, then N is also nonsingular, and

‖N−1‖ ≤ æ
1− δæ

.

Theorem 11.1.5 in [26] gives a local convergence theory about an inexact Newton method
that uses a general splitting iteration scheme as the inner solver. When this result is specified to
the Newton-HSS method, we can immediately obtain the following local convergence theorem.
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Theorem 3.1. Let F : D ⊂ Cn → Cn be G-differentiable on an open neighborhood N0 ⊂ D of
a point x? ∈ D at which F ′(x) is continuous, positive definite, and F (x?) = 0. Suppose

F ′(x) = H(x) + S(x),

where
H(x) =

1
2
(F ′(x) + F ′(x)∗) and S(x) =

1
2
(F ′(x)− F ′(x)∗)

are the Hermitian and the skew-Hermitian parts of the Jacobian matrix F ′(x), respectively.
Then there exists an open neighborhood N ⊂ N0 of x? such that for any x(0) ∈ N and any
sequence of positive integers lk, k = 0, 1, 2, . . ., the iteration sequence {x(k)}∞k=0 generated by
the Newton-HSS method is well-defined and convergent to x?. Moreover, it holds that

lim sup
k→∞

‖x(k) − x?‖
1
k ≤ ρ(T (α; x?))lo , with lo = lim inf

k→∞
lk;

in particular, if lim
k→∞

lk = ∞, then the rate of convergence is R-superlinear, i.e.,

lim sup
k→∞

‖x(k) − x?‖
1
k = 0.

Proof. It is straightforward from Theorem 11.1.5 in [26, page 350]. ¤

We remark that

ρ(T (α;x?)) ≤ max
λ∈λ(H(x?))

|α− λ|
|α + λ| ≡ σ(α; x?)

holds according to Theorem 2.1. In addition, when lk ≡ 1, k = 0, 1, 2, . . ., the Newton-HSS
method reduces to the so-called one-step Newton-HSS method, which uses only one step of
the HSS iteration to approximate the solution of the Newton equation at each step of the
Newton method. Under the conditions of Theorem 3.1 the zero point x? ∈ D of the nonlinear
function F : D ⊂ Cn → Cn is an attraction point of the one-step Newton-HSS method, with
the attraction factor being given by ρ(T (α;x?)).

To know more exactly about the local convergence depending on the behaviour of the
function F and the radius of the neighborhood N involved in Theorem 3.1, we establish the
following local convergence theorem for the Newton-HSS method.

Theorem 3.2. Let F : D ⊂ Cn → Cn be G-differentiable on an open neighborhood N0 ⊂ D of
a point x? ∈ D at which F ′(x) is continuous, positive definite, and F (x?) = 0. Suppose

F ′(x) = H(x) + S(x),

where
H(x) =

1
2
(F ′(x) + F ′(x)∗) and S(x) =

1
2
(F ′(x)− F ′(x)∗)

are the Hermitian and the skew-Hermitian parts of the Jacobian matrix F ′(x), respectively. In
addition, denote by N(x?, r) an open ball centered at x? with radius r and assume the following
conditions hold for all x ∈ N(x?, r) ⊂ N0:
(A1) (the bounded condition) there exist positive constants β and γ such that

max{‖H(x?)‖, ‖S(x?)‖} ≤ β and ‖F ′(x?)−1‖ ≤ γ,
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(A2) (the Lipschitz condition) there exist nonnegative constants Lh and Ls such that

‖H(x)−H(x?)‖ ≤ Lh‖x− x?‖,
‖S(x)− S(x?)‖ ≤ Ls‖x− x?‖.

Here r ∈ (0, ro), and ro is defined by ro := min1≤j≤2{r(j)
+ } and

r
(1)
+ =

α + β

L

(√
2ταθ

γ(2 + τθ)(α + β)2
+ 1− 1

)
,

r
(2)
+ =

1− 2βγ[(τ + 1)θ]lo

3Lγ
,

with L := Lh + Ls, lo = lim infk→∞ lk satisfying

lo > b− ln(2βγ)
ln((τ + 1)θ)

c, (3.1)

where the symbol b·c is used to denote the smallest integer no less than the corresponding real
number, τ ∈ (0, 1−θ

θ ) a prescribed positive constant, and

θ ≡ θ(α; x?) = ‖T (α;x?)‖ ≤ max
λ∈σ(H(x?))

|α− λ|
|α + λ| ≡ σ(α;x?).

Then, for any x(0) ∈ N(x?, r) and any sequence {lk}∞k=0 of positive integers, the iteration
sequence {x(k)}∞k=0 generated by the Newton-HSS method is well-defined and convergent to x?.
Moreover, it holds that

lim sup
k→∞

‖x(k) − x?‖
1
k ≤ θlo .

Proof. Evidently, the bounded condition (A1) directly implies the bounds

‖F ′(x?)‖ =‖H(x?) + S(x?)‖
≤‖H(x?)‖+ ‖S(x?)‖ ≤ 2β (3.2)

and

‖B(α; x?)−1‖ =‖(I − T (α; x?))F ′(x?)−1‖
≤‖I − T (α;x?)‖‖F ′(x?)−1‖
≤(1 + ‖T (α; x?)‖)‖F ′(x?)−1‖ ≤ 2γ. (3.3)

Here we have used the equalities (2.8)-(2.9) and the fact

‖T (α;x?)‖ ≤ σ(α; x?) < 1;

see Theorem 2.1. In addition, the Lipschitz condition (A2) also implies the Lipschitz continuity
of the mapping F ′ : D ⊂ Cn → Cn×n, i.e., it holds that

‖F ′(x)− F ′(x?)‖ ≤‖H(x)−H(x?)‖+ ‖S(x)− S(x?)‖
≤(Lh + Ls)‖x− x?‖ = L‖x− x?‖. (3.4)
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Therefore, it follows from the integral mean-value theorem that

‖F (x)− F (x?)− F ′(x?)(x− x?)‖

=
∥∥∥∥
∫ 1

0

F ′(x? + t(x− x?))(x− x?)dt− F ′(x?)(x− x?)
∥∥∥∥

≤
∫ 1

0

‖F ′(x? + t(x− x?))− F ′(x?)‖‖x− x?‖dt

≤
∫ 1

0

Lt‖x− x?‖2dt =
L

2
‖x− x?‖2 (3.5)

holds for all x ∈ N(x?, r). Because

H(x)S(x)−H(x?)S(x?)

=[H(x)−H(x?)]S(x) + H(x?)[S(x)− S(x?)]

=[H(x)−H(x?)][S(x)− S(x?)] + [H(x)−H(x?)]S(x?) + H(x?)[S(x)− S(x?)],

it follows from both (A1) and (A2) that for all x ∈ N(x?, r) we have

‖H(x)S(x)−H(x?)S(x?)‖
≤‖H(x)−H(x?)‖‖S(x)− S(x?)‖+ ‖H(x)−H(x?)‖‖S(x?)‖+ ‖H(x?)‖‖S(x)− S(x?)‖
≤LhLs‖x− x?‖2 + β(Lh + Ls)‖x− x?‖
≤1

2
(Lh + Ls)2‖x− x?‖2 + β(Lh + Ls)‖x− x?‖

=
1
2
L2‖x− x?‖2 + Lβ‖x− x?‖. (3.6)

Noticing that the equivalent expressions

B(α;x) =
1
2α

(
α2I + αF ′(x) + H(x)S(x)

)

and

C(α; x) =
1
2α

(
α2I − αF ′(x) + H(x)S(x)

)

about the matrices B(α;x) and C(α; x) defined in (2.7a-2.7b) straightforwardly lead to the
equalities

B(α; x)−B(α; x?) =
1
2

(
F ′(x)− F ′(x?)

)
+

1
2α

(
H(x)S(x)−H(x?)S(x?)

)

and

C(α;x)− C(α; x?) = −1
2

(
F ′(x)− F ′(x?)

)
+

1
2α

(
H(x)S(x)−H(x?)S(x?)

)
,

from (3.4) and (3.6) we can further obtain the estimates

‖B(α; x)−B(α; x?)‖
≤1

2
‖F ′(x)− F ′(x?)‖+

1
2α
‖H(x)S(x)−H(x?)S(x?)‖

≤L2

4α
‖x− x?‖2 +

L(α + β)
2α

‖x− x?‖ (3.7)
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and

‖C(α; x)− C(α;x?)‖ ≤ L2

4α
‖x− x?‖2 +

L(α + β)
2α

‖x− x?‖. (3.8)

Hence, by making use of the perturbation lemma, i.e., Lemma 3.1, it follows from (A1) and
(3.4) as well as (3.7) and (3.3) that

‖F ′(x)−1‖ ≤ γ

1− Lγ‖x− x?‖ (3.9)

and

‖B(α; x)−1‖ ≤ 4αγ

2α− γ(L2‖x− x?‖2 + 2(α + β)L‖x− x?‖) (3.10)

hold for all x ∈ N(x?, r), provided r is small enough such that Lγ‖x− x?‖ < 1 and

γ
(
L2‖x− x?‖2 + 2(α + β)L‖x− x?‖

)
< 2α.

Using (2.5), (2.8) and (2.9) immediately gives the equality

T (α;x)− T (α;x?)

=B(α;x)−1C(α; x)−B(α; x?)−1C(α; x?)

=B(α;x)−1 ((C(α; x)− C(α;x?)) − (B(α; x)−B(α;x?))T (α;x?)) .

Based on (3.7), (3.8) and (3.10) we can obtain that

‖T (α;x)− T (α;x?)‖
≤‖B(α;x)−1‖[‖C(α; x)− C(α; x?)‖+ ‖B(α; x)−B(α; x?)‖‖T (α;x?)‖]

≤ 2γ
(
L2‖x− x?‖2 + 2(α + β)L‖x− x?‖

)

2α− γ (L2‖x− x?‖2 + 2(α + β)L‖x− x?‖) .

Let us further restrict r so small that Lγ‖x− x?‖ < 1 and

γ
(
L2‖x− x?‖2 + 2(α + β)L‖x− x?‖

)
<

2ταθ

2 + τθ
.

Then it holds that

2γ
(
L2‖x− x?‖2 + 2(α + β)L‖x− x?‖

)

2α− γ (L2‖x− x?‖2 + 2(α + β)L‖x− x?‖) < τθ

and, hence,

‖T (α;x)‖ ≤ ‖T (α; x)− T (α; x?)‖+ ‖T (α; x?)‖

≤ 2γ(L2‖x− x?‖2 + 2(α + β)L‖x− x?‖)
2α− γ(L2‖x− x?‖2 + 2(α + β)L‖x− x?‖) + θ

≤ (τ + 1)θ. (3.11)

Now, we turn to estimate the error about the Newton-HSS iteration sequence {x(k)}∞k=0 defined
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by (2.10) and (2.11). Clearly, it holds that

x(k+1) − x?

=x(k) − x? − F ′(x(k))−1F (x(k)) + F ′(x(k))−1r(α; x(k), lk)

=− F ′(x(k))−1
(
F (x(k))− F (x?)− F ′(x(k))(x(k) − x?)

)
+ r(α;x(k), lk)

=− F ′(x(k))−1
(
F (x(k))− F (x?)− F ′(x?)(x(k) − x?)

)

+ F ′(x(k))−1
(
F ′(x(k))− F ′(x?)

)
(x(k) − x?) + r(α;x(k), lk),

where

r(α; x, l) := F ′(x)−1r(α; x, l) = T (α; x)lF ′(x)−1F (x)

=T (α;x)lF ′(x)−1 (F (x)− F (x?)− F ′(x?)(x− x?))

+ T (α; x)lF ′(x)−1F ′(x?)(x− x?).

Hence, by making use of (3.9), (3.2), (3.5) and (3.11) we can obtain

‖r(α; x, l)‖
≤‖T (α;x)l‖‖F ′(x)−1‖ · (‖F (x)− F (x?)− F ′(x?)(x− x?)‖+ ‖F ′(x?)(x− x?)‖

)

≤ γ[(τ + 1)θ]l

1− Lγ‖x− x?‖
(

L

2
‖x− x?‖2 + 2β‖x− x?‖

)

and

‖x(k+1) − x?‖

≤ 3γL

2(1− Lγ‖x(k) − x?‖)
‖x(k) − x?‖2 + ‖r(α;x(k), lk)‖

≤ (3 + [(τ + 1)θ]lk)γL

2(1− Lγ‖x(k) − x?‖)
‖x(k) − x?‖2 +

2βγ[(τ + 1)θ]lk

1− Lγ‖x(k) − x?‖
‖x(k) − x?‖

≤ 2γ

1− Lγ‖x(k) − x?‖
(
L‖x(k) − x?‖+ β[(τ + 1)θ]lk

)
‖x(k) − x?‖

:=g(‖x(k) − x?‖; lk)‖x(k) − x?‖,
provided that

Lγ‖x(k) − x?‖ < 1,

γ
(
L2‖x(k) − x?‖2 + 2(α + β)L‖x(k) − x?‖

)
<

2ταθ

2 + τθ
.

Here, we have used the notation

g(t; l) :=
2γ

1− Lγt

(
Lt + β[(τ + 1)θ]l

)
.

By noticing that

g(‖x(k) − x?‖; lk) ≤ 2γ

1− Lγ‖x(k) − x?‖
(
L‖x(k) − x?‖+ β[(τ + 1)θ]lo

)

≤ 2γ

1− Lγro
(Lro + β[(τ + 1)θ]lo) = g(ro; lo) < 1
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holds when (3.4) is satisfied and x(k) ∈ N(x?, r
(2)
+ ) ⊂ N(x?, ro), we can further prove that

{x(k)}∞k=0 ⊂ N(x?, r) with the estimates

‖x(k+1) − x?‖ ≤ g(ro; lo)‖x(k) − x?‖, k = 0, 1, 2, . . . . (3.12)

In fact, for k = 0 we have ‖x(0) − x?‖ < r < ro, as x(0) ∈ N(x?, r). It follows from (3.12) that

‖x(1) − x?‖ ≤ g(ro; lo)‖x(0) − x?‖,
which shows that (3.12) holds true for k = 0. In addition, we have

‖x(1) − x?‖ ≤ g(ro; lo)‖x(0) − x?‖ ≤ ‖x(0) − x?‖ < r

and, hence, x(1) ∈ N(x?, r). Suppose that x(m) ∈ N(x?, r) and (3.12) is valid for some positive
integer k = m. Then by making use of (3.12) again we can straightforwardly deduce the
estimate

‖x(m+1) − x?‖ ≤ g(ro; lo)‖x(m) − x?‖,
which shows that (3.12) holds true for k = m + 1, too. In addition, we have

‖x(m+1) − x?‖ ≤ g(ro; lo)‖x(m) − x?‖ ≤ ‖x(m) − x?‖ < r

and, hence, x(m+1) ∈ N(x?, r).
Now, the conclusion what we are proving follows as a direct corollary of (3.12) and Theo-

rem 3.1. ¤
Theorem 3.1 shows that the attraction domain of the Newton-HSS method is N(x?, ro). To

obtain a large attraction domain, it is necessary that the positive constants L, β, γ and θ are
small and the positive integer lo is large. Roughly speaking, this implies that the function
F : D ⊂ Cn → Cn is mildly nonlinear, the Jacobian matrix F ′(x?) is well conditioned, and the
inner iteration steps are reasonably large.

To our knowledge, there is no local convergence result of the type of Theorem 3.1 in the
literature for an inexact Newton method using splitting iteration as its inner solver. Hence,
Theorem 3.1 could be the first result on this topic.

4. Numerical Results

We consider the two-dimensional nonlinear convection-diffusion equation




−(uxx + uyy) + q1ux + q2uy = −eu, for (x, y) ∈ Ω,

u(x, y) = 0, for (x, y) ∈ ∂Ω,
(4.1)

where Ω = (0, 1) × (0, 1), with ∂Ω its boundary, and q1 and q2 are positive constants used to
measure the magnitudes of the convective terms; see [8, 9, 15]. By applying the centered finite
difference scheme on the equidistant discretization grid with the stepsize h = 1

N+1 , we obtain
the system of nonlinear equations (1.1) of the form

F (x) ≡ Mx + h2Φ(x) = 0,

where N is a prescribed positive integer,

M = Tx ⊗ I + I ⊗ Ty,

Φ(x) = (ex1 , ex2 , . . . , exn)T ,
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with Tx and Ty being tridiagonal matrices given by

Tx = tridiag(−1− Re1, 2,−1 + Re1) and Ty = tridiag(−1− Re2, 2,−1 + Re2).

Here, Rej = 1
2qjh, j = 1, 2, Re = max{Re1,Re2} is the mesh Reynolds number, ⊗ the Kronecker

product symbol, and n = N ×N ; see [10, 22].
In actual computations, we take the positive constant q2 to be q2 = 1

h so that Re2 < 1 is
satisfied; see Section 5. In addition, the initial guess is chosen to be x(0) = 0, the stopping
criterion for the outer Newton iteration is set to be

‖F (x(k))‖2
‖F (x(0))‖2

≤ 10−6,

and that for the inner HSS iteration is set to be

‖F ′(x(k))s(k,lk) + F (x(k))‖2
‖F (x(k))‖2

≤ η,

where η is a prescribed tolerance for controlling the accuracy of the HSS iteration. The same
stopping criterion is adopted for the inner iterations USOR, GMRES and GCG, too. The two
sub-systems of linear equations with respect to the shifted Hermitian and the shifted skew-
Hermitian coefficient matrices involved in the Newton-HSS iteration scheme are solved directly
by making use of the sparse LU and Cholesky factorizations.

The Newton-HSS method is compared with the Newton-USOR, the Newton-GMRES and
the Newton-GCG methods for different problem sizes n = N ×N , different quantities q := q1

and different tolerances η, from aspects of the numbers of the outer, the inner and the total
iteration steps (denoted as ITout, ITint and IT, respectively) and the total CPU time (denoted
as CPU). Here ITint denotes the average number of the inner iteration steps at each outer
Newton iterate. Besides, the preconditioning effects of the HSS and the USOR iterations are
examined when they are used to improve the numerical behaviours of the Newton-GMRES and
the Newton-GCG methods.

In the implementations, we adopt the experimentally optimal parameters α for the Newton-
HSS method and ω for the Newton-USOR method, which yield the least CPU times for these
iteration methods, respectively; see Tables 4.1 and 4.2.

Table 4.1: The Optimal Values α for Newton-HSS Method

N q = 600 q = 800 q = 1000

η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4

30 3.0 2.7 2.9 1.1 1.2 1.1 1.1 1.1 1.4

40 1.3 1.2 1.3 1.2 1.1 1.3 1.4 1.2 1.3

50 1.6 1.5 1.8 1.2 1.5 1.2 1.2 1.2 1.3

Table 4.2: The Optimal Values ω for Newton-USOR Method

N q = 600 q = 800 q = 1000

η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4

30 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2

40 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2

50 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2



248 Z.-Z. BAI AND X.-P. GUO

Table 4.3: Numerical Results of Inexact Newton Methods for η = 0.1

N 30 40 50

ITint 6.0 5.7 5.5

Newton-HSS ITout 6 6 6

IT 36 34 33

CPU 0.420 1.290 2.840

ITint 11.3 9.2 7.9

Newton-USOR ITout 6 6 6

IT 68 55 47

q = 600 CPU 0.790 2.130 4.740

ITint 34.2 31.7 26.7

Newton-GMRES ITout 6 6 6

IT 205 190 160

CPU 0.430 1.380 2.960

ITint 44.5 47.2 54.5

Newton-GCG ITout 6 6 6

IT 267 283 327

CPU 0.490 1.680 4.150

ITint 6.2 5.7 5.7

Newton-HSS ITout 6 6 6

IT 37 34 34

CPU 0.470 1.280 2.870

ITint 13.0 12.3 9.7

Newton-USOR ITout 6 6 6

IT 78 74 58

q = 800 CPU 0.860 2.510 5.210

ITint 40.0 34.2 33.3

Newton-GMRES ITout 6 6 6

IT 240 205 200

CPU 0.470 1.420 3.540

ITint 46.8 51.5 65.3

Newton-GCG ITout 6 6 6

IT 281 309 392

CPU 0.520 1.790 4.810

For different inner tolerances η and problem parameters q, the results about ITout, ITint,
IT and CPU are listed in the numerical tables corresponding to the referred inexact Newton
methods and the preconditioned inexact Newton methods.

In Tables 4.3-4.6, we present the numerical results about the Newton method incorporated
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Table 4.4: Numerical Results of Inexact Newton Methods for η = 0.2

N 30 40 50

ITint 4.4 4.6 4.6

Newton-HSS ITout 8 7 7

IT 35 32 32

CPU 0.470 1.300 2.920

ITint 8.0 6.6 5.6

Newton-USOR ITout 9 8 8

IT 72 53 45

q = 600 CPU 0.950 2.370 5.230

ITint 25.6 23.1 19.4

Newton-GMRES ITout 8 8 8

IT 205 185 155

CPU 0.440 1.400 3.100

ITint 27.2 27.0 30.2

Newton-GCG ITout 9 9 9

IT 245 243 272

CPU 0.500 1.600 3.850

ITint 4.3 4.9 4.4

Newton-HSS ITout 8 7 8

IT 34 34 35

CPU 0.500 1.360 3.180

ITint 9.4 9.0 6.8

Newton-USOR ITout 9 8 9

IT 85 72 61

q = 800 CPU 1.030 2.750 6.350

ITint 30.0 25.6 24.4

Newton-GMRES ITout 8 8 8

IT 240 205 195

CPU 0.500 1.500 3.600

ITint 47.1 27.1 30.4

Newton-GCG ITout 9 9 9

IT 424 244 274

CPU 0.750 1.630 3.890

with HSS, USOR, GMRES and GCG, corresponding to the inner tolerance η = 0.1, 0.2 and
0.4 and the problem parameter q = 600, 800 and 1000, respectively. From these tables, we can
easily see that all these iteration methods can compute an approximate solution of the system
of nonlinear equations. In particular, the Newton-HSS method considerably outperforms the
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Table 4.5: Numerical Results of Inexact Newton Methods for η = 0.4

N 30 40 50

ITint 2.8 2.6 2.8

Newton-HSS ITout 12 12 11

IT 34 31 31

CPU 0.550 1.610 3.480

ITint 4.7 4.0 3.7

Newton-USOR ITout 14 13 12

IT 66 52 44

q = 600 CPU 1.130 3.070 6.510

ITint 15.4 14.6 12.5

Newton-GMRES ITout 13 12 12

IT 200 175 150

CPU 0.510 1.510 3.410

ITint 12.4 16.9 14.7

Newton-GCG ITout 15 14 15

IT 186 237 223

CPU 0.520 1.840 4.000

ITint 2.8 2.8 2.8

Newton-HSS ITout 12 12 12

IT 33 33 33

CPU 0.580 1.650 3.710

ITint 5.4 5.5 4.1

Newton-USOR ITout 15 13 14

IT 81 72 57

q = 800 CPU 1.280 3.460 7.820

ITint 18.9 15.4 16.3

Newton-GMRES ITout 13 13 12

IT 245 200 195

CPU 0.570 1.690 3.990

ITint 21.3 14.9 16.7

Newton-GCG ITout 15 15 15

IT 319 223 250

CPU 0.700 1.810 4.270

Newton-USOR, the Newton-GMRES and the Newton-GCG methods for all the tested cases,
as it has the least iteration step and CPU time, which are much less than those of the others.

In Tables 4.7-4.10, we present the numerical results about the Newton-GMRES and the
Newton-GCG methods preconditioned by HSS and USOR, corresponding to the inner tolerance



On Newton-HSS Methods for Systems of Nonlinear Equations 251

Table 4.6: Numerical Results of Inexact Newton Methods for q = 1000

N 30 40 50

ITint 4.5 4.4 4.4

Newton-HSS ITout 8 8 8

IT 36 35 35

CPU 0.500 1.450 3.210

ITint 12.4 9.6 9.3

Newton-USOR ITout 9 9 9

IT 112 86 84

η = 0.2 CPU 1.220 3.180 7.510

ITint 36.3 29.4 28.1

Newton-GMRES ITout 8 8 8

IT 290 235 225

CPU 0.570 1.650 4.000

ITint 39.7 33.9 32.9

Newton-GCG ITout 9 9 9

IT 357 305 296

CPU 0.660 1.860 4.110

ITint 3.5 3.1 2.9

Newton-HSS ITout 11 11 12

IT 38 34 35

CPU 0.580 1.610 3.780

ITint 7.3 5.6 5.6

Newton-USOR ITout 15 14 15

IT 109 78 79

η = 0.4 CPU 1.480 3.720 8.920

ITint 21.4 19.2 17.9

Newton-GMRES ITout 14 12 12

IT 300 230 215

CPU 0.670 1.780 4.250

ITint 21.1 15.7 22.0

Newton-GCG ITout 15 15 15

IT 317 235 330

CPU 0.700 1.850 5.030

η = 0.1, 0.2 and 0.4 and the problem parameter q = 600, 800 and 1000, respectively. From these
tables, we can easily see that all these iteration methods can compute an approximate solution
of the system of nonlinear equations. In particular, as preconditioners the HSS iteration is
much more effective than the USOR iteration for all the tested cases in the sense of iteration
step and computing time, when they are used to improve the numerical behaviours of the
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Table 4.7: Numerical Results of Preconditioned Inexact Newton Methods for η = 0.1

N 30 40 50

ITint 5.0 8.8 7.5

HSS ITout 4 4 4

IT 20 35 30

CPU 0.320 1.040 2.230

GMRES ITint 5.0 8.0 8.8

USOR ITout 4 5 4

IT 20 40 35

q = 600 CPU 0.380 1.730 3.570

ITint 3.2 5.3 6.2

HSS ITout 6 6 6

IT 19 32 37

CPU 0.340 1.090 2.580

GCG ITint 3.8 13.3 9.3

USOR ITout 5 6 6

IT 19 80 56

CPU 0.400 2.240 4.460

ITint 8.0 8.8 8.8

HSS ITout 5 4 4

IT 40 35 35

CPU 0.450 1.070 2.400

GMRES ITint 9.0 5.0 7.0

USOR ITout 5 4 5

IT 45 20 35

q = 800 CPU 0.600 1.140 3.890

ITint 6.3 5.8 6.2

HSS ITout 6 6 6

IT 38 35 37

CPU 0.420 1.130 2.640

GCG ITint 8.2 3.8 9.2

USOR ITout 6 6 6

IT 49 23 55

CPU 0.570 1.350 4.420

Newton-GMRES and the Newton-GCG methods.
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Table 4.8: Numerical Results of Preconditioned Inexact Newton Methods for η = 0.2

N 30 40 50

ITint 5.0 5.0 5.0

HSS ITout 4 7 6

IT 20 35 30

CPU 0.300 1.230 2.560

GMRES ITint 5.0 6.7 7.0

USOR ITout 4 6 5

IT 20 40 35

q = 600 CPU 0.370 1.870 3.900

ITint 2.5 4.4 4.1

HSS ITout 8 8 8

IT 20 35 33

CPU 0.370 1.260 2.840

GCG ITint 2.5 8.3 4.0

USOR ITout 8 8 8

IT 20 66 32

CPU 0.500 2.290 4.260

ITint 5.0 5.0 5.0

HSS ITout 7 7 6

IT 35 35 30

CPU 0.450 1.260 2.560

GMRES ITint 8.3 5.0 7.0

USOR ITout 6 4 5

IT 50 20 35

q = 800 CPU 0.680 1.140 3.910

ITint 3.9 4.8 3.9

HSS ITout 8 8 8

IT 31 38 31

CPU 0.440 1.300 2.810

GCG ITint 6.0 3.0 5.5

USOR ITout 8 7 8

IT 48 21 44

CPU 0.650 1.450 4.710

5. Remarks

In this section, we make remarks about stable discretizations of convection-diffusion equa-
tions and globally convergent variants of the Newton-HSS method.
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Table 4.9: Numerical Results of Preconditioned Inexact Newton Methods for η = 0.4

N 30 40 50

ITint 5.0 5.0 5.0

HSS ITout 4 6 5

IT 20 30 25

CPU 0.300 1.110 2.290

GMRES ITint 5.0 5.7 5.0

USOR ITout 4 7 7

IT 20 40 35

q = 600 CPU 0.370 2.010 4.540

ITint 1.7 2.8 2.5

HSS ITout 10 11 11

IT 17 31 27

CPU 0.390 1.400 3.190

GCG ITint 1.8 3.6 2.6

USOR ITout 11 13 11

IT 20 47 29

CPU 0.650 2.710 5.180

ITint 5.0 5.0 5.0

HSS ITout 7 6 7

IT 35 30 35

CPU 0.460 1.130 2.850

GMRES ITint 5.0 5.0 5.8

USOR ITout 9 4 6

IT 45 20 35

q = 800 CPU 0.770 1.140 4.230

ITint 2.7 2.5 2.8

HSS ITout 13 13 13

IT 35 33 36

CPU 0.560 1.560 3.700

GCG ITint 3.6 2.0 3.8

USOR ITout 13 10 11

IT 47 20 42

CPU 0.880 1.860 5.650

5.1. The Stable Discretizations

When solving partial differential equations it is important to use a stable discretization, as
otherwise the discrete solution may not converge and, normally, the approximate solution will
be contaminated with noise, i.e., shows an oscillating behaviour.
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Table 4.10: Numerical Results of Preconditioned Inexact Newton Methods for q = 1000

N 30 40 50

ITint 5.0 5.0 5.0

HSS ITout 7 7 7

IT 35 35 35

CPU 0.450 1.280 2.890

GMRES ITint 5.0 8.3 9.2

USOR ITout 5 6 6

IT 25 50 55

η = 0.2 CPU 0.440 2.090 5.320

ITint 4.3 4.1 4.5

HSS ITout 8 8 8

IT 34 33 36

CPU 0.450 1.260 2.960

GCG ITint 2.9 8.1 17.9

USOR ITout 8 8 9

IT 23 65 161

CPU 0.520 2.300 9.380

ITint 5.0 5.0 5.0

HSS ITout 6 6 6

IT 30 30 30

CPU 0.410 1.150 2.600

GMRES ITint 5.0 6.3 6.9

USOR ITout 5 8 8

IT 25 50 55

η = 0.4 CPU 0.450 2.360 5.970

ITint 2.3 2.6 2.8

HSS ITout 12 12 12

IT 27 31 33

CPU 0.490 1.480 3.490

GCG ITint 2.0 5.0 8.2

USOR ITout 11 14 13

IT 22 70 107

CPU 0.650 3.210 8.750

For simplicity, we shall here consider only the linear convection-diffusion problems due to the
nice property of the nonlinear term eu involved in the nonlinear convection-diffusion equation
(4.1). As is well known, when one uses a central difference approximation for convection-
diffusion problems, the solution is normally heavily contaminated with noise, when the diffusion
parameter ν < h, where h is an average stepsize of the mesh used, and when the solution has a
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boundary or interior layer. However, it turns out that the noise contaminates essentially only
the even points (starting the ordering from the first point next to the boundary layer) but not
the odd numbered points. This can be explained if one uses an odd-even reordering of the
equations and unknowns to form a two-by-two block linear system

Ah =


 D1 E12

E21 D2


 ,

where the first block row corresponds to the even-numbered equations. Eliminating these, one
gets a system matrix

D2 − E21D
−1
1 E12

in the odd-numbered unknowns, which, under certain conditions, turns out to be an M -matrix
and is hence stable.

For example, after discretization of the one-dimensional boundary value problem



−νu′′ + qu′ = 0, 0 < x < 1,

u(0) = u(1) = 1,
ν > 0,

on a uniform mesh Ωh with spacing h and constants ν and q, the central difference matrix takes
the form

Ah = −νh−2 · tridiag(−1− Pe, 2,−1 + Pe),

where Pe = qh
2ν is the Peclet number. If Pe ≤ 1, then Ah is an M -matrix, i.e., in particular

a monotone matrix (Ahv ≥ 0 for any real vector v ≥ 0). But this does not hold if Pe > 1.
Using the odd-even reordering and elimination of the even-ordered equations results in a new
difference approximation where

Di = diag(2), E12 = tridiag(−1− Pe,−1 + Pe, 0), E21 = tridiag(0,−1− Pe,−1 + Pe)

and the reduced linear system takes the form

D2 − E12D
−1
1 E21 = −1

2
νh−2 · tridiag(−(1 + Pe)2, 2(1 + P 2

e ),−(1− Pe)2)

for the odd-ordered points. Note that this is an M -matrix for all values of Pe. The reduced
linear system is, in fact, equivalent to a central difference approximation to

−ν(1 + P 2
e )u′′ + qu′ = 0 (5.1)

on the double-spaced mesh, say, Ω2h. Hence, the approximation on the originally odd-numbered
points do not show any unphysical wiggles.

The solution to (5.1) can be quite acceptable also for small values ν if there are no layers,
but if layers are present it shows too much dispersion (smearing) of the layers. However, if
one resolves the layers by using a sufficiently fine mesh in the layers, then the global solution
becomes quite acceptable. Actually, we could better have added an (even smaller) amount
of artificial diffusion, ν(Pe

2 )2, directly to the original equation and used the central difference
approximation method on this, if we are content with this type of monotone (and second order
correct !) but heavily smeared approximations. Actually, there is a simple “trick” to improve
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the solution of the central difference approximation substantially. We then interpolate the
solution given at the even points to the odd points and then take the arithmetic average of the
original solution at an odd point and the interpolated value at this point.

The reduction method to get a monotone operator can be generalized to the operator

−ν∆u + q1ux + q2uy

in a rectangular domain if q1 > 0 and Pe2 = |q2|h
2ν < 1. That the reduced equations give a

monotone operator even for problems with variable coefficients has been shown earlier in [8];
see also [9, 22].

Consider now the upwind difference approximation where we use a backward difference, i.e.,

q1
∂u
∂x

≈ q1(x, y) · u(x, y)− u(x− h, y)
h

, if q1 > 0,

or a forward difference approximation if q1 < 0, and corresponding approximations for q2
∂u
∂y .

Note then that for sufficiently regular solutions,

q1(x, y) · u(x, y)− u(x− h, y)
h

= q1ux(x, y)− h

2
q1uxx(x, y) +O(h2).

Hence, the upwind scheme is similar to the use of central differences on the equation

−ν(1 + Pe1)uxx − ν(1 + Pe2)uyy + q1ux + q2uy = g(x, y),

where Pei = |qi|h
2ν , i = 1, 2.

Since we have here added artificial diffusion of order νPei , i = 1, 2, this scheme is only
first-order accurate. Furthermore, it has dispersion behaviour. The advantage with it is that it
gives an M -matrix for all values of Pei , i.e., in particular a monotone approximation, for which
there can appear no unphysical wiggles.

Using the classical barrier lemma, valid for monotone operators, we can prove a discretization
error estimate in supreme norm of first order accuracy for the upwind difference method. If
Pei ≤ 1, this can also be proved for the central difference method (of second order accuracy).

Clearly, the symmetric part is relatively strong for M -matrices. The above observations
have been done earlier in [8]; see also [7].

5.2. The Damped Newton-HSS Method

Theorems 3.1 and 3.2 have shown that the Newton-HSS method has local convergence
property. In actual applications, however, an iteration scheme of global convergence is often
much more important and practical. Fortunately, we can modify the Newton-HSS method
to obtain a globally convergent nonlinear iteration method by simply introducing a damping
factor, say, t. This iteration method is termed as the damped Newton-HSS method and is
algorithmically described as follows.

The Damped Newton-HSS Method. Let F : D ⊂ Cn → Cn be a continuously
differentiable function with the positive-definite Jacobian matrix F ′(x) at any x ∈ D, and
H(x) = 1

2 (F ′(x)+ F ′(x)∗) and S(x) = 1
2 (F ′(x)−F ′(x)∗) be its Hermitian and skew-Hermitian

parts, respectively. Given an initial guess x(0) ∈ D, a sequence {tk}∞k=0 of positive reals and
a sequence {lk}∞k=0 of positive integers, compute x(k+1) for k = 0, 1, 2, . . . using the following
iteration scheme until {x(k)} satisfies the stopping criterion:
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(a) Set s(k,0) := 0;

(b) For ` = 0, 1, . . . , lk − 1, solve the following linear systems to obtain s(k,`+1):




(αI + H(x(k)))s(k,`+ 1
2 ) = (αI − S(x(k)))s(k,`) − F (x(k)),

(αI + S(x(k)))s(k,`+1) = (αI −H(x(k)))s(k,`+ 1
2 ) − F (x(k)),

where α is a given positive constant;

(c) Set x(k+1) := x(k) + tks(k,lk).

By suitably choosing the sequence {tk}∞k=0 of the stepsizes and the stopping criterion of
the inner HSS iterations, we can make the damped Newton-HSS iteration sequence {x(k)}∞k=0

satisfy the norm-reducing requirement ‖F (x(k+1))‖ ≤ ηk‖F (x(k))‖, k = 0, 1, 2, . . ., in some norm
and, therefore, obtain the global convergence of the damped Newton-HSS method; see [1,2,13].
Here, {ηk}∞k=0 is a forcing sequence used to control the inner HSS iterations. For more details
about strategies and techniques on treatments about the global convergence of the approximate
or the inexact Newton methods, we refer to [3, 20,24].

6. Conclusions

For large sparse systems of nonlinear equations where the Hermitian parts of the correspond-
ing Jacobian matrices are positive definite, we have established a class of inner-outer iteration
schemes, called the Newton-HSS iteration methods, and proved its local convergence property.
It has been demonstrated by numerical examples that the Newton-HSS iteration method can
outperform the Newton-USOR, the Newton-GMRES and the Newton-GCG iteration methods;
and as preconditioners, the HSS iteration is superior to the USOR iteration.

Amazingly, this holds not only with respect to computing time but also with respect to
number of iterations. A typical application of the method is for nonlinear convection-diffusion
equations.

For singularly perturbed problems the method as given may become inapplicable as it would
require excessively small values of h. However, as shown in [9], one can then use a defect-
correction or iterative refinement method (normally involving just two or three steps) where
the correction is based on a stable, upwind type difference operator for which the Hermitian
part of the Jacobian matrix is sufficiently dominating. In this way, the prescribed method
becomes applicable also for singularly perturbed differential operators.

At last, we should mention that the Newton-HSS methods are only a special case of the
general principle of combining nonlinear iterative methods with linear iterations in order to form
composite or multistep iteration methods. The Newton method itself may be replaced as the
primary iteration by, for example, any of the discretized Newton, the secant or the Steffensen
methods. Hence, we can correspondingly obtain the discretized Newton-HSS, the secant-HSS
or the Steffensen-HSS methods, respectively. Alternatively, the HSS iteration itself may be
replaced as the secondary iteration by, for example, any of the NSS1) [12,16], the PSS2) [12,14]

1) NSS represents the normal and skew-Hermitian splitting.
2) PSS represents the positive-definite and skew-Hermitian splitting.
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or the BTSS3) [12,14] iterations and, thereby, we can correspondingly obtain the Newton-NSS,
the Newton-PSS and the Newton-BTSS iteration methods, respectively. Theoretical analyses
and numerical implementations of these composite iteration methods are interesting topics in
future study.
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