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Abstract

This paper deals with the discontinuous Galerkin (DG) methods for delay differential

equations. By an orthogonal analysis in each element, the superconvergence results of

the methods are derived at nodal points and eigenpoints. Numerical experiments will be

carried our to verify the effectiveness and the theoretical results of the proposed methods.

Mathematics subject classification: 65N12, 65N30.

Key words: Discontinuous Galerkin methods, Delay differential equations, Orthogonal

analysis, Superconvergence.

1. Introduction

Delay differential equations frequently arise in a fast variety of scientific problems, such

as relativistic dynamics, nuclear reactor, neural network, electric circuit and viscoelasticity

mechanics, see, e.g., [11, 14]. The last several decades have witnessed a fast development in

computational implementation and numerical analysis for various delay differential equations,

see, the monographs e.g., [2, 3] and the references therein. It is noted that most authors have

employed finite difference methods, such as linear multistep methods, one-leg methods, Runge-

Kutta methods and general linear methods, see, e.g., [19, 20].

Besides the finite difference methods, it is well-known that the finite element methods are

also a class of effective numerical methods for solving differential equations, and usually some

superconvergence results are available, see, e.g., [1,4–6,9,13,15–17]. Up to now, however, there

have been very few papers on finite elements for solving delay differential equations (DDEs).

Generally speaking, solution behaviors of the DDEs are more complicated than those for the

standard differential equations since the former depends not only on the present but also on

the history. The presence of a delay term could change a system’s dynamic properties such as

stability, oscillation, bifurcation, chaos and etc. In [10, 18] continuous Galerkin finite element

(CGFE) methods are applied to DDEs with one-delay and multi-delay, are respectively, and

a number of superconvergence results of the CGFE methods are obtained. In [12], continuous

and discrete finite element approximations to a class of parabolic delay differential equations

are investigated optimal error estimates in L2, H1 and L∞ norms are obtained.

As an important subclass of finite element methods, the discontinuous Galerkin (DG) meth-

ods have been found very useful in scientific engineering. For detail description of the method

as well as its development, we refer the readers to the review paper [7] and the special issue of
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Journal of Scientific Computing [8]. Up to now, the DG methods have been proved locally con-

servative, stable, and high-order accurate. Since the DG methods have many desired properties,

it will be interesting to apply such methods to DDEs. In [15], we proved that the DG methods

have the ability to preserve stability of the underlying systems. Following our earlier work, the

superconvergence results of the methods will be derived at nodal points and eigenpoints in this

work.

The rest of the paper is structured as follows. In Section 2, we introduce a class of DG

methods for DDEs. In Section 3, we analyze errors of the methods and prove that the DG

methods have superconvergence at nodal points and eigenpoints. In Section 4, numerical ex-

periments will be used to confirm the effectiveness and the theoretical results of the methods.

Finally, conclusions and discussions for this paper are summarized in Section 5.

2. Delay Differential Equations and Their DG Methods

In this section, we will give a discretization scheme based on the DG methods for a class of

linear DDEs. Consider the following DDEs with delay τ > 0:

{

u′(t) + a(t)u(t) + b(t)u(t− τ) = f(t), t0 ≤ t ≤ T,

u(t) = ψ(t), t0 − τ ≤ t ≤ t0,
(2.1)

where the functions a(t), b(t), f(t), ψ(t) are assumed to be continuous on their respective do-

mains so that the above delay system has a unique solution u ∈ H1([t0,+∞)). When τ ≥ T−t0,

system (2.1) becomes a linear ordinary differential equation (ODE)

{

u′(t) + a(t)u(t) = −b(t)ψ(t− τ) + f(t), t0 ≤ t ≤ T,

u(t0) = ψ(t0).
(2.2)

Such an ODE system has been solved by CGFE methods and DG methods in many references,

see, e.g. [1,5,7,9,13,17]. In this work, we always assume τ ≤ T − t0 so that the non-degenerate

delay systems can be considered.

For the discretization of system (2.1) by a class of DG methods, we divide the interval [t0, T ]

with a uniform mesh:

J h : t0 < t1 < · · · < tN ,

where tn = t0 + 2nh, h = τ/(2k), k is a given positive integer and the maximum index N

satisfies tN−1 < T ≤ tN . Moreover, we write that the element Jn = (tn−1, tn], the half-integer

node tn−1/2 = (tn+ tn−1)/2(= t0+(2n−1)h) and the extended interval J = [t0, tN ], and define

m-degree discontinuous finite element space as follows:

Sh =
{

υ : υ
∣

∣

Jn

∈ Pm(Jn), n = 1, 2, · · · , N
}

,

where Pm(Jn) denotes the set of all polynomials of degree ≤ m on Jn. Note that when a

function U ∈ Sh, it implies that U is allowed to be discontinuous but left-continuous at the

nodal points tn, i.e. U(tn) = U(tn − 0). For brevity, we introduce the following notations:

U−
n = U(tn − 0) = U(tn) = Un, U+

n = U(tn + 0), [Un] = U+
n − U−

n .

In general case, the span [Un] 6= 0. As there is no request that U ∈ Sh is continuous at the

nodal points, U has (m+ 1)-degree of freedom on an element Jn.
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Multiplying by η ∈ Shand integrating over the element Jn, (2.1) becomes

∫

Jn

[u′(t) + a(t)u(t) + b(t)u(t− τ)]η(t)dt =

∫

Jn

f(t)η(t)dt, n ≥ 1. (2.3)

With this, an m-degree DG solution U ∈ Sh can be defined for n ≥ 1:
∫

Jn

[U ′(t) + a(t)U(t) + b(t)U(t− τ)]η(t)dt + [Un−1]η
+
n−1 =

∫

Jn

f(t)η(t)dt, (2.4)

where η+n−1 = η(tn−1+0) ∈ Sh. When t0−τ ≤ t ≤ t0, we set U(t) = u(t) = ψ(t). Consequently,

we have

u′(t) + a(t)u(t) = −b(t)ψ(t− τ) + f(t) ≡ g(t), t0 ≤ t ≤ t0 + τ, (2.5)

and Eq. (2.3) can be split into

∫

Jn

[U ′(t) + a(t)U(t)]η(t)dt + [Un−1]η
+
n−1 =

∫

Jn

g(t)dt, 1 ≤ n ≤ k, (2.6)

and
∫

Jn

[U ′(t) + a(t)U(t) + b(t)U(t− τ )]η(t)dt+ [Un−1]η
+
n−1 =

∫

Jn

f(t)η(t)dt, k < n ≤ N. (2.7)

Now, write the errors e(t) = u(t) − U(t), en = u(tn) − U(tn). Then subtracting (2.6) from

(2.3) and (2.7) from (2.3) gives

∫

Jn

[e′(t) + a(t)e(t)]η(t)dt + [en−1]η
+
n−1 = 0, 1 ≤ n ≤ k, (2.8)

and
∫

Jn

[e′(t) + a(t)e(t) + b(t)e(t− τ)]η(t)dt + [en−1]η
+
n−1 = 0, k < n ≤ N. (2.9)

On the interval Jn, take the transformation

t = tn−1/2 + hs, s ∈ [−1, 1],

and introduce the notations

ũ(s) = u(tn− 1

2

+ hs), Ũ(s) = U(tn− 1

2

+ hs),

ã(s) = a(tn− 1

2

+ hs), b̃(s) = b(tn− 1

2

+ hs),

ẽ(s) = ũ(s)− Ũ(s), η̃(s) = η(tn− 1

2

+ hs),

ũτ (s) = u(tn− 1

2

+ hs− τ), Ũτ (s) = U(tn− 1

2

+ hs− τ), ẽτ (s) = ũτ (s)− Ũτ (s).

Then (2.8) and (2.9) can be rewritten as

∫ 1

−1

[ẽ′(s) + hã(s)ẽ(s)]η̃(s)ds+ [en−1]η
+
n−1 = 0, 1 ≤ n ≤ k, (2.10)

and
∫ 1

−1

([ẽ′(s) + hã(s)ẽ(s) + hb̃(s)ẽτ (s)]η̃(s)ds+ [en−1]η
+
n−1 = 0, k < n ≤ N, (2.11)
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respectively. For the error analysis of discontinuous finite element, we consider Legendre poly-

nomials on interval [−1, 1]:

ln(s) =
1

2nn!

dn

dsn
(s2 − 1)n, n = 0, 1 · · · , (2.12)

which satisfy ln(±1) = (±1)n and the following orthogonal property (cf. [5])

(li, lj) :=

∫ 1

−1

li(s)lj(s)ds =







0, for i 6= j,

2

2j + 1
, for i = j.

Moreover, motivated by the idea from references [1,5], another set of the Radau II polynomials

associated with the Legendre polynomials:

ϕ0(s) = 1, ϕi(s) = li(s)− li−1(s), i ≥ 1

will be also used in the subsequent analysis, where each polynomial ϕi(s) has i distinct zeros

sα (α = 1, · · · , i) in [−1, 1]. These polynomials have some quasiorthogonal properties, which

play an important role in the following error analysis.

The lemma below was used to study the convergence of Galerkin methods for different

differential equations by Chen [5]. Since the reference is not readily accessible to non-Chinese

readers, we collect a concise proof here.

Lemma 2.1. (cf. [5]) Suppose the sufficiently smooth function ũ(s) is expanded as

ũ(s) = b0(n) +

∞
∑

i=1

bi(n)ϕi(s), s ∈ [−1, 1]. (2.13)

Then its coefficients {bi(n)} satisfy

bi(n) = O(hi), i ≥ 0. (2.14)

Proof. For sufficiently smooth function ũ(s) in Jn, expanding ũ(s) as a Legendre series

ũ(s) =

∞
∑

i=0

Bi(n)li(s), (2.15)

where Bi(n) = (i+ 1
2 )

∫ 1

−1
u(s)li(s)ds. Using integration by parts, we get

Bi(n) = O(hi). (2.16)

Noting that

ũ(s) =b0(n) +

∞
∑

i=1

bi(n)ϕi(s)

=b0(n)− b1(n) +

∞
∑

i=1

(bi(n)− bi+1(n))li(s)

=

∞
∑

i=0

Bi(n)li(s), (2.17)
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where Bi(n) = bi(n)− bi+1(n), we have

bi(n) =

∞
∑

j=i

Bj(n) = O(hi), i ≥ 0. (2.18)

This completes the proof of the lemma. �

It is printed out that the relation (2.16), which is used to study the superconvergence of

continuous Galerkin methods for DDEs, is also derived in [10] and [18].

3. Error Analysis

In this section, by means of the orthogonal analysis method, we will derive a superconver-

gence result of the DG methods.

Theorem 3.1. The m-degree finite element U(t) defined by (2.4) for the DDEs (2.1) with a

smooth solution u has the following superconvergence estimate at nodal points {tn}:

|(u− U)(tn)| = O(h2m+1), n = 1, · · · , N,

and satisfies the superconvergence estimate at eigenpoints {t
(α)
n−1/2}:

∣

∣

∣
(u− U)

(

t
(α)

n− 1

2

)

∣

∣

∣
= O(hm+2), n = 1, · · · , N ; α = 1, · · · ,m,

where t
(α)
n−1/2 = tn−1/2 + hsα and sα, α = 1, · · · ,m, are the zeros of the m-degree polynomial

ϕm(s) in [−1, 1].

Proof. Following [5], we first construct the m-degree polynomial approximation of u in the

element Jn as follows:

uI(tn−1/2 + hs) =

m
∑

j=0

bj(n)ϕj(s)−

m
∑

j=1

b∗j(n)ϕj(s), s ∈ [−1, 1], (3.1)

where b∗j (n) are some coefficients to be defined later. Then the remainder is of the form

σ̃(s) := (u− uI)(tn−1/2 + hs) =
∞
∑

j=m+1

bj(n)ϕj(s) +
m
∑

j=1

b∗j (n)ϕj(s). (3.2)

It follows from the facts ϕj(1) = 0, ϕj(−1) = 2(−1)j (j ≥ 1) that

σ̃(1) = 0, σ̃(−1) = 2

m
∑

j=1

(−1)jb∗j(n) + 2

∞
∑

j=m+1

(−1)jbj(n).

Introduce the functionals

Bn(σ, η) =

∫

Jn

[

σ′(t) + a(t)σ(t)
]

η(t)dt + [σn−1]η
+
n−1, 1 ≤ n ≤ k, (3.3)

Bn(σ, η) =

∫

Jn

[

σ′(t) + a(t)σ(t) + b(t)σ(t − τ)
]

η(t)dt + [σn−1]η
+
n−1, k < n ≤ N,(3.4)
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where σ(t) = σ̃(s) (t = tn−1/2 + hs). Since σ̃(1) = 0 means σ−
n = 0, an integration by parts

yields that
∫

Jn

σ′(t)η(t)dt + [σn−1]η
+
n−1 = −

∫

Jn

σ(t)η′(t)dt, ∀n ≥ 1.

This implies that (3.3) and (3.4) can be simplified as

Bn(σ, η) = −
∫ 1

−1
σ̃(s)(η̃′(s)− hã(s)η̃(s))ds, 1 ≤ n ≤ k, (3.5)

Bn(σ, η) = −
∫ 1

−1

[

σ̃(s)η̃′(s)− hã(s)σ̃(s)η̃(s)− hb̃(s)σ(tn−k−1/2 + hs)η̃(s)
]

ds, k < n ≤ N, (3.6)

respectively. Inserting the test function η̃(s) =
∑m

i=0 βiϕi into (3.5) and (3.6) gives

Bn(σ, η) =−
m
∑

i=0

βi





m
∑

j=1

Cijb
∗
j (n) +

∞
∑

j=m+1

Cijbj(n)



 , 1 ≤ n ≤ k, (3.7)

Bn(σ, η) =−
m
∑

i=0

βi





m
∑

j=1

Cijb
∗
j (n) +

∞
∑

j=m+1

Cijbj(n)





+
m
∑

i=0

βi





m
∑

j=1

C′
ijb

∗
j (n− k) +

∞
∑

j=m+1

C′
ijbj(n− k)



 , k < n ≤ N, (3.8)

where

Cij =

∫ 1

−1

[

ϕ′
i(s)− ha(s)ϕi(s)

]

ϕj(s)ds, C′
ij = h

∫ 1

−1

b(s)ϕi(s)ϕj(s)ds. (3.9)

In (3.9), the basis functions satisfy

∫ 1

−1

ϕi(s)ϕj(s)ds =























2

2i+ 1
+

1

2i− 1
, for i = j,

−2

2i+ 1
, for |i− j| = 1,

0, for |i− j| ≥ 2.

(3.10)

∫ 1

−1

ϕ′
i(s)ϕj(s)ds =







−2, for i = j ≥ 1,

4, for i = j + 1,

0, for i = 0, or i < j or |i− j| ≥ 2.

(3.11)

By the orthogonality of li(s), we can obtain the following estimates:

Cij =







−2 +O(h), for i = j ≥ 1,

4 +O(h), for i = j + 1,

O(h|i−j|), otherwise,

(3.12)

C′
ij =

{

O(h), for i = j or j = i+ 1

O(h|i−j|), for i < j or |i− j| ≥ 2.
(3.13)

In order to determine the coefficients b∗j+1, we set that

m
∑

j=1

Cijb
∗
j (n) = −

∞
∑

j=m+1

Cijbj(n), i = 1, · · · ,m, 1 ≤ n ≤ k, (3.14)
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and

m
∑

j=1

Cijb
∗
j (n) = −

∞
∑

j=m+1

Cijbj(n) +

m
∑

j=1

C′
ijb

∗
j (n− k) +

∞
∑

j=m+1

C′
ijbj(n− k),

i = 1, · · · ,m, k < n ≤ N. (3.15)

It follows from (2.14) and (3.12) that the right-hand of the Eq. (3.14) satisfies for i = 1, 2, · · · ,m:

−

∞
∑

j=m+1

Cijbj(n) = O(hj−i · hj)
∣

∣

∣

j=m+1
= O(h2m+2−i), 1 ≤ n ≤ k, (3.16)

A combination of (3.16) and (3.14) leads to a vectorial equation

















−2 +O(h) O(h) O(h2) · · · O(hm−1)

4 +O(h) −2 +O(h) O(h) · · · O(hm−2)

O(h2) 4 +O(h) −2 +O(h) · · · O(hm−3)
...

...
...

. . .
...

O(hm−1) O(hm−2) O(hm−3) · · · −2 +O(h)

































b∗1(n)

b∗2(n)

b∗3(n)
...

b∗m(n)

















=

















O(h2m+1)

O(h2m)

O(h2m−1)
...

O(hm+2)

















.

When h is sufficiently small, the coefficient matrix are diagonally dominant. Noting the diagonal

terms in the matrix equations are O(1) or observing from the last line, we have

b∗j (n) = O(h2m+2−j), j = 1, · · · ,m, 1 ≤ n ≤ k. (3.17)

Next, we use mathematical induction to prove that (3.17) holds for 1 ≤ n ≤ N . Assume that
(3.17) holds for k < n ≤ n̂ (< N). Then, by (2.14), (3.12) and (3.13), we have for n = n̂+ 1:

−

∞
∑

j=m+1

Cijbj(n) +

m
∑

j=1

C
′

ijb
∗

j (n− k) +

∞
∑

j=m+1

C
′

ijbj(n− k) = O(h2m+2−i), i = 1, · · · , m. (3.18)

This, together with (3.15), implies

m
∑

j=1

Cijb
∗
j (n) = O(h2m+2−i), i = 1, · · · ,m; n = n̂+ 1. (3.19)

Using a similar derivation for (3.17), we find that (3.17) stays valid for n = n̂ + 1. Therefore,

(3.17) holds for all n : 1 ≤ n ≤ N .

The above arguments show that Bn(σ, η) can be expressed as

Bn(σ, η) = −β0





m
∑

j=1

C0jb
∗
j (n) +

∞
∑

j=m+1

C0jbj(n)



 = O(h2m+2)β0, 1 ≤ n ≤ k, (3.20)

or

Bn(σ, η) =− β0

[

m
∑

j=1

C0jb
∗

j (n) +

∞
∑

j=m+1

C0jbj(n)

]

+ β0

[

m
∑

j=1

C
′

0jb
∗

j (n− k) +

∞
∑

j=m+1

C
′

0jbj(n− k)

]

=O(h2m+2)β0, k < n ≤ N. (3.21)
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By the inverse estimate |β0| ≤ ĉ‖η̃‖0,E (e.g. [5]), (3.20) and (3.21), we know that there exists

a constant c1 > 0 such that

|Bn(σ, η)| ≤c1h
2m+2

(
∫ 1

−1

η̃2ds

)1/2

≤ c1h
2m+1

(
∫

Jn

η2dt

)1/2

≤
1

2

[

c21h
4m+2 +

∫

Jn

η2dt

]

, 1 ≤ n ≤ N, (3.22)

In the following, we estimate the error θ(t) := (uI − U)(t). With (2.8) and (2.9), we have by

substituting i for n that

Bi(θ, η) = −Bi(σ, η), 1 ≤ i ≤ N. (3.23)

When t0 < t ≤ t0 + τ , taking both η = θ and 1 ≤ i ≤ k in (3.23) derives that

1

2
(θ−i )

2 −
1

2
(θ+i−1)

2 + (θ+i−1 − θ−i−1)θ
+
i−1 = −Bi(σ, θ) −

∫

Ji

a(t)θ2dt,

which gives

(θ−i )
2 − (θ−i−1)

2 + (θ+i−1 − θ−i−1)
2 = −2Bi(σ, θ) − 2

∫

Ji

a(t)θ2dt. (3.24)

Summing from 1 to n (1 ≤ n ≤ k) for i in (3.24) gives

(θ−n )
2 − (θ−0 )

2 +

n
∑

i=1

[θi−1]
2 = −2

n
∑

i=1

Bi(σ, θ) − 2

∫ tn

t0

a(t)θ2dt. (3.25)

Applying the inequality (3.22) (with η = θ) to (3.25) yields

(θ−n )
2 +

n
∑

i=1

[θi−1]
2 ≤ (θ−0 )

2 + (2ā1 + 1)

∫ tn

t0

θ2dt+ c1nh
4m+2, 1 ≤ n ≤ k, (3.26)

where ā1 = maxt0≤t≤tk |a(t)|. Because θ−0 = 0 and
∑n

i=1[θi−1]
2 ≥ 0, the inequality (3.26) can

be reduced to

(θ−n )
2 ≤ (2ā1 + 1)

∫ tn

t0

θ2dt+ c1kh
4m+2, 1 ≤ n ≤ k. (3.27)

When t > t0 + τ , taking both η = θ and k < i ≤ N in (3.23) follows that

(θ−i )
2 − (θ−i−1)

2 + (θ+i−1 − θ−i−1)
2 = −2Bi(σ, η)− 2

∫

Ji

[

aθ2 + bθ(t− τ)
]

dt. (3.28)

Summing from k + 1 to n (k < n ≤ N) for i in (3.28) yields

(θ−n )
2 − (θ−k )

2 +
n
∑

i=k+1

[

θi−1

]2
= −2

n
∑

i=k+1

Bi(σ, η) − 2

∫ tn

tk

[aθ2 + bθ(t− τ)]dt. (3.29)

Applying the inequality (3.22) (with η = θ) to (3.29), we obtain for k < n ≤ N that

(θ−n )
2+

n
∑

i=k+1

[θi−1]
2 ≤ (θ−k )

2+(2ā2+1)

∫ tn

tk

θ2dt+2b̄1

∫ tn

tk

θ2(t−τ)dt+(n−k)c1h
4m+2, (3.30)
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where ā2 = maxtk≤t≤tN |a(t)| and b̄1 = maxtk≤t≤tN |b(t)|. Also, it holds that

∫ tn

tk

θ2(t− τ)dt =

∫ tn−k

t0

θ2(t)dt ≤

∫ tn

t0

θ2dt, k < n ≤ N. (3.31)

By (3.27), (3.30) and (3.31), it can be concluded that

(θ−n )
2 ≤ 2(ā1 + ā2 + b̄1 + 1)

∫ tn

t0

θ2dt+ c1Nh
4m+2, k < n ≤ N. (3.32)

Consequently, we have proved that

(θ−n )
2 ≤ c̃1

∫ tn

t0

θ2dt+ c̃2h
4m+2, 1 ≤ n ≤ N, (3.33)

where c̃1 = 2(ā1 + ā2 + b̄1 + 1) and c̃2 = c1N . Taking

η = (t− tn−1)θ
′(t) ∈ Pm(Jn)

in the second inequality of (3.22), then, when 1 ≤ n ≤ k, we have

∫

Jn

(t− tn−1)(θ
′)2dt ≤−

∫

Jn

(t− tn−1)aθθ
′dt+ c1h

2m+1

[
∫

Jn

[(t− tn−1)θ
′]2dt

]
1

2

≤ā1

∫

Jn

(t− tn−1)|θθ
′|dt+ c1h

2m+ 3

2

[
∫

Jn

(t− tn−1)(θ
′)2dt

]
1

2

≤ā1

[

ε

∫

Jn

(t− tn−1)(θ
′)2dt+

1

4ε

∫

Jn

(t− tn−1)θ
2dt

]

+ c1

[

ε

∫

Jn

(t− tn−1)(θ
′)2dt+

1

4ε
h4m+3

]

≤(ā1 + c1)ε

∫

Jn

(t− tn−1)(θ
′)2dt+

ā1h

4ε

∫

Jn

θ2dt+
c1
4ε
h4m+3, (3.34)

where we have used the inequality αβ ≤ εα2 + β2/4ε with ε > 0 being an arbitrary constant.

When 1 ≤ n ≤ k, similarly, we can deduce that
∫

Jn

(t− tn−1)(θ
′)2dt ≤(ā2 + b̄1 + c1)ε

∫

Jn

(t− tn−1)(θ
′)2dt+

ā2h

4ε

∫

Jn

θ2dt

+
b̄1h

4ε

∫

Jn−k

θ2dt+
c1
4ε
h4m+3. (3.35)

Synthesizing (3.34) and (3.35) yields
∫

Jn

(t− tn−1)(θ
′)2dt ≤āε

∫

Jn

(t− tn−1)(θ
′)2dt+

b̄h

4ε

∫

Jn

θ2dt+
b̄1h

4ε

∫

Jn−k

θ2dt+
c1
4ε
h4m+3,

1 ≤ n ≤ N, (3.36)

where ā = max{ā1 + c1, ā2 + b̄1 + c1} and b̄ = max{ā1, ā2}. Let ε = 1/(2ā), then the inequality

(3.36) becomes
∫

Jn

(t− tn−1)(θ
′)2dt ≤ āb̄h

∫

Jn

θ2dt+ āb̄1h

∫

Jn−k

θ2dt+ āc1h
4m+3, 1 ≤ n ≤ N. (3.37)
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By the local inverse property (cf. [5]), there exists a constant b̄2 > 0 such that
∫

Jn

(θ′)2dt ≤b̄2h
−1

∫

Jn

(t− tn−1)(θ
′)2dt

≤āb̄b̄2

∫

Jn

θ2dt+ āb̄1b̄2

∫

Jn−k

θ2dt+ āb̄2c1h
4m+2, 1 ≤ n ≤ N. (3.38)

Also, the identity

θ(t) = θ(tn − 0) +

∫ t

tn

θ′dt, t ∈ Jn

implies that

θ2 ≤ 2|θ−n |
2 + 2h

∫

Jn

(θ′)2dt, t ∈ Jn, (3.39)

which gives
∫

Jn

θ2dt ≤ 2h|θ−n |
2 + 2h2

∫

Jn

(θ′)2dt. (3.40)

A combination of (3.33), (3.38) and (3.40) shows that there exist constants γ1, γ2 > 0 such that
∫

Jn

θ2dt ≤ γ1h

∫ tn

t0

θ2dt+ γ2h
4m+3. (3.41)

Write αn =
∫

Jn

θ2dt. Then (3.41) can be read as

αn ≤ γ1h

n
∑

j=1

αj + γ2h
4m+3, 1 ≤ n ≤ N. (3.42)

Assume the stepsize h satisfy 0 < γ1h ≤ γ0 < 1. Then applying the discrete Gronwall inequality

to (3.42) yields

αn ≤
γ2

1− γ1h
exp

(

γ1nh

1− γ1h

)

h4m+3

≤
γ2

1− γ0
exp

[

γ1(tN − t0)

1− γ0

]

h4m+3, 1 ≤ n ≤ N. (3.43)

Namely, it holds that
∫

Jn

θ2dt ≤ γ3h
4m+3, 1 ≤ n ≤ N, (3.44)

where γ3 = exp[γ1(tN − t0)/(1−γ0)]. Substituting (3.33) into (3.44), we know that there exists

a constant γ4 > 0 such that

|θ−n | ≤ γ4h
2m+1, 1 ≤ n ≤ N. (3.45)

A combination of (3.38), (3.39), (3.44) and (3.45) follows that

| θ | ≤ γh2m+1, t ∈ Jn, (3.46)

where γ > 0 is a given constant.

Since σ(t) = (u− uI)(t) and θ(t) = (uI −U)(t), the global error of the DG finite element is

given by

e(t) = (σ + θ)(t) =

∞
∑

j=m+1

bj(n)ϕj(s) +

m
∑

j=1

b∗j(n)ϕj(s) +O(h2m+1). (3.47)
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Using the fact of that ϕj(1) = 0 for all i, we obtain the following superconvergence result at

the nodal points:

|(u− U)(tn)| = O(h2m+1), 1 ≤ n ≤ N.

Moreover, when taking s = sα (α = 1, · · · ,m) in (3.47), we can conclude the superconvergence

result at the eigenpoints t
(α)
n−1/2:

|(u − U)(t
(α)
n−1/2)| = O(hm+2), 1 ≤ n ≤ N ; α = 1, · · · ,m.

This completes the proof of the theorem. �

4. A Numerical Example

In this section, we present a numerical example to confirm the superconvergence result

obtained in the last section. In the numerical experiment, high-order accurate quadrature

approximations are used if needed so that error in integration is negligible compared with DG

errors.

Consider the following delay differential equation with variable coefficients:

{

u′(t) = e−t cos(πt)u(t) + t sin(πt)u(t− 1) + f(t), 0 < t ≤ 6,

u(t) = sin(πt), −1 ≤ t ≤ 0,
(4.1)

where function f(t) is defined such that the system has an exact solution u(t) = sin(πt).

Taking stepsizes h = 0.1, 0.1/2, 0.1/4, 0.1/8, 1/16, and then applying the one-degree, two-

degree DGFE methods to the above system, respectively, we can obtain several sets of finite

element solutions. The errors e(t) are plotted in Figs. 4.1 and 4.2. The figures shows that the

DG methods are effective for solving the DDEs and superconvergence is observed at both nodal

points and eigenpoints. In order to give a further observation for the superconvergence of the

methods at the nodal points, we introduce a quantity

p =

ln

(

max
1≤n≤N

|e(tn)|

)

ln(h)

to characterize the convergence order of a DG method on the interval (0, 6]. The convergence

orders of one-degree and two-degree elements at nodal points are computed in Table 4.1, where

it is found that the one-degree element has approximately convergence order 3 and the two-

degree element has approximately convergence order 5. This confirms the superconvergence

result stated in Theorem 3.1.

Table 4.1: Convergence orders of DG methods at nodal points

stepsize 0.1 0.1/2 0.1/4 0.1/8 0.1/16

1-degree element 3.09 3.09 3.09 3.08 3.08

2-degree element 5.93 5.70 5.56 5.23 5.10
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Fig. 4.1. The errors e(t) of one-degree element.

5. Conclusions and Discussions

In the present paper, the DG methods are investigated for solving first-order linear delay

differential equations. For the error analysis, we assume that Eq. (2.1) has a smooth solution.

The main superconvergence results are obtained with the help of an m-degree polynomial

approximation of u in the element Jn. The approximation is constructed by adding some lower

order terms in the remainder of expansion so that the remainder satisfies some orthogonal

condition in the element. Then a desired superclose function to DG solution is derived. The

superconvergence results of the methods are derived by an orthogonal analysis in each element.
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Fig. 4.2. The errors e(t) of two-degree element.

For the case with multiple delays:











u′(t) + a(t)u(t) +

m
∑

i=1

b(t)u(t− τi) = f(t), t0 ≤ t ≤ T,

u(t) = ψ(t), t ≤ t0.

(5.1)

and the general DDEs with variable delays:

{

u′(t) + a(t)u(t) + b(t)u(t− τ(t)) = f(t), t0 ≤ t ≤ T, τ(t) ≥ 0,

u(t) = ψ(t), t ≤ t0,
(5.2)

the value u(t − τi) or u(t − τ(t)), which is denoted by an m-degree polynomials, may be

known when computing in the interval Jn. The inner product
∫

Jn

b(t)u(t − τi)η(t) dt or
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∫

Jn

b(t)u(t − τ(t))η(t) dt can be computed analytically. Therefore, the DG methods may be

also a good candidate to solve the above problems. However, it seems difficult to extend the

superconvergence result to these cases. This will be investigated in future works.
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