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Abstract

This paper is concerned with the finite element method for nonlinear Hamiltonian

systems from three aspects: conservation of energy, symplicity, and the global error. To

study the symplecticity of the finite element methods, we use an analytical method rather

than the commonly used algebraic method. We prove optimal order of convergence at

the nodes tn for mid-long time and demonstrate the symplecticity of high accuracy. The

proofs depend strongly on superconvergence analysis. Numerical experiments show that

the proposed method can preserve the energy very well and also can make the global

trajectory error small for long time.
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1. Introduction

We consider the nonlinear Hamiltonian systems

zt = −JHz, z(0) = z0, (1.1)

where

Hz =

(

Hp

Hq

)

, J =

(

0 In
−In 0

)

, (1.2)

z = (p, q)T = (p1, · · · , pn; q1, · · · , qn)T , H(z) = H(p, q) is a real-valued smooth function and

J is a skew-symmetric matrix of order 2n. Obviously, JT = J−1 = −J, J2 = −I2n. In

application, the Hamiltonian H(z) is often the total energy. Hamiltonian systems have two

important properties: conservation and symplecticity. These properties are the hallmark of

Hamiltonian systems.
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Symplectic geometry in phase space R2n is the mathematical foundation to study Hamil-

tonian systems. Let x = (x1, · · · , xn, xn+1, · · · , x2n)
T ∈ R2n. Then symplectic structure is

defined by a skew-symmetric bilinear inner product

[x, y] = (x, Jy) =

n
∑

j=1

(xjyn+j − xn+jyj), x, y ∈ R2n. (1.3)

Hence [x, x] = (x, Jx) = 0. In the symplectic space, a linear operator A is symplectic iff

AT JA = J . All solutions z(t) of (1.1) form a symplectic group with one-parameter. These

solutions have an important symplecticity property (see Section 5)

(

Dz(t)

Dz0

)T

J

(

Dz(t)

Dz0

)

= J, 0 ≤ t < ∞. (1.4)

Moreover, multiplying Eq. (1.1) by J and zt, we have the energy conservation

0 =

∫ t

0

J(zt + JHz)ztdt = −
∫ t

0

Hzztdt = −H
(

z(t)
)

∣

∣

∣

t

0
. (1.5)

It is important to construct discrete algorithms which preserve these basic properties. Ruth

[1] and Feng [2] have originally proposed the sympletic geometry algorithms which preserve the

global symplectic structure and have tracking ability over long times. Feng and his co-authors

then published several important works afterwards, see, e.g., [3-6]. Later on many symplectic

schemes are studied by Chinese scholars, such as the partitioned algorithm (Sun [7]), multi-step

algorithm (Tang [8]), volume-preserving algorithm (Shang [10,11]). Recent work can be found

in [9,12,21] and a review [14].

Under the influence of Feng’s work, several new symplectic algorithms are developed. For

example, the symplectic Runge-Kutta method (SRK) is proposed by Sanz-Serna, Lasagni and

Suris (see [15-18]). Later on the symplectic algorithms are also generalized to deal with partial

differential systems.

Many scholars pointed out that the energy conservation is more important at certain times,

see, e.g., Stuart et al. [19] (pp.583-584,642-644) and Hairer et al. [20] (p.12). So we turn

to the finite element method (FEM). It is found that the continuous FEM always preserves

the energy, and is approximately symplectic [22,23]. FEM is an exact orthogonal projection,

which makes it possible to explore its refined properties, such as superconvergence, long-time

error, approximate symplecticity and so on. These properties describe another kind of the

structure different from the symplectic algorithms. Besides, the spectrum algorithm is also an

orthogonal projection, see Tang and Xu [13]. It should be pointed out that the symplectic

collocation method and SRK are equivalent under some conditions (see [20], p.27), which may

be considered to be the approximately orthogonal projection based on some fixed quadrature.

This quadrature makes the symplectic collocation method and SRK to possess the symplecticity,

and to approximately preserve the energy. Therefore it is suggested that both SRK and FEM

belong to the same setting of the orthogonal projection, but only with different quadratures.

In Table 1.1, we compare three properties of three algorithms: SFD (symplectic finite differ-

ence algorithm), SRK (symplectic Runge-Kutta method), and FEM (continuous finite element

method).

In addition to preserving the symplecticity and energy, there is a third criterion to evalu-

ate an algorithm, i.e., small deviations of computational trajectory after long times, which is

possibly more important in applications. We now give a proposition as follows:
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Table 1.1: Comparison of three algorithms.

Three Properties SFD SRK FEM

Energy conservation approx. approx. exactly

Symplecticity(linear case) exactly exactly exactly

Symplecticity(nonlinear case) exactly exactly approx.

Long-time deviation of trajectory small smaller smaller

Proposition 1.1. A good algorithm of 2m-order accuracy for the Hamiltonian system should

be of the optimal error at node tn

|(z − Z)(tn)| ≤ Ctnh
2m,

for the long-time tn ≤ ch−2m, where the constant C is independent of h, tn.

Here T = ch−2m is called the long-time, because at this time the deviation |(z − Z)(T )| ≈
cC is already the quantity independent of h, and then further computation is meaningless.

Numerical experiments show that three algorithms mentioned above satisfy this proposition for

long-time (although their errors are different), however its proof is quite difficult and challenging.

Up to now, most of studies are confined in a short time. An excellent long-time result of SRK for

Newton system under Siegel’s diophantine condition is included in Hairer [19]. Unfortunately,

this condition is not satisfied by the Kepler system, see [20], p.354. In this paper, we focus

on the m-degree finite elements method and it is proved that FEM for nonlinear Hamiltonian

system under some reasonable conditions satisfies this proposition for a mid-long time tn ≤
ch−m (Theorem 2.1) and is essentially symplectic (Theorem 5.1). Besides, FEM for linear

system satisfies the proposition for long-times and is symplectic (Theorem 4.1). To study these

properties, we have used an analytical method rather than an algebraic method.

We close this section by mentioning that Karakashian and Makridakis [24] studied the

space-time continuous finite element methods for nonlinear Schrödinger system and analyzed

superconvergence at time node (for short-times). They proposed a remarkable KM-trick to

cancel the influence of Laplacian operator. Of course, this scheme also preserves the energy.

2. Basic Assumption and Main Results

Let 0 = t0 < t1 < · · · < tN = T be a partition of G = (0, T ), with Kj = (tj , tj+1),

hj = tj+1 − tj. Assume that the partition is uniform(hj = h). Denote by Sh the m-degree

continuous finite element space. Each m-degree polynomial in Kj has m + 1 parameters, but

only m freedoms, as its starting value at point tj is given. We define the finite element solution

Z = (P,Q)T ∈ Sh of (1.1) satisfying the orthogonal condition in Kj

∫

Kj

(Zt + JHz(Z))ξdt = 0, ξ ∈ Pm−1, (2.1)

where Pm−1 is a set of m− 1-degree polynomials. Taking ξ = Zt in (2.1), we get

0 =

∫

Kj

J(Zt + JHz(Z))Ztdt = −
∫

Kj

Hz(Z)Ztdt = −H(Z(t))
∣

∣

∣

t=tj+1

t=tj

. (2.2)

Lemma 2.1. (Energy Conservation [22,23]). Continuous finite element solutions at node

tn always preserve the energy for nonlinear Hamiltonian systems.
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This suggests that the shape of trajectory Z(tn) in phase plane is always unchanged. This

is the most important advantage of FEM.

In this paper we shall introduce a linearized equation of (1.1),

wt = Bw, w(0) = w0, B = −JHzz(z(t)). (2.3)

To study the long-time behavior of FE, we make the following

Assumption 2.1. (Basic Assumption). The solution z(t) of nonlinear system (1.1) and

the solution w(t) of (2.3) are uniformly bounded for any t,

|z(t)| ≤ C0(z0), |w(t)| ≤ C1|w(0)|, 0 ≤ t < ∞. (2.4)

Under the assumption, the energy surface H(z) = H(z0) is close and the solution z(t) is

periodic. For linear system, H(p, q) = C should be an elliptic surface rather than a parabolic or

hyperbolic one. For nonlinear system, for example, the Heissen matrix Hzz is positive definite.

Example 7.2 shows that local loss of the convexity of H(z) is admissible.

The assumption directly derives that all high order derivatives are uniformly bounded,

|Dk
t z(t)| ≤ Ck(z0), |Dk

t w(t)| ≤ Ck|w(0)|. (2.5)

Our main result can be stated as the following theorem.

Theorem 2.1. (Deviation of Trajectory). Under the basic assumption for nonlinear system

(1.1), the deviation of m-degree FE solution Z(t) at node tn has optimal superconvergence

|Z(tn)− z(tn)| ≤ Ctnh
2m, (2.6)

which is valid for a mid-long time tn ≤ ch−m and the constants C is independent of h, tn.

Remark 2.1. Theorem 2.1 shows that the error |e(tn)| grows linearly with tn. When tn is

large enough, the curve of Z(t) will be far away from that of the true solution z(t), although

its shape is similar to z(t). See Figs. 7.2,7.3,7.6-7.8.

In Section 5, we shall propose an equality for the symplecticity of FEM and prove the

essential symplecticity (Theorem 5.1).

3. The Orthogonal Projections in an Element

We use the linear transformation t = hs, which maps E = (−1, 1) onto K = (−h, h). Then

g(t) becomes g(hs), which is still denoted by g(s). Obviously, Di
sg = hiDi

tg = O(hi).

Introduce the Legendre polynomials in E

l0 = 1, l1 = s, l2 =
1

2
(s2 − 1), l3 =

1

2
(5s3 − 3s), · · · , ln = γnD

n
s (s

2 − 1)n,

where γn = 1/(2n)!!. It is known that the inner product (li, lj) = 0, i 6= j, and (lj , lj) =

2/(2j + 1) = cj+1.

Integrating the Legendre polynomials over (−1, s), we get the M-type polynomials

M0 = 1, M1 = s, M2 = (s2 − 1)/2, · · · ,
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Mn+1(s) =

∫ s

−1

ln(s)ds = γnD
n−1
s (s2 − 1)n,

which are quasi-orthogonal, i.e., (Mi,Mj) 6= 0 if j − i = 0,±2, else (Mi,Mj) = 0. Obviously

Mn(±1) = 0, n ≥ 2.

To construct an L-type projection, we expand w(s) as a Legendre series:

w(s) =
∞
∑

j=0

bjlj(s), bj = j1(w, lj)E , j1 = j +
1

2
, (3.1)

where the coefficient are given by integration by parts for 0 ≤ i ≤ j:

bj = j1γj(−1)i
(

Di
sw,D

j−i
s (s2 − 1)j

)

E
= O(hi)|Di

tw|K , |w|K = max
t∈K

|w(t)|.

The sum of the first (m− 1)-degree and the remainder are given by

wL ≡ LhwL =

m−1
∑

j=0

bj lj(s), r = w − wL =

∞
∑

j=m

bj lj(s) ⊥ Pm−1(s), (3.2)

respectively. By the Bramble-Hilbert lemma, we have the maximum norm estimate

|w − wL|K = max
t∈K

∣

∣(w − wL)(t)
∣

∣ ≤ Chm|Dm
t w|K .

Define an integral operator S,

Stw(t) =

∫ t

−h

w(t)dt = h

∫ s

−1

w(s)ds = hSsw(s), |Stw|K ≤ 2h|w|K .

For the remainder r of the L-type projection, we have

Si
tr(t) = hi

∞
∑

j=m

bjγj∂
j−i
s (s2 − 1)j ⊥ Pm−1−i, 0 ≤ i ≤ m− 1,

|Si
tr(t)|K ≤ Chi

∣

∣r(t)
∣

∣

K
≤ Chm+i|Dm

t w|K , Si
tr(±h) = 0, 0 ≤ i ≤ m.

Secondly expanding us(s) as a L-type series, integrating in s and taking b0 = (u(−1)+u(1))/2,

we get a M-type series [26,27]:

u(s) =

∞
∑

j=0

bjMj(s), bj+1 = j1(us, lj)E = O(hi)|Di
tu|K , 1 ≤ i ≤ j + 1. (3.3)

The sum of the first m terms and the remainder are

um = Qhu =

m
∑

j=0

bjMj(s), R = u− um =

∞
∑

j=m+1

bjMj(s) ⊥ Pm−2(s), (3.4)

respectively. Because b0 = (u(1) + u(−1))/2 and b1 = (ut, l0)/2 = (u(1) − u(−1))/2, we have

um(±1) = u(±1) which guarantees that the piecewise m-degree polynomial um constructed in

each element is continuous in the interval G = (0, tN ).

The remainder R = u− um has the following properties:

R(±1) = 0; DsR ⊥ Pm−1, m ≥ 1; R ⊥ Pm−2, m ≥ 2, (3.5)
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Si
tR = hi

∞
∑

j=m+1

bjγj−1D
j−2−i
s (s2 − 1)j−1 ⊥ Pm−2−i, 0 ≤ i ≤ m− 2,

|Si
tR|K ≤ Chm+1+i|Dm+1

t u|K , Si
tR(±1) = 0, 0 ≤ i ≤ m− 1.

Two projection operators Lh and Qh, and their orthogonality play an important role in the

study of superconvergence.

4. Proof of Theorem 2.1

Assume that z and Z ∈ Sh are the exact solution of (1.1) and m-degree finite element

solution of (2.1), respectively. The error e = z − Z satisfies the orthogonal relation in K =

(tj , tj+1)

(et, ξ)K = −J
(

Hz(z)−Hz(Z), ξ
)

K
, e(0) = 0, ξ ∈ Pm−1. (4.1)

Set zs = Z + se, 0 ≤ s ≤ 1, z0 = Z, z1 = z and φ(s) = −JHz(z
s). Then

φ′(s) = −JHzz(z
s)e, φ′(1) = Be, B = −JHzz(z(t)).

Using

φ(1)− φ(0) =

∫ 1

0

φ′(s)ds = φ′(1)−
∫ 1

0

φ′′(s)sds,

we get

−J
(

Hz(z
1)−Hz(z

0)
)

= B(z)e+ b(t)e2, b(t) = −
∫ 1

0

JHzzz(z
s)sds,

∣

∣b(t)
∣

∣ ≤ C.

Consequently, we can get an error equation

(et, ξ)K = (Be, ξ)K + (be2, ξ)K , e(0) = 0, ξ ∈ Pm−1. (4.2)

Denoting by ZI the m-degree M-projection of z and decomposing the error as e = z − Z =

(z − ZI)− (Z − ZI) = R− θ. Then θ = z − zI ∈ Sh satisfies

(θt, ξ)K = (Bθ, ξ)K − (BR, ξ)K + (be2, ξ)K , ξ ∈ Pm−1, θ(0) = 0, (4.3)

where Rt ⊥ Pm−1 is used.

Our new idea is to use the orthogonality correction technique proposed by Chen in 1999

(also see [27,28]). We decompose θ = u+ v, where u is the local error and v is the global error.

Firstly define the local correction in K

u =

m
∑

j=2

ajMj(s), u(tj) = u(tj+1) = 0, t = t̄j + hs ∈ K, s ∈ E,

satisfying

(ut −Bu, ξ)K = −(BR, ξ)K , ξ = li−1(t), i = 2, 3, · · · ,m, (4.4)

in order to cancel the terms in BR as much as possible . It remains that the global error v ∈ Sh

satisfies in G = (0, tn)

(vt −Bv, ξ)K = rK(ξ) + (be2, ξ)K , ξ = li−1(t), 1 ≤ i ≤ m, v(0) = 0. (4.5)



Finite Element Method with Superconvergence for Nonlinear Hamiltonian Systems 173

The remainder

rK(ξ) = −(ut, ξ)K + (Bu+BR, ξ)K (4.6)

is simplified to rK(li−1) = 0, 2 ≤ i ≤ m, and

rK(l0) = h

m
∑

j=2

aj(B,Mj)E + h

∞
∑

j=m+1

bj(B,Mj)E = O(h2m+1)|Dm+1
t u|K , (4.7)

which will be proved later. The proof of Theorem 2.1 consists of three parts.

4.1. Local error u and orthogonality correction

Taking ξ = ut in (4.4) and deducing |ut|K , we have maximum norm estimate

|ut|K ≤ C|u|K + C|R|K ≤ C|u|K + Chm+1.

Using u(t) =
∫ t

tj
utdt yields

|u|K ≤ Ch|ut|K ≤ Ch|u|K + Chm+2, t ∈ K.

When h is small enough, we can cancel Ch|u| on the right side and get an optimal estimate

|u|K ≤ Chm+2. (4.8)

To get more refined estimate of u, transforming K into E = (−1, 1), (4.4) becomes a linear

algebraic system

m
∑

j=2

kijaj ≡ ciai − h
m
∑

j=2

aj
(

BMj(s), li−1(s)
)

E
= ηi, i = 2, 3, · · · ,m, (4.9)

where R ⊥ Pm−2 and integrating by part is used. Observe

ηi = h(R,BT li−1) = (−1)m−1h
(

Sm−1
s R,Dm−1

s (BT li−1)
)

= O(h2m+2−i).

In virtue of the quasi-orthogonality of Mj , (Mj , li) 6= 0, j = i, i − 2, else 0, (4.9) is absolutely

diagonally dominant, i.e., kii = ci + O(h2) positive and other elements kij = O(h|i−j|), i 6= j.

For sufficiently small h, we can get the useful estimates

ai = O(h2m+2−i), i = 2, 3, · · · ,m. (4.10)

4.2. Global error v.

Taking ξ = vt in (4.5), we have the maximum norm estimate

|vt|K ≤ C|v|K + Ch2m+1 + C|e|2K .

Using

v(t) = vj −
∫ tn

t

vtdt and |e|K = |R − u− v|K ≤ Chm+1 + |v|K ,

we have

|v|K ≤ |vj |+ h|vt|K ≤ |vj |+ Ch|v|K + Ch2m+2 + Ch|v|2K ,
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which gives, when h is suitably small, that

|v|K ≤ C|vj |+ Ch2m+2 + Ch|v|2K .

Assuming that |v|K ≤ C, we get an important estimate

|vj | ≤ |v|K ≤ C|vj |+ Ch2m+2, (4.11)

i.e., |v|K and vj are of the same order.

4.3. Nodal error |vn|.

Assume that |vn| = max1≤j≤n |vj |. Construct a conjugate problem

wt +BTw = 0, t ∈ G = (0, tn), w(tn) = vn. (4.12)

By the basic assumption, we have the uniform bounds

|Dl
tw(t)|G ≤ C|vn|, l = 0, 1, 2, · · · .

Denote by wL the (m− 1)-degree L-type projection of w in K, whose remainder

r = w − wL ⊥ Pm−1, |r|K ≤ Chm|Dm
t w|K ≤ Chm|vn|, t ∈ K.

Integrating by parts leads to

I = (vt −Bv,w)G = (vw)(tn)− (v, wt +BTw)G = |vn|2.

On the other hand, using r ⊥ vt and Eq. (4.5) yields

|vn|2 = (vt −Bv, r)G + (vt −Bv,wL)G = −(Bv, r)G + rG(wL) + (be2, wL)G, (4.13)

where

∣

∣(be2, wL)G
∣

∣ ≤ Ctm|e|2G|vn|, |e|G ≤ Chm+1 + |v|G,

|rG(wL)| ≤ Ch

n
∑

i=1

( m
∑

j=2

h2m+2−j
∣

∣(B,Mj)
∣

∣+ hm+1
∣

∣(B,Mm+1)
∣

∣

)

≤ Ctnh
2m.

In virtue of Theorem 6.1 in Section 6, we get a long-time estimate

∣

∣(Bv, r)G
∣

∣ ≤ Ctnh
2m|v|G |vn|+ Ctn

(

h2m + |v|2G
)

|vn|,

(in general, only |(Bv, r)G| ≤ Ctn|v|G |r|G). Reducing |vn|, we have

|vn| ≤ Ctnh
2m|v|G + Ctnh

2m + Ctn|v|2G.

and, using (4.11),

|v|G ≤ C|vn|+ Ch2m+2 ≤ Ctnh
2m|v|G + Ctnh

2m + Ctn|v|2G.

If confining the maximum time tn (called the long-time) such that γ = Ctnh
2m < 1

2 , we can

cancel Ctnh
2m|v|G on the right side and get a long-time estimate

|vn| ≤ |v|G ≤ Ctnh
2m + Ctm|v|2G, t ∈ G = (0, tn). (4.14)

We need the following simple estimate (also see Remark 2.1),
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Lemma 4.1. Assume that y ≥ 0 satisfies y ≤ a+ by2, a, b > 0, 4ab ≤ 1. Then y ≤ 2a.

From (4.14) we directly get

|vn| ≤ |v|G ≤ 2Ctnh
2m, if C2t2nh

2m <
1

4
, (4.15)

which is valid only for a mid-long time tn ≤ ch−m.

Finally, noting that en = Rn − un − vn = −vn at nodes tn, we get |en| = |vn| ≤ Ctnh
2m.

Hence, Theorem 2.1 is proved.

Remark 4.1. Lemma 2.1 can be proved by a monotone increasing and bounded iterative

sequence y0 = a, · · · , yn+1 = a + by2n, · · · , whose limit Y satisfies Y = a + bY 2 and a smaller

root Y = 2a/(1 +
√
1− 4ab) ≤ 2a. We recall that to deduce the term C|v|2 in |v| ≤ a+ b|v|2,

Frehse-Rannacher [25] have once used the continuation method, a more complicated argument.

Obviously the Lemma 2.1 is direct and simple.

Note that for linear system, the term |v|2 in (4.14) disappears and (4.15) is valid for long-time

tn ≤ ch−2m. So we get an interesting result as follows:

Theorem 4.1. For linear system, the m-degree continuous finite element Z(tn) at node t = tn
is symplectic and |(z − Z)(tn)| ≤ Ctmh2m for the long-time tm ≤ ch2m.

Proof. It is sufficient to discuss the symplecticity. For linear system zt = Bz with B = −JL,

where L is a symmetric positive definite matrix of order 2n, its exact solution is written as

z(t) = eBtz0. The m-degree finite element Z(t) in the first node t1 = h can be expressed by

the Cramer law

Z(h) = Qm(hB)−1Pm(hB)z0,

where Pm, Qm are m-degree polynomials of the matrix hB. On the other hand, we have the

highest order superconvergence at the first node t1 = h

|z(h)− Z(h)| = |e(h)| ≤ C(h|B|)2m+1|z0|, (4.16)

which shows that Z(h) is 2m-order diagonally Pade approximation to eBh. Consequently, Z(h)

is symplectic. �

5. The Essential Symplecticity

We recall the proof of (1.4). Setting the derivatives z′(t) = Dz(t)
Dz0

, by (1.1) we have

z′t = −JHzzz
′, z′(0) = I2n, A(z) = Hzz(z),

where A(z) is a symmetrical 2n× 2n square matrix. Direct calculation gives

Dt(z
′TJz′) = (z′t)

T Jz′ + z′TJz′t = (−JAz′)TJz′ + z′TJ(−JAz′)

= −z′TAT JTJz′ − z′TJ2Az′ = −z′TAz′ + z′TAz′ = 0.

Then we get z′TJz′ = J for any t.
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To study the symplecticity of the discrete scheme, we follow Feng’s idea to investigate

whether the partial derivatives Z ′ = DZn

Dz0
at nodes tn are symplectic. Differentiating (2.1) leads

to

(Z ′
t, ξ) =

(

− JHzz(Z)Z ′, ξ
)

, Z ′(0) = I2n, A(Z) = Hzz(Z), (5.1)

where its transposition is similar, i.e.,

(

(Z ′
t)

T , ξ
)

=
(

(

− JHzz(Z)Z ′
)T

, ξ
)

, Z ′(0) = I2n.

We investigate the following integral

ωn = (Z ′T JZ ′)(tn)− J =

∫ tn

0

Dt(Z
′TJZ ′)dt = (Z ′T

t , JZ ′) + (Z ′TJ, Z ′
t).

The matrix Z ′(t) can be expressed by the Legendre expansion in the element Kj

Z ′(s) =

m
∑

j=0

Fj lj(s), Y =

m−1
∑

j=0

Fj lj(s) ∈ Pm−1, r = Z ′ − Y = Fmlm(s) ⊥ Pm−1.

Using Eq. (5.1) of Z ′, we have

ωn =
(

(Z ′
t)

T , JY
)

+ (Y TJ, Z ′
t) =

(

(−JAZ ′)T , JY
)

+ (Y T J,−JAZ ′)

= (−Z ′TATJT , JY ) + (Y TJ,−JAZ ′) = −(Z ′TA, Y ) + (Y T , AZ ′)

= −(rTA, Y ) + (Y T , Ar)− (Y TA, Y ) + (Y T , AY ),

where the last two terms disappear. So we get an important equality

ωn = Z ′(tn)
TJZ ′(tn)− J =

n
∑

l=1

m−1
∑

j=0

h
(

− FT
mAjFj + FT

j AjFm

)∣

∣

∣

Kl

, (5.2)

where the square matrix is given by

Amj =

∫

E

A(s)lm(s)lj(s)ds, j = 0, 1, · · · ,m− 1.

For linear system, A is a constant matrix. Then Aj = 0 and ωn = 0 by (5.2). This is the

simplest proof of the symplecticity.

For nonlinear system, the A(Z) is variable. The finite element Z in general is not symplectic,

but is of symplecticity of high accuracy (or called essentially symplectic). For the finite element

solutions Z and Z ′, we make the following assumption.

Assumption 5.1. In an interval G = (0, T ), the finite element solutions Z(t), Z ′(t) and their

derivatives are uniformly bounded

|Dl
tZ(t)| ≤ C0, |Dl

tZ
′(t)| ≤ C1, l = 0, 1, · · · ,m, 0 ≤ t ≤ T ≤ ch−2m. (5.3)

Remark 5.1. By the basic assumption, the finite element Z(t) preserves the energy at node

tn, H(Z(tn)) = H(Z0), then Z(tn) and Z(t) are uniformly bounded. Furthermore, we can

prove that their derivatives Dl
tZ(t) are also uniformly bounded. Besides, if A is constant,

symmetrical, and positive definitive, we can prove that Dl
tZ

′(t) are uniformly bounded. But in

the case of variable A, its proof is very difficult. Hence, in this paper we temporarily accept

Assumption 5.1.
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Theorem 5.1. (Essential Symplecticity). Assume that the finite element solutions Z(t)

and its derivative Z ′(t) satisfy Assumption 5.1 for long time T = ch−2m. Then there is the

symplecticity deviation of high accuracy for long time

|Z ′T (tn)JZ
′(tn)− J | ≤ CC2

1 tnh
2m, 0 ≤ tn ≤ T. (5.4)

Proof. Under Assumption 5.1, we have in each element Kl

|Fj | ≤ CC1h
j , |Aj | ≤ Chj , 0 ≤ j ≤ m.

So (5.2) directly leads to the following estimate

|ωn| ≤ CC2
1 tnh

2m, tn = nh,

which completes the proof of the theorem. �

It should be pointed out that the proof of Theorem 5.1 only depends on the finite element

solution Z,Z ′, and independent of the true trajectory z, z′ and is Theorem 2.1,whereas the

proof of the latter may be the most difficult one.

6. A Refined Estimate for the Global Error

Returning to the global error, v ∈ Sh satisfies (4.5) and (4.13), i.e.,

(vt, ξ)G = (Bv, ξ)G + rG(ξ) + (be2, ξ)G, |vn|2 = −(Bv, r)G + rG(wL) + (be2, wL)G,

where w is defined in (4.12), r = w − wL ⊥ Pm−1,

|r| ≤ Chm|Dm
t w| ≤ Chm|vn| and

∣

∣rG(wL)
∣

∣ ≤ Ctnh
2m.

We prove a refined estimate as follows:

Theorem 6.1. For v ∈ Sh satisfying (4.5) and r = w−wL ⊥ Pm−1, there is a refined estimate

in any interval G = (0, tn)

∣

∣(Bv, r)G
∣

∣ ≤ Ctn
(

|v|G + h2m + |e|2G
)

hm|r|G, |r|G ≤ Chm|vn|, (6.1)

where constant C is independent of h, tn.

Proof. We shall repeatedly use the following techniques: integrating by parts to get Sm
t r =

O(hm)|r| and substituting the derivatives vt by the original equation (4.5). Actually the integral

operator St is used in each elementKj . The proof is completed in the whole interval G = (0, tn).

For simplicity the low-index G is omitted.

For m ≥ 1, using St and orthogonality of r, we can transform

(Bv, r) = −(Btv, Str) − (Bvt, Str) = I1 + I2. (6.2)

Obviously

|I1| =
∣

∣(Btv, Str)
∣

∣ ≤ Ctn|v|Ch|r|.
To estimate I2, set F1 = BTStr and its (m−1)-degree L-type projection f1 = Lh(F1). Obviously

r1 = F1 − f1 ⊥ Pm−1 and

|f1| ≤ C|F1| ≤ C|Str| ≤ Ch|r|, |r1| ≤ C|F1| ≤ Ch|r|.
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By the original equation (4.5), we have

− I2 = (Bvt, Str) = (vt, F1) = (vt, f1) = (Bv, f1) + rG(f1) + (be2, f1)

= (Bv, r1) + (Bv, F1) + rG(f1) + (be2, f1),

|I2| ≤ Ctn|v|Ch|r|+ Ctn
(

h2m + |e|2
)

|f1|, |f1| ≤ Ch|r| < Chm+1|vn|. (6.3)

So (6.1) for m = 1 is valid.

If m ≥ 2, we can repeat above treatments. By (6.2) we have

I1 = −(Btv, Str) = (Bttv, S
2
t r) + (Btvt, S

2
t r) =: I11 + I12, |S2

t r| ≤ Ch2|r|.

Obviously |I11| ≤ Ctnh
2|r| and treat the term I12 in the same way used in (6.3). By (6.3), we

have

I2 =− (Bv, r1)− (B2v, Str)− rG(f1)− (be2, f1)

=(vt, B
TStr1) + (Btv, Str1) + (B2vt + (B2)tv, S

2
t r) − rG(f1)− (be2, f1).

Setting F2 = BTStr1, f2 = Lh(F2), r2 = F2 − f2, obviously

|f2| ≤ C|F2| ≤ C|Str1| ≤ Ch|r1| ≤ Ch2|r|, |r2| ≤ C|F2| ≤ Ch2|r|.

The first term in I2 is transformed to

(vt, B
TStr1) =(vt, F2) = (vt, f2) = (Bv, f2) + rG(f2) + (be2, f2),

≤Ctn|v|Ch2|r| + Ctn
(

h2m + |e|2
)

|f2|, |f2| ≤ Ch2|r|.

Similarly treat (B2vt, S
2
t r) in I2. The estimates of other terms in I2 is simple. We have

|(Bv, r)| ≤ Ctn|v|h2|r| +
(

Ctnh
2m + Ctn|e|2

)

h2|r|, |r| ≤ Chm|vn|,

and (6.1) for m = 2 is valid.

This argument can be repeated m times and then Theorem 6.1 is established. �

7. Numerical Experiments

Example 7.1. Consider nonlinear Hamiltonian system (see [4], p.143)

H(p, q) =
1

2
(p2 + 4q2 + 4q4/3), p0 = 0.5, q0 = 0.25, (7.1)

where the canonical system is q′ = p, p′ = −(4q + 8q3/3). We shall compare three algorithms:

the quadratic finite element (2FE) with five-point Gauss quadrature, fourth-order symplectic

Runge-Kutta method (4SRK) and fourth-order symplectic difference scheme (4SS) [4] based on

an expansion at a middle point Z∗:

Zk+1 = Zk − hJ∇H(Z∗) +
h3

24
J∇{(∇H)T JHzzJ∇H}(Z∗), Z∗ =

1

2
(Zk+1 + Zk).

Take h = 0.1, N ≤ 105. Three computational trajectories in phase plane are close each other

(see Fig. 7.1), but in fact 2FEM preserves the energy, whereas the energy for 4SRK (and 4SS)

is of the larger error (see Table 7.1).
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Table 7.1: The error Hh(t)−H at nodes for 2FEM and 4SRK, h = 0.1.

t = 1 t = 10 t = 100 t = 1000 t = 10000

2FE -1.110e-16 1.110e-16 -8.326e-16 -4.773e-15 -3.447e-14

4SRK 5.876e-8 5.760e-10 1.210e-9 2.735e-8 7.330e-8

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.4

−0.3

−0.2
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0

0.1

0.2

0.3

0.4

2FE,4SRK,4SS,N=105 

p 

q 

Fig. 7.1. Trajectories in phase plane, 2FEM and 4SRK, h = 0.1, step number is N = 105.

In the following, we turn to the trajectory curves P (t) and Q(t) in the physical plane. It

is observed that three sets of trajectory P (t), Q(t) for 2FEM, 4SRK and 4SS are close to each

other when t ≤ T = Nh = 102 (the left in Fig. 7.2). When t = Nh = 104, two trajectories for

2FEM and 4SRK are still close to each other (the right in Fig. 7.2), but that for 4SS already

has the deviation of a half period. Hence, we will not discuss the 4SS case anymore. When

t ≥ Nh = 106, the trajectories for 2FEM and 4SRK are also of the larger deviations (Fig. 7.3).

To investigate the error for P (t), Q(t), we have computed the exacter solution p(t), q(t) by

2FEM with smaller step-length h = 0.01. The corresponding errors ep(t) = p−P, eq(t) = q−Q

are listed in Table 7.2. We see that these errors are close to each other and grow linearly in

time.
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Fig. 7.2. P (t),Q(t) for 2FEM, 4SRK, 4SS, h = 0.1,T = 10 (left),T = 105 (right).



180 C.M. CHEN, Q. TANG AND S.F. HU

9.9999 9.9999 9.9999 9.9999 9.9999 10 10 10 10 10 10

x 10
5

−1

−0.5

0

0.5

1

9.9999 9.9999 9.9999 9.9999 9.9999 10 10 10 10 10 10

x 10
5

−0.4

−0.2

0

0.2

0.4

N=107 

4SRK 
2FE 

T 

T 

4SRK 

2FE

P 

Q 

2 2 2 2 2 2 2 2 2 2 2

x 10
6

−1

−0.5

0

0.5

1

2 2 2 2 2 2 2 2 2 2 2

x 10
6

−0.4

−0.2

0

0.2

0.4

N=2*107,h=0.1 

T 

4SRK 

2FE 

T 

P 

Q

4SRK 

2FE 

Fig. 7.3. P (t),Q(t) for 2FEM and 4SRK, h = 0.1,T = 106 (left),T = 2 ∗ 106 (right).

Table 7.2: The errors ep(t), eq(t) at nodes for 2FEM and 4SRK.

ep(t) t = 1 t = 10 t = 100 t = 1000 t = 10000

2FE 1.147e-6 2.230e-5 2.157e-4 1.607e-3 3.692e-2

4SRK 1.051e-6 2.270e-5 2.203e-4 1.642e-3 3.772e-2

eq(t) t = 1 t = 10 t = 100 t = 1000 t = 10000

2FE 2.069e-6 1.685e-5 1.686e-4 1.824e-3 9.229e-3

4SRK 2.051e-6 1.715e-5 1.722e-4 1.864e-3 9.443e-3

Example 7.2. Consider the nonlinear Huygens system (see [3,4]):

p′ = 2q − 4q3, q′ = 2p; p0 = 0, q0 = 1.1; H = p2 + q4 − q2. (7.2)

We do not know if (7.2) has an analytical solution, but its solution can be computed by 2FEM

(P (t), Q(t)) with smaller step-length h. Taking a smaller h = 0.01 and computing n = 450

steps, we obtain ω(P ) = ω(Q) = 4.02065 as the periods of P and Q.

When the step-length h = 0.2 and t ∈ (0, 5), the curves P (t), Q(t) for three algorithms are

close to each other. If taking h = 0.4, the 2FEM and 4SRK (real lines) still perform well, but

4SS (dot lines) deviates much larger, see Fig. 7.4. Note that the Heissen matrix

Hzz = 2

(

1 0

0 6q2 − 1

)

is positive definite for |q| > 1/
√
6 ≈ 0.408, but for |q| < 1/

√
6 its sign changes in two small

pieces in Fig. 7.5, which yields that the curve P (t) in Fig. 7.4 has two smaller peaks (or valleys)

in each large peak (or valley).

Next their energy errors with step-length h = 0.2 are listed in Table 7.3. We see that 2FE

can preserve the energy very well, whereas 4SS and 4SRK cannot, whose accuracy is not good

even if in the starting period.

Table 7.3: The energy errors H −Hh for 2FE, 4SRK and 4SS, h = 0.2.

t = 0.2 2 20 200 2000 2 ∗ 104 2 ∗ 105

2FE 1.11e-16 4.44e-16 2.44e-15 7.49e-15 1.70e-14 9.40e-14 3.58e-13

4SS 2.95e-4 7.79e-6 3.04e-4 1.37e-6 8.23e-5 2.59e-3 8.85e-4

4SRK -4.06e-6 -2.73e-4 -5.43e-4 -5.72e-6 -3.34e-4 -5.00e-4 -
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Fig. 7.4. h = 0.4, curves P (t),Q(t), 2FE, 4SRK (real) and 4SS (dot).
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Fig. 7.5. h = 0.4, (P,Q)-phase plane, 2FE, 4SRK (real) and 4SS (dot).

Finally we investigate the computational trajectories with h = 0.1 and depict four curves

in two periods at the final time t = 103, 5× 103, 104, respectively. The numbers in Figs. 7.6-7.9

stand for: 1. The exacter 2FE with h = 1/40; 2. 2FE ; 3. 4SRK; 4. 4SS, We see that 2FE and

4SRK are better, whereas 4SS moves to the right over one half period (Fig. 7.7, t = 5000) and

one period (Fig. 7.8, t = 104). Fig. 7.9 (t ≤ 2000) shows the error oscillations in corresponding

sector domains. Note that the true solution satisfies |z| < 1. Then, the error |e| > 0.2 is already

meaningless. Moreover, all three errors grow linearly in time.
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Fig. 7.6. h = 0.1, T = 103, curves P (t), Q(t) remove (in two periods).
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Fig. 7.7. h = 0.1, T = 5 ∗ 103, curves P (t), Q(t) remove. Over a half period for 4SS.
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Fig. 7.8. h = 0.1, T = 104, curves P (t), Q(t) remove. Over one period for 4SS.
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Fig. 7.9. Oscillation sectors of errors eP , eQ, h = 0.1, T = 2 ∗ 103.

These numerical experiments show that the simplecticity, energy conservation and trajec-

tory deviation for long-time are three different important properties in computations for the

nonlinear Hamilton system.
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