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Abstract

In this paper, by using multivariate divided differences to approximate the partial

derivative and superposition, we extend the multivariate quasi-interpolation scheme based

on dimension-splitting technique which can reproduce linear polynomials to the scheme

quadric polynomials. Furthermore, we give the approximation error of the modified scheme.

Our multivariate multiquadric quasi-interpolation scheme only requires information of lo-

cation points but not that of the derivatives of approximated function. Finally, numerical

experiments demonstrate that the approximation rate of our scheme is significantly im-

proved which is consistent with the theoretical results.
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1. Introduction

The approximation of multivariate functions from scattered data is an important theme in

numerical mathematics. One of the methods to attack this problem is quasi-interpolation. For

a set of functional values {f(Xj)}1≤j≤n taken on a set of nodes Ξ = {X1, X2, · · · , Xn} ⊆ R
d,

the form of quasi-interpolation function Qf(X) corresponding to f(X) is as follows

Qf (X) =

n
∑

j=1

f(Xj)ϕj(X), (1.1)

where {ϕj(X)} is a set of quasi-interpolation basis functions. Using quasi-interpolation there

is no need to solve large algebraic systems. The approximation properties of quasi-interpolants

in the case that Xj are the nodes of a uniform grid are well-understood. For example, the

quasi-interpolant
n
∑

j=1

f(jh)ϕ
(X − hj

h

)

can be studied via the theory of principal shift-invariant spaces, which has been developed

in several articles by de Boor et al. (see, e.g., [1,2]). Here ϕ is supposed to be a compactly
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supported or rapidly decaying function. Based on the Strang-Fix condition for ϕ, which is

equivalent to polynomial reproduction, convergence and approximation orders for several classes

of basis functions were obtained (see also [3-5]). Scattered data quasi-interpolation by functions,

which reproduces polynomials, has been studied by Buhmann et al. [6], Dyn and Ron [7], Wu

and Schaback [8], Feng and Li [9], Wu and Liu [10], and Wu and Xiong [11].

Beast and Powell [12] first proposed a univeriate quasi-interpolation formula where ϕi in

(1) is a linear combination of the Hardy’s MQ basis [13]

φi(x) =
√

(x − xi)2 + c2, x, xi ∈ R

and low order polynomials. Their formula requires the derivative informations of f at the

endpoints, which is not convenient for practical purposes. Wu and Schaback [8] proposed an-

other quasi-interpolation formula with modifications at the endpoints. Wu-Schaback’s formula

is given by

LDf(x) =
n
∑

i=0

fiαi(x), (1.2)

where fi, i = 0, · · · , n are the values of f(x) at nodes {xi} and the interpolation kernel αi(x)

is also formed from linear combinations of the MQ basis functions, plus a constant, and linear

polynomial:

α0(x) =
1

2
+

φ1(x)− (x− x0)

2(x1 − x0)
, (1.3a)

α1(x) =
φ2(x)− φ1(x)

2(x2 − x1)
−

φ1(x)− (x − x0)

2(x1 − x0)
, (1.3b)

αi(x) =
φi+1(x) − φi(x)

2(xi+1 − xi)
−

φi(x) − φi−1(x)

2(xi − xi−1)
, 2 ≤ i ≤ n− 2, (1.3c)

αn−1(x) =
(xn − x) − φn−1(x)

2(xn − xn−1)
−

φn−1(x) − φn−2(x)

2(xn−1 − xn−2)
, (1.3d)

αn(x) =
1

2
+

φn−1(x) − (xn − x)

2(xn − xn−1)
. (1.3e)

It is shown that (1.2) preserves monotonicity and convexity, and converges with a rate of

O(h2.5 log h) as c = O(h).

Ling [14] extended the univariate quasi-interpolation formula (1.2) to multidimensions using

the dimension-splitting multiquadric basis function approach. Given data {(xi, yj , fij), i =

0, 1, · · · , n, j = 0, 1, · · · ,m} , the form of dimension-splitting quasi-interpolation for MQ basis

function is

Φ1f(x, y) =

n
∑

i=0

m
∑

j=0

fijαi(x)βj(y), (1.4)

where αi(x), i = 0, 1, · · · , n are given by (1.3). Along that y direction, the basis functions βj(y)
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are defined as follows

β0(y) =
1

2
+

φ1(y)− (y − y0)

2(y1 − y0)
, (1.5a)

β1(y) =
φ2(y)− φ1(y)

2(y2 − y1)
−

φ1(y)− (y − y0)

2(y1 − y0)
, (1.5b)

βj(y) =
φj+1(y)− φj(y)

2(yj+1 − yj)
−

φj(y)− φj−1(y)

2(yj − yj−1)
, 2 ≤ j ≤ m− 2, (1.5c)

βm−1(y) =
(ym − y)− φm−1(y)

2(ym − ym−1)
−

φm−1(y)− φm−2(y)

2(ym−1 − ym−2)
, (1.5d)

βm(y) =
1

2
+

φm−1(y)− (ym − y)

2(ym − ym−1)
. (1.5e)

Ling did not give the error estimate of Φ1f(x, y) to f(x, y). We may verify that the form of

(1.4) has the property of linear reproduction.

Theorem 1.1. The scheme Φ1f satisfies the property of linear reproduction.

Proof. In virtue of the property of constant and linear reproduction of (1.2), we have

n
∑

i=0

αi(x) = 1,
n
∑

i=0

xiαi(x) = x. (1.6)

Similarly
m
∑

j=0

βj(y) = 1,
m
∑

j=0

yjβj(y) = y. (1.7)

Then when f(x, y) = c with c being a constant, we have

n
∑

i=0

m
∑

j=0

cαi(x)βj(y) = c
(

n
∑

i=0

αi(x)
)(

m
∑

j=0

βj(y)
)

= c; (1.8)

when f(x, y) = x,

n
∑

i=0

m
∑

j=0

xiαi(x)βj(y) =
(

n
∑

i=0

xiαi(x)
)(

m
∑

j=0

βj(y)
)

= x;

similarly when f(x, y) = y,we have (Φ1f)(x, y) = y. �

From Theorem 1.1, we see that the scheme Φ1f can only reproduce linear polynomial, con-

sequently the approximation rate requires increasing. In this paper, we modify the scheme Φ1f

and give a quasi-interpolation operator reproducing quadric polynomial and give the approxi-

mation error of the proposed scheme and find when c = O(h), the approximation rate can reach

up to O(h3), h = max{h1, h2}, 2h1 = max0≤i≤n−1 |xi+1−xi|, 2h2 = max0≤j≤m−1 |yj+1−yj|. In

addition, the proposed scheme doesn’t require the derivatives of f . Some numerical experiments

are shown that the approximate rate of Φ2f is far higher than that of Φ1f .

The organization of the paper is as follows: Section 2 gives some notions; Section 3 presents

the construction of a quasi-interpolation operator with quadric reproduction; Section 4 makes

its error estimate; Section 5 is numerical experiments; Section 6 is the conclusion part.
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2. Preliminaries

Definition 2.1. Let k ∈ N, c > 0. Multiquadric functions of degree 2k−1(2k order) are defined

by

φ(X ; 2k) =

(

‖X‖22 + c2
)(2k−1)/2

, X = (x1, · · · , xd) ∈ R
d, (2.1)

where c is called shape parameter, Rd is d-dimensional Euclidean space, ‖ ·‖ is Euclidean norm,

and

φj,2k(X) := φ(X −Xj; 2k) (2.2)

is a shift of φ(X ; 2k) centered at Xj.

Definition 2.2. For given point set {Xi = (xi1, · · · , xid)}
n
i=0 ⊂ Ω and a set of values {f(Xi)}

n
i=0,

Ω is a bounded domain on R
d, the quasi-interpolation (Lf)(X) of a function f : Rd → R is

defined as follows:

(Lf)(X) =

n
∑

j=0

f(Xj)αj(X), X ∈ R
d, (2.3)

where αj(X) are quasi-interpolation basis functions.

Definition 2.3. For any real-coefficient polynomial p(X) of degree m , if (Lp)(X) = p(X),

then quasi-interpolation (Lf)(X) is called to be satisfying the reproduction property of polyno-

mials of degree ≤ m.

Definition 2.4. ([15]) Suppose F = {f |f : R
d → R}, A is a discrete subset of R

d, α =

(α1, α2, · · · , αd) ∈ Zd
+, D

α = Dα1Dα2 · · ·Dαd is the derivative of order |α| = α1 + · · · + αd,

Pn = Pn(R
d) is the set of multivariate polynomials of degree ≤ n. An operator Dα

A : F → F is

said to be a Pn-exact A-discretization of Dα if

(a) There exists a real vector λ = (λa)a∈A such that, for any f ∈ F ,

(Dα
Af)(X) =

∑

a∈A

λaf(X + a); (2.4)

(b) For any p ∈ Pn, D
α
Ap = Dαp.

In such a situation, we also say that Dα
Af is a Pn-exact A-discretization of Dαf . If the

points in set A are properly posed for Pn, then Dα
A is determined uniquely.

3. Quasi-Interpolation Operators with Quadric Reproduction

For given data {(xi, yj, fij), i = 0, 1, · · · , n, j = 0, 1, · · · ,m}, we define a quasi-interpolation

operator as follows:

(Φ̃2f)(x, y) =

n
∑

i=0

m
∑

j=0

(

fij +
1

2
(x− xi)fx(xi, yj) +

1

2
(y − yj)fy(xi, yj)

)

αi(x)βj(y). (3.1)

Theorem 3.1. Quasi-interpolation operator Φ̃2f satisfies quadric polynomial reproduction prop-

erty.
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Proof. By Theorem 1, we know that Φ1f reproduces linear polynomial, i.e.,

(Φ1f)(x, y) = ax+ by + c, if f(x, y) = ax+ by + c, a, b, c are constants.

Then when f(x, y) = xy, we have

(Φ̃2f)(x, y) =
n
∑

i=0

m
∑

j=0

(

xiyj +
1

2
(x− xi)yj +

1

2
(y − yj)xi

)

αi(x)βj(y)

=

n
∑

i=0

m
∑

j=0

(
1

2
xyj +

1

2
xiy)αi(x)βj(y) = xy,

and when f(x, y) = x2, we have

(Φ̃2f)(x, y) =
n
∑

i=0

m
∑

j=0

(

x2
i +

1

2
(x− xi)(2xi)

)

αi(x)βj(y) = x2.

For f(x, y) = y2, we can similarly prove that (Φ̃2f)(x, y) = y2. �

Although the quasi-interpolation operator Φ̃2f satisfies quadric polynomial reproduction

property, it requires the first derivatives of the approximated function f(x, y) in the process of

using, which are very difficult to measure in practice. Hence, we shall use multivariate divided

difference operator Dα
Af defined in Definition 4 to replace first-order partial derivatives ∂f

∂x ,
∂f
∂y

in Φ̃2f . In the following, we introduce the specific computing formula of multivariate divided

differences which approximate ∂f
∂x ,

∂f
∂y .

Suppose the point set A = {Q1(x1, y1), Q2(x2, y2), · · · , Q6(x6, y6)} is posed for P2, that is

to say, there doesn’t exist a nonzero polynomial in P2 which vanishes on all the points of A,

where P2 is the bivariate polynomial space of polynomials of total degree ≤ 2. The computing

formula of divided difference f [A](1,0) defined by paper [15, Sec.3] is given by

f [A](1,0) =
1

(1, 0)!
D

(1,0)
A f(0) =

6
∑

i=1

λif(Qi), (3.2)

where (α1, α2)! = α1!α2! and coefficient λi is determined by the following equations



















1 1 1 1 1 1

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

x1y1 x2y2 x3y3 x4y4 x5y5 x6y6

x2
1 x2

2 x2
3 x2

4 x2
5 x2

6

y21 y22 y23 y24 y25 y26





































λ1

λ2

λ3

λ4

λ5

λ6



















=



















0

1

0

0

0

0



















. (3.3)

Therefore, we have

D
(1,0)
A f(X) =

6
∑

i=1

λif(Qi +X), X = (x, y) ∈ R
2.
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According to (7) and (8), the computing formula of divided difference f [AX ](1,0) on six points

AX = {Q1 −X,Q2 −X,Q3 −X,Q4 −X,Q5 −X,Q6 −X} is given by

f [AX ](1,0) =
1

(1, 0)!
D

(1,0)
AX

f(0) =

6
∑

i=1

λi,Xf(Qi −X),

where coefficients {λi,X}6i=1 are determined by the following equations

M









λ1,X

λ2,X

λ3,X

λ4,X

λ5,X

λ6,X









=





0
1
0
0
0
0



 , (3.4)

where

M =







1 1 1 1 1 1
x1−x x2−x x3−x x4−x x5−x x6−x
y1−y y2−y y3−y y4−y y5−y y6−y

(x1−x)(y1−y) (x2−x)(y2−y) (x3−x)(y3−y) (x4−x)(y4−y) (x5−x)(y5−y) (x6−x)(y6−y)

(x1−x)2 (x2−x)2 (x3−x)2 (x4−x)2 (x5−x)2 (x6−x)2

(y1−y)2 (y2−y)2 (y3−y)2 (y4−y)2 (y5−y)2 (y6−y)2






. (3.5)

Therefore, we have

D
(1,0)
AX

f(X) =

6
∑

i=1

λi,Xf(Qi). (3.6)

Similarly, on the point set A = {Q1, Q2, Q3, Q4, Q5, Q6} , the computing formula of divided

difference f [A](0,1) defined by [15] is given by

f [A](0,1) =
1

(0, 1)!
D

(0,1)
A f(0) =

6
∑

i=1

ηif(Qi), (3.7)

where coefficients {ηi}
6
i=1 are determined by the following equations



















1 1 1 1 1 1

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

x1y1 x2y2 x3y3 x4y4 x5y5 x6y6

x2
1 x2

2 x2
3 x2

4 x2
5 x2

6

y21 y22 y23 y24 y25 y26





































η1

η2

η3

η4

η5

η6



















=



















0

0

1

0

0

0



















. (3.8)

Therefore, we have

D
(0,1)
A f(X) =

6
∑

i=1

ηif(Qi +X). (3.9)

According to (3.6) and (3.7), the computing formula of divided difference f [AX ](0,1) on six

points AX = {Q1 −X,Q2 −X,Q3 −X,Q4 −X,Q5 −X,Q6 −X} is given by

f [AX ](0,1) =
1

(0, 1)!
D

(0,1)
AX

f(0) =

6
∑

i=1

ηi,Xf(Qi −X), (3.10)
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where coefficients {ηi,X}6i=1 are determined by the following equations

M





η1,X
η2,X
η3,X
η4,X
η5,X
η6,X



 =





0
0
1
0
0
0



 , (3.11)

where the matrix M is defined by (3.4). Therefore, we have

D
(0,1)
AX

f(X) =
6
∑

i=1

ηi,Xf(Qi). (3.12)

According to [15] and Definition 2.4 we know that

D
(1,0)
AX

f(X) ≈
∂f

∂x
(X), D

(0,1)
AX

f(X) ≈
∂f

∂y
(X), X ∈ R

2, (3.13)

and when f(x, y) = 1, x, y, x2, xy, y2, we have

D
(1,0)
AX

f(X) =
∂f

∂x
(X), D

(0,1)
AX

f(X) =
∂f

∂y
(X). (3.14)

Now writing Xij = (xi, yj), we use D
(1,0)
AXij

f(xi, yj) and D
(0,1)
AXij

f(xi, yj) to substitute fx(xi, yj)

and fy(xi, yj) in the scheme Φ̃2f in (3.1) respectively, then get the following scheme Φ2f

(Φ2f)(x, y) =

n
∑

i=0

m
∑

j=0

(

fij+
1

2
(x− xi)D

(1,0)
AXij

f(xi, yj)

+
1

2
(y − yj)D

(0,1)
AXij

f(xi, yj)
)

αi(x)βj(y). (3.15)

Theorem 3.2. Quasi-interpolation operator Φ2f satisfies quadric polynomial reproduction prop-

erty.

Proof. When f(x, y) = 1, by (3.14) and the linear reproduction property of Φ1f , we have

(Φ2f)(x, y) =

n
∑

i=0

m
∑

j=0

αi(x)βj(y) ≡ 1; (3.16)

when f(x, y) = x, according to (3.14), we have

(Φ2f)(x, y) =
n
∑

i=0

m
∑

j=0

(

xi +
1

2
(x− xi)

)

αi(x)βj(y) =
n
∑

i=0

1

2
(x+ xi)αi(x) = x; (3.17)

in view of (3.14) and the linear reproduction property of Φ1f , when f(x, y) = y, x2, xy, y2, we

can obtain

(Φ2f)(x, y) = f(x, y). (3.18)

Now we have proven Φ2f satisfies quadric polynomial reproduction property and complete the

proof. �
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4. Estimating the Approximation Error of Φ2f

Suppose Ω is a bounded domain which contains the point set {(xi, yj), i = 0, 1, · · · , n, j =

0, 1, · · · ,m} in R
2. Note

‖ Dkf ‖∞= max
|β|=k

(

sup
X∈Ω

|(Dβf)(X)|
)

,

2h1 = max0≤i≤n−1 |xi+1 −xi|, 2h2 = max0≤j≤m−1 |yj+1 − yj |. For simplicity, assume x0 <

x1 < · · · < xn, y0 < y1 < · · · < ym. Let φ−1(x) = |x− x−1|, φ0(x) = |x− x0|, φn(x) = |x− xn|,

φn+1(x) = |x− xn+1|, x−1 < x0, xn+1 > xn, x ∈ [x0, xn]. Then LDf can be written as follows:

(LDf)(x) =

n
∑

i=0

f(xi)αi(x),

where

αi(x) =
φi+1(x) − φi(x)

2(xi+1 − xi)
−

φi(x)− φi−1(x)

2(xi − xi−1)
, 0 ≤ i ≤ n. (4.1)

By considering αi(x) as the second divided difference of φi(x), we have

αi(x) =
φi+1(x) − φi(x)

2(xi+1 − xi)
−

φi(x) − φi−1(x)

2(xi − xi−1)

=
1

4

c2

[(x − ξi)2 + c2]3/2
(xi+1 − xi−1), ξi ∈ (xi−1, xi+1) (4.2)

when x 6= ξi, we have

αi(x) ≤
1

2
c2(xi+1 − xi−1)|x− ξi|

−3 ≤ 2c2h1|x− ξi|
−3, ξi ∈ (xi−1, xi+1).

Let

N1 =

[

1

2h1

]

+ 1, N2 =

[

1

2h2

]

+ 1, Qρ(u) = (u− ρ, u+ ρ], u ∈ [0, 1], ρ > 0,

and

Tk = Qh(x − 2kh) ∪Qh(x+ 2kh), k = 0, 1, · · · , N,

where [·] denotes the integer part of the argument. The set ∪N1

k1=−N1
Qk1

(x+2k1h1) is a covering

of [x0, xn] with half open intervals (the set ∪N2

k2=−N2
Qk2

(x+2k2h2) is a covering of [y0, ym] with

half open intervals). Therefore, for each i ∈ {0, 1, · · · , n} (j ∈ {0, 1, · · · ,m}) there exists

a unique k1 ∈ {0, 1, · · · , N1} (k2 ∈ {0, 1, · · · , N2}) such that xi ∈ Tk1
(yj ∈ Tk2

), and the

following inequalities hold

(2k1 − 1)h1 ≤ |x− xi| ≤ (2k1 + 1)h1, for k1 ≥ 1;
(

2(k1 − 1)− 1
)

h1 ≤ |x− ξi| ≤
(

2(k1 + 1) + 1
)

h1, ∀ξi ∈ (xi−1, xi+1), for k1 ≥ 2.

(2k2 − 1)h2 ≤ |y − yj | ≤ (2k2 + 1)h2, for k2 ≥ 1;
(

2(k2 − 1)− 1
)

h2 ≤ |y − ξj | ≤
(

2(k2 + 1) + 1
)

h2, ∀ξj ∈ (yj−1, yj+1), for k2 ≥ 2.

Let Tx = {x0, · · · , xn}, Ty = {y0, · · · , ym} and use |Qh(x) ∩ Tx| to denote the number of

intersection point of Qh(x) and Tx. We define

Mx = max
x∈[x0,xn]

|Qh1
(x) ∩ Tx|, My = max

y∈[y0,ym]
|Qh2

(x) ∩ Ty|,
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we have

{

1 ≤ |T0 ∩ Tx| ≤ M1,

1 ≤ |Tk1
∩ Tx| ≤ 2M1, k1 = 1, 2, · · · , N1.

{

1 ≤ |T0 ∩ Ty| ≤ M2,

1 ≤ |Tk2
∩ Ty| ≤ 2M2, k2 = 1, 2, · · · , N2.

Theorem 4.1. For any function f(x, y) ∈ C3(Ω), if its relevant order of derivatives are

bounded on Ω, then

‖(Φ2f)(x, y)− f(x, y)‖∞ = O

(

c−2

(

h3
1h

2
2 + h2

1h
3
2

)

+ c−1

(

h4
1 + h4

2

)

+ c2

+ c

(

h3
1h

−1
2 + h2

1h
−1
2 + h2

2h
−1
1 + h−1

1 h3
2

)

+ c2
(

h2
1 + h2

2

)

+ c4h−1
1 h−1

2

)

. (4.3)

Proof.

∣

∣

∣(Φ2f)(x, y)− f(x, y)
∣

∣

∣ =
∣

∣

∣(Φ2f)(x, y)− (Φ̃2f)(x, y) + (Φ̃2f)(x, y)− f(x, y)
∣

∣

∣

≤
∣

∣

∣(Φ2f)(x, y)− (Φ̃2f)(x, y)
∣

∣

∣ +
∣

∣

∣(Φ̃2f)(x, y)− f(x, y)
∣

∣

∣.

The point set A = {Q1, · · · , Q6} for computing D
(1,0)
AXij

f(xi, yj) and D
(0,1)
AXij

f(xi, yj) is chosen by

the lattice in Fig. 5.1 given in Section 5. In this case, by [15], we have

∣

∣

∣D
(1,0)
AXij

f(xi, yj)− fx(xi, yj)
∣

∣

∣ ≤
32

3
C1h

3
1‖D

3f‖∞,Ω, (4.4a)

∣

∣

∣D
(0,1)
AXij

f(xi, yj)− fy(xi, yj)
∣

∣

∣ ≤
32

3
C2h

3
2‖D

3f‖∞,Ω, (4.4b)

where constants C1, C2 are related to the point set A. In following error estimation we still

use the same symbol C1, C2 to denote these constants in upper bound, but their values maybe

different at different places. Note that,

∣

∣

∣(Φ2f)(x, y)− (Φ̃2f)(x, y)
∣

∣

∣

≤
∣

∣

∣

n
∑

i=0

m
∑

j=0

(1

2
(x− xi)

(

D
(1,0)
AXij

f(xi, yj)− fx(xi, yj)
)

+
1

2
(y − yj)

(

D
(0,1)
AXij

f(xi, yj)− fy(xi, yj)
)

)

αi(x)βj(y)

≤

n
∑

i=0

m
∑

j=0

(1

2
|x− xi|

32

3
C1h

3
1‖D

3f‖∞,Ω +
1

2
|y − yj |

32

3
C2h

3
2‖D

3f‖∞,Ω

)

αi(x)βj(y)

≤
16

3
C1h

3
1‖D

3f‖∞,Ω

n
∑

i=0

|x− xi|αi(x) +
16

3
C2h

3
2‖D

3f‖∞,Ω

m
∑

j=0

|y − yj |βj(y)

≤
16

3
C1h

3
1‖D

3f‖∞,Ω

(

1
∑

k1=0

∑

xi∈Tk1

αi(x)|x − xi|+

N1
∑

k1=2

∑

xi∈Tk1

αi(x)|x − xi|
)

+
16

3
C2h

3
2‖D

3f‖∞,Ω

(

1
∑

k2=0

∑

yj∈Tk2

βj(y)|y − yj |+

N2
∑

k2=2

∑

yj∈Tk2

βj(y)|y − yj|
)
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≤
16

3
C1h

3
1‖D

3f‖∞,Ω

(

2M1c
−1h2

1 + 2M1

N1
∑

k1=2

c2h−2
1 (2k1 − 3)−3(2k1 + 1)h1

)

+
16

3
C2h

3
2‖D

3f‖∞,Ω

(

2M2c
−1h2

2 + 2M2

N2
∑

k2=2

c2h−2
2 (2k2 − 3)−3(2k2 + 1)h2

)

≤C1(c
−1h5

1 + c2h2
1) + C2(c

−1h5
2 + c2h2

2). (4.5)

It follows from [16], that

∣

∣

∣(Φ̃2f)(x, y)− f(x, y)
∣

∣

∣

=
∣

∣

∣

1

2

n
∑

i=0

m
∑

j=0

αi(x)βj(y)

∫ 1

0

D3
(x−xi,y−yj)

f(tx+ (1 − t)xi, ty + (1− t)yj)t(1 − t)dt
∣

∣

∣

=
∣

∣

∣

1

2

n
∑

i=0

m
∑

j=0

αi(x)βj(y)
(

(x− xi)
3

∫ 1

0

fxxx · t(1 − t)dt+ 3(x− xi)
2(y − yj)

∫ 1

0

fxxy · t(1− t)dt

+ 3(x− xi)(y − yj)
2

∫ 1

0

fxyy · t(1− t)dt+ (y − yj)
3

∫ 1

0

fyyy · t(1− t)dt
)∣

∣

∣

≤C1

(

n
∑

i=0

αi(x)|x − xi|
3
)

+ C2

(

n
∑

i=0

αi(x)|x − xi|
2
)(

m
∑

j=0

βj(y)|y − yj |
)

+ C3

(

n
∑

i=0

αi(x)|x − xi|
)(

m
∑

j=0

βj(y)|y − yj |
2
)

+ C4

(

m
∑

j=0

βj(y)|y − yj |
3
)

≤C1

(

2M1c
−1h4

1 + 2M1

N1
∑

k1=2

c2h−2
1 (2k1 − 3)−3(2k1 + 1)3h3

1

)

+ C2

(

2M1c
−1h3

1 + 2M1

N1
∑

k1=2

c2h−2
1 (2k1 − 3)−3(2k1 + 1)2h2

1

)

×
(

2M2c
−1h2

2 + 2M2

N2
∑

k2=2

c2h−2
2 (2k2 − 3)−3(2k2 + 1)h2

)

+ C3

(

2M1c
−1h2

1 + 2M1

N1
∑

k1=2

c2h−2
1 (2k1 − 3)−2(2k1 + 1)h1

)

×
(

2M2c
−1h3

2 + 2M2

N2
∑

k2=2

c2h−2
2 (2k2 − 3)−3(2k2 + 1)2h2

2

)

+ C4

(

2M2c
−1h4

2 + 2M2

N2
∑

k2=2

c2h−2
2 (2k2 − 3)−3(2k2 + 1)3h3

2

)

≤O
(

c−1(h4
1 + h4

2) + c2
)

+O
(

c−2(h3
1h

2
2 + h2

1h
3
2) + c(h3

1h
−1
2 + h−1

1 h3
2) + c(h2

2h
−1
1 + h2

1h
−1
2 ) + c4h−1

1 h2−1
)

.

Combining the above results yields (4.3). �
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5. Numerical Examples

In this section, first of all we verify that (Φ2f)(x, y) satisfies quadric polynomial reproduction

property, and then suppose f(x, y) = (x− 1
2 )

2 sin y, (x, y) ∈ [0, 1]2 is the approximated function,

we sample it and use these sampling points to generate (Φ1f)(x, y) and (Φ2f)(x, y). Next we use

(Φ1f)(x, y) and (Φ2f)(x, y) to approximate to f(x, y) and choose different h1, h2, c to compare

the approximation errors of (Φ1f)(x, y) and (Φ2f)(x, y) in the infinite norm ‖ · ‖∞. Before

working to start, we introduce the selection of properly posed point set A = {Q1, Q2, · · · , Q6}

for computing D
(1,0)
AXij

f(xi, yj) and D
(0,1)
AXij

f(xi, yj). The principle of selecting lattice A is as

follows: on the one hand, we require A to be a properly posed point set for P2; on the other

hand, we require A to be as close to Xij as possible. Based on the above two points, we choose

point set A by Fig. 5.1.

Fig. 5.1. Choosing point set A = {Q1, Q2, · · · , Q6} for computingD
(1,0)
AXij

f(xi, yj) andD
(0,1)
AXij

f(xi, yj).

From Table 5.1, we believe that the scheme (Φ2f)(x, y) satisfies quadric polynomial repro-

duction property. However, (Φ1f)(x, y) can’t reproduce quadric polynomial.

From Table 5.2, we find that when h1 = h2 = h , the errors ‖ · −f(x, y)‖∞ of the schemes

(Φ1f)(x, y) and (Φ2f)(x, y) reduce with the decrease of h and c , but the error of (Φ2f)(x, y)

is much smaller than that of (Φ1f)(x, y). Moreover, we conclude that the approximation rate

of two schemes is dependent on the shape parameter c.

Table 5.1: The approximated function is f(x, y) = x2 + y2 + 3xy + 3x + 5y + 6, (x, y) ∈ [0, 1]2,

h = h1 = h2.

c h ‖f(x, y)− (Φ1f)(x, y)‖∞ ‖f(x, y)− (Φ2f)(x, y)‖∞
0.1 0.2 6.38× 10−2 1.0658× 10−14

0.01 0.2 4.2× 10−3 8.8818× 10−15

0.1 0.1 5.69× 10−2 2.4869× 10−14

0.01 0.1 2.4× 10−3 1.5987× 10−14

0.1 0.04 5.55× 10−2 8.3489× 10−14

0.01 0.04 1.4× 10−3 9.9476× 10−14
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Table 5.2: The approximated function is f(x, y) = (x− 1
2
)2 sin y, (x, y) ∈ [0, 1]2, h = h1 = h2.

c h ‖f(x, y)− (Φ1f)(x, y)‖∞ ‖f(x, y)− (Φ2f)(x, y)‖∞
0.1 0.2 2.67× 10−2 3.9259× 10−4

0.01 0.2 1.8× 10−3 2.3758× 10−5

0.001 0.2 1.6934× 10−4 2.3718× 10−6

0.1 0.1 2.38× 10−2 2.9125× 10−4

0.01 0.1 1.0× 10−3 4.2850× 10−5

0.001 0.1 8.5875× 10−5 2.6717× 10−7

0.1 0.04 2.31× 10−2 2.9209× 10−4

0.01 0.04 5.9022× 10−4 2.5963× 10−5

0.001 0.04 3.6211× 10−5 3.2220× 10−8

Table 5.3: The approximated function is f(x, y) = (x− 1
2
)2 sin y, (x, y) ∈ [0, 1]2, h1 6= h2.

c h1 h2 ‖f(x, y)− (Φ1f)(x, y)‖∞ ‖f(x, y)− (Φ2f)(x, y)‖∞
0.1 0.2 0.1 2.67× 10−2 3.0154× 10−4

0.01 0.2 0.1 1.8× 10−3 7.0302× 10−6

0.001 0.2 0.1 1.6934× 10−4 5.8762× 10−7

0.1 0.2 0.04 2.66× 10−2 2.9134× 10−4

0.01 0.2 0.04 1.8× 10−3 3.0058× 10−6

0.001 0.2 0.04 1.6934× 10−4 9.5075× 10−8

0.1 0.1 0.04 2.38× 10−2 2.9130× 10−4

0.01 0.1 0.04 1.0× 10−3 2.6879× 10−6

0.001 0.1 0.04 8.5873× 10−5 5.2754× 10−8

0.1 0.04 0.2 2.32× 10−2 2.5988× 10−4

0.01 0.04 0.2 5.9057× 10−4 6.4311× 10−6

0.001 0.04 0.2 3.6214× 10−5 4.9039× 10−7

0.1 0.04 0.1 2.32× 10−2 2.8443× 10−4

0.01 0.04 0.1 5.9042× 10−4 2.8298× 10−6

0.001 0.04 0.1 3.6213× 10−5 1.1418× 10−7

From Table 5.3, we find that when h1 6= h2 , the errors ‖ · −f(x, y)‖∞ of the schemes

(Φ1f)(x, y) and (Φ2f)(x, y) reduce with the decrease of h1, h2 and c, but the error of (Φ2f)(x, y)

is still much smaller than the error of (Φ1f)(x, y). Moreover, if h1 becomes smaller, the error of

(Φ1f)(x, y) reduce more quickly than the error of (Φ2f)(x, y). On the contrary, both of them

reduce slowly with the decrease of h2.

6. Conclusion

In the paper, by using multivariate divided differences to approximate the partial deriva-

tive and superposition modifying idea, we extend the bivariate quasi-interpolation scheme which

dimension-splitting multiquadric proposed by Ling [14] to the scheme which reproduces quadric

polynomials. Furthermore, we give approximation error of the modified scheme. Our multivari-

ate multiquadric quasi-interpolation scheme only requires information of location points, and
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not require the derivatives of approximated function. From some numerical experiments we find

that the approximation rate of our scheme is higher than that of Ling’s scheme, which is consis-

tent with our theoretical prediction. Due to the ability in quadric reproduction, our scheme can

be used to serve CAGD and the numerical solution of PDEs. Our work may be also extended to

three space dimensions. Note that the object of this paper is the scheme for dimension-splitting,

not the scheme based on completely scattered data. Multivariate quasi-interpolation scheme

based on completely scattered data will be investigated in our future research.
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