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Abstract

In this paper, local multiplicative and additive multilevel methods on adaptively refined

meshes are considered for second-order elliptic problems with highly discontinuous coeffi-

cients. For the multilevel-preconditioned system, we study the distribution of its spectrum

by using the abstract Schwarz theory. It is proved that, except for a few small eigenval-

ues, the spectrum of the preconditioned system is bounded quasi-uniformly with respect

to the jumps of the coefficient and the mesh sizes. The convergence rate of multilevel-

preconditioned conjugate gradient methods is shown to be quasi-optimal regarding the

jumps and the meshes. Numerical experiments are presented to illustrate the theoretical

findings.

Mathematics subject classification: 65F10, 65N30.
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1. Introduction

During the last two decades, adaptive finite element methods (AFEM) have been developed

very rapidly and have become a popular and powerful tool in numerical solution of partial

differential equations (PDEs). Quasi-optimal approximation results can be achieved by mesh

adaptivity based on a posteriori error estimates (see, e.g., [6,16,32,36]). In this paper, we also

pursue asymptotically optimal methods for computing the solution of the discrete problem. By

“optimal” we mean that the computation of the solution asymptotically only requires O(N)

operations where N is the number of degrees of freedom (DOFs) on the underlying mesh.

Multigrid or multilevel methods are among the most efficient and widely used methods for

computing the approximate solution.

The uniform convergence of multigrid methods for conforming finite elements has been

widely studied by many authors. We refer to [7–10, 12, 25, 33, 43] for a multigrid convergence

theory on uniformly refined meshes. Since in AFEM the number of DOFs may not grow expo-

nentially with the mesh levels, as Mitchell pointed out in [31], traditional multigrid methods,
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which perform relaxations on all nodes, may require O(N2) operations for certain meshes. In

order to overcome this issue, local multigrid methods adopt the idea of local smoothing, which

restricts relaxations to new elements of each level. Local smoothing turns out to be very effi-

cient on adaptively refined meshes (see, e.g., [26, 46, 48, 50] for elliptic problems with smooth

coefficients). Motivated by the recent work of Xu and Zhu [49], we study local multiplicative

and additive multilevel algorithms (LMMA and LMAA) for second-order elliptic problems with

highly discontinuous coefficients. Different from the works of Chen, Holst, Xu and Zhu [18]

for second-order elliptic problems with discontinuous coefficients and Hiptmair and Zheng [27]

for Maxwell equations, our algorithm does not reconstruct a virtual refinement hierarchy of

meshes. We assume that the meshes are generated by using AFEM based on a posteriori error

estimates.

Given a bounded, polygonal or polyhedral domain Ω ⊂ Rd (d = 2, 3), we consider the

following second-order elliptic problem:

−div(ρ(x )∇u) = f in Ω, (1.1)

u = 0 on ∂Ω, (1.2)

where the source function f ∈ L2(Ω). The coefficient ρ is positive and piecewise constant and

may have large jumps in Ω. The homogeneous boundary condition in (1.2) is not essential to

our theory and can be replaced with more general boundary conditions. Although problem

(1.1)–(1.2) seems to be simple, it plays an important role in many practical applications: such

as steady state heat conduction in composite materials, electromagnetism, and multiphase flow.

It is well known that the solution of problem (1.1)–(1.2) may have singularities near reentrant

corners of the domain and jumps of the coefficient. The AFEM based on a posteriori error

estimates is very efficient to capture local singularities of the solution. A considerable amount

of work has been devoted to a posteriori error estimates for such problems. We refer to Bernardi

and Verfürth [5], Petzoldt [35], and Chen and Dai [20] for residual-based error estimates, to Luce

andWohlmuth [29] for equilibrated error estimates, and to Cai and Zhang [14] for recovery-based

error estimates. For adaptive nonconforming or mixed finite element methods, a posteriori error

estimates have been studied by Ainsworth [1, 2] for equilibrated error estimates, by Chen, Xu,

and Hoppe [19] for residual-based error estimates, and by Cai and Zhang [15] for recovery-based

error estimates.

The purpose of this paper is to study local multilevel solvers for the adaptive finite element

discretization of (1.1)–(1.2) and to prove the quasi-optimality of these solvers. It is known that

the condition number of the discrete system of the problem (1.1)–(1.2) depends on the jumps

of ρ and on the mesh sizes. To reduce the condition number, multigrid methods and domain

decomposition methods have been studied for quasi-uniform meshes (see, e.g., [17,24,30,37,40,

44]). In general, the convergence rate of local multilevel methods depends on the jump of the

coefficient, the mesh sizes, or the mesh levels due to the lack of uniform stability estimates for

the weighted L2-projection (see, e.g., [11, 34, 42]). The convergence rate can be improved for

some specific scenarios (see, e.g., [22,23,34,45]). Recently, Xu and Zhu (see, e.g., [49,51]) have

proved quasi-uniform convergence of conjugate gradient methods preconditioned by multilevel

methods and overlapping domain decomposition methods, respectively.

The objective of this paper is to extend the results of [49] to adaptively refined meshes which

are generated by the “newest vertex bisection algorithm” [31, 46]. Using the abstract Schwarz

theory, we prove that except for a few small eigenvalues, the effective condition numbers, i.e.,

the ratio of the maximum to the minimum of the remaining eigenvalues of the multilevel-
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preconditioned algebraic system, are bounded by C|loghmin|2. Here the constant C is indepen-

dent of the jumps, the mesh sizes, and the mesh levels, and hmin is the minimum diameter of

the triangles or tetrahedrons on the finest mesh. The main difficulty is how to obtain a stable

multilevel decomposition of the finite element space on the finest mesh and how to prove the

strengthened Cauchy-Schwarz inequality regarding this decomposition. We should point out

that both local Jacobi smoother and local Gauss-Seidel smoother apply to the local multilevel

methods.

The remainder of this paper is organized as follows. In Section 2, we introduce some no-

tation, finite element spaces, and the preconditioned conjugate gradient method. In Section 3,

we propose the local multiplicative and additive multilevel algorithms, i.e., local multigrid V-

cycle and the local BPX preconditioner. In Section 4, we study the convergence of LMMA, the

preconditioned conjugate gradient method by LMMA (LMMA-PCG), and the preconditioned

conjugate gradient method by LMAA (LMAA-PCG). In Section 5, we study the multilevel

decomposition of the finite element space on the finest mesh and prove the so-called strength-

ened Cauchy-Schwarz inequality. In Section 6, we present several numerical experiments to

demonstrate our convergence theory.

2. Preliminaries

Throughout this paper, we denote by (·, ·) the standard inner product in L2(Ω), by ‖ · ‖1,Ω
and | · |1,Ω the norm and semi-norm in H1(Ω). Let C with or without subscript stand for a

generic positive constant which is independent of the jumps of ρ, the mesh sizes and the mesh

levels, but depends on Ω and the shape regularity of the meshes. These constants can take

on different values in different occurrences. We also introduce the weighted inner product and

weighted norm in L2(Ω):

(u, v)ρ = (ρu, v), ‖v‖L2
ρ(Ω) = (v, v)

1

2

ρ ∀u, v ∈ L2(Ω).

The weak formulation of (1.1) and (1.2) is: Find u ∈ H1
0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ H1
0 (Ω), (2.1)

where a : H1
0 (Ω)×H1

0 (Ω) 7→ R
1 is a bilinear form defined as follows

a(u, v) = (ρ(x )∇u,∇v) ∀u, v ∈ H1
0 (Ω).

The existence and uniqueness of the solution u follow from boundedness and coercivity of a(·, ·)
by the Lax-Milgram lemma [21]. It is obvious that the weighted H1-semi-norm coincides with

the energy norm induced by a(·, ·), namely,

‖v‖A :=
√
a(v, v) = ‖∇v‖L2

ρ(Ω) ∀ v ∈ H1
0 (Ω).

Let Th be a conforming triangulation of Ω, that is, any two elements in Th are either

nonintersecting or intersecting with a common vertex or a common edge. Throughout the

paper, we assume that any triangulation of Ω takes care of the discontinuity of ρ, namely, ρ|T
is constant for any T ∈ Th. We define the linear Lagrangian finite element space on Th by

Vh =

{
vh ∈ H1

0 (Ω) : vh|T ∈ P1(T ), ∀T ∈ Th
}
.
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The Galerkin approximation to (2.1) is: Find uh ∈ Vh such that

a(uh, vh) = (f, vh) ∀vh ∈ Vh. (2.2)

Let the linear operator Ah : Vh 7→ Vh be defined by

(Ahwh, vh)ρ = a(wh, vh) ∀wh, vh ∈ Vh.

Clearly Ah is symmetric and positive definite (SPD) and (2.2) is equivalent to the following

operator equation

Ahuh = fh, (2.3)

where fh ∈ Vh satisfies (fh, v)ρ = (f, v) for any v ∈ Vh.

Let Nh be the dimension of Vh and {xh
i , i = 1, . . . , Nh} be the set of interior vertices of

Th. We denote by ϕh
i ∈ Vh a natural scaling of nodal basis function (cf. [4]) belonging to x

h
i ,

1 ≤ i ≤ Nh. Then the operator equation (2.3) is equivalent to the following algebraic system

AhUh = Fh, (2.4)

where the entries of the matrix Ah and the vectors Uh,Fh are defined by

(Ah)ij := a(ϕh
i , ϕ

h
j ), (Uh)i := uh(x

h
i ), (Fh)i := (f, ϕh

i ) ∀ i, j = 1, . . . , Nh.

Using the arguments in Bank and Scott [4], we know that the ℓ2-condition number κ(Ah) can

be estimated as follows:



κ(Ah) ≤ CJ (ρ)Nh

(
1 + |log(Nhh

2
min)|

)
if d = 2,

κ(Ah) ≤ CJ (ρ)N
2/3
h if d = 3,

J (ρ) =
maxx∈Ω ρ(x)

minx∈Ω ρ(x)
.

The following lemma is to estimate the convergence rate of the PCG algorithm for the

operator equation (2.3) (cf. e.g. [3, 49]).

Lemma 2.1. Let Bh be an SPD preconditioner of Ah such that the spectrum of BhAh satisfies

0 < λ1 ≤ · · · ≤ λm0
≪ λm0+1 ≤ · · · ≤ λNh

. (2.5)

Let uk be the k-th iterate of the PCG algorithm. Then

‖uh − uk‖A
‖uh − u0‖A

≤ 2 |κ(BhAh)− 1|m0

(√
λNh

/λm0+1 − 1√
λNh

/λm0+1 + 1

)k−m0

∀ k ≥ m0. (2.6)

Remark 2.1. If the integer m0 is very small, the convergence rate of the PCG algorithm

will be dominated by κm0+1(BhAh) = λNh
/λm0+1 which is known as the “effective condition

number”. In the following we shall study the spectral distribution (2.5) of the preconditioned

system, where the preconditioner Bh will be defined by a local multilevel solver.

3. Local Multilevel Methods

Let {Tl}Ll=0 be a family of nested conforming triangulations of Ω such that T0 is a quasi-

uniform initial mesh and Tl is a (local) refinement of Tl−1, l ≥ 1, using the “newest vertex
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bisection” algorithm. For any 0 ≤ l ≤ L, we denote the linear Lagrangian finite element space

on Tl by Vl ⊂ H1
0 (Ω) and define Al : Vl → Vl by

(Alv, w)ρ = a(v, w) ∀v, w ∈ Vl.

Then the operator equation (2.3) on Tl can be written as: Find ul ∈ Vl such that

Alul = fl, (3.1)

where fl ∈ Vl satisfies that (fl, vl)ρ = (f, vl) for any vl ∈ Vl. For 0 ≤ l ≤ L, we also define the

energy projection Pl: H
1
0 (Ω) 7→ Vl and the weighted L2-projection Qρ

l : L
2(Ω) 7→ Vl by

a(Plv, w) = a(v, w) ∀ v ∈ H1
0 (Ω), w ∈ Vl, (3.2)

(Qρ
l v, w)ρ = (v, w)ρ ∀ v ∈ L2(Ω), w ∈ Vl. (3.3)

For 1 ≤ l ≤ L, denote by Nl the set of interior nodes of Tl and by Ñl the set of nodes on

which local relaxations are carried out. We shall give the exact definition of Ñl in Section 5.

For brevity, we set Ñl = {xl
i, i = 1, . . . , ñl} with ñl being the cardinality of Ñl, and we refer

to φli as the nodal basis function of Vl belonging to the node x
l
i. For notational ease we set

V 0
1 := V0 and ñ0 := 1. We define the energy projection and the weighted L2-projection onto

the one-dimensional space V l
i := span{φli} as follows:

P l
i : H1

0 (Ω) 7→ V l
i , a(P l

i v, φ
l
i) = a(v, φli) ∀ v ∈ H1

0 (Ω),

Qρ,l
i : L2(Ω) 7→ V l

i , (Qρ,l
i v, φli)ρ = (v, φli)ρ ∀ v ∈ L2(Ω).

Let Al
i : V

l
i 7→ V l

i be defined by

(Al
iv, φ

l
i)ρ = a(v, φli) ∀v ∈ V l

i .

Then the well-known relationship holds:

Qρ,l
i Al = Al

iP
l
i .

Let RJ
l : Vl 7→ Vl and R

G
l : Vl 7→ Vl be the local smoothing operators which perform Jacobi

and Gauss-Seidel relaxations at the nodes in Ñl, 1 ≤ l ≤ L. Moreover, we set RJ
0 = RG

0 = A−1
0

on the initial mesh T0. Then RJ
l defines an additive smoother (cf. [8]):

RJ
l := γ

ñl∑

i=1

(Al
i)

−1Qρ,l
i , 1 ≤ l ≤ L, (3.4)

with a scaling factor γ > 0, while RG
l defines a multiplicative smoother:

RG
l := (I − El)A

−1
l , El := (I − P l

ñl
) · · · (I − P l

1), 1 ≤ l ≤ L. (3.5)

With RJ
l and RG

l at hand, we construct the local multilevel algorithms for the adaptive

finite element approximation to (2.1).

Algorithm 3.1. (Local multilevel additive algorithm (LMAA))

Given an initial guess û0 ∈ VL, the k-th iterate of LMAA applied to (3.1) on TL is defined

by:

ûk = ûk−1 +BA
L (fL −ALûk−1), k ≥ 1,

where BA
L =

∑L
l=0 RlQ

ρ
l is an additive multilevel operator and the smoother Rl can be either

the local Jacobi smoother Rl = RJ
l or the local Gauss-Seidel smoother Rl = RG

l .
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Algorithm 3.2. (Symmetrical local multilevel additive algorithm (SLMAA))

Given an initial guess û0 ∈ VL, the k-th iterate of SLMAA applied to (3.1) on TL is defined

by:

ûk = ûk−1 +B
A

L(fL −ALûk−1), k ≥ 1,

where B
A

L =
(
BA

L + (BA
L )

t
)
/2 is the symmetrization of BA

L .

Algorithm 3.3. (Local multilevel multiplicative algorithm (LMMA))

Given an initial guess û0 ∈ VL, the k-th iterate of LMMA applied to (3.1) on TL is defined

by:

ûk = ûk−1 +BM
L (fL −ALûk−1), k ≥ 1.

For any g ∈ Vl, the multiplicative multilevel operators BM
l : Vl 7→ Vl, l ≥ 0 are recursively

defined as follows: BM
0 := A−1

0 and BM
l g = x3,

1. pre-smoothing: x1 = (Rl)
tg;

2. correction: x2 = x1 +BM
l−1Q

ρ
l−1(g −Alx1);

3. post-smoothing: x3 = x2 +Rl(g −Alx2),

where the smoother Rl can be either the local Jacobi smoother Rl = RJ
l or the local Gauss-

Seidel smoother Rl = RG
l .

4. The Abstract Schwarz Theory

In this section, we present an abstract Schwarz theory for the local multilevel methods. We

shall adopt the abstract theory (cf. [41, 43]) to the LMMA, LMAA algorithms and the PCG

algorithms for which LMMA and LMAA serve as preconditioners.

Let M ≥ 1 be the smallest integer such that there exists a family of open polygonal or

polyhedral subdomains {Ωi ⊂ Ω : 1 ≤ i ≤M} satisfying

M⋃

i=1

Ωi = Ω, Ωi ∩ Ωj = ∅ if i 6= j, and ρi := ρ|Ωi
= Constant.

We introduce the set of indices of subdomains which do not touch ∂Ω:

I = {i : ∂Ωi ∩ ∂Ω = ∅, 1 ≤ i ≤M}. (4.1)

As in [49], we define a subspace Ṽl ⊂ Vl by

Ṽl =
{
v ∈ Vl :

∫

Ωi

v(x) dx = 0, i ∈ I
}
. (4.2)
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Then using Poincáre’s inequality and Friedrichs’ inequality we have

‖v‖2L2
ρ(Ω) =

M∑

i=1

ρi‖v‖2L2(Ωi)
=
∑

i∈I

ρi‖v‖2L2(Ωi)
+

∑

i∈{1,...,M}\I

ρi‖v‖2L2(Ωi)
(4.3)

≤ C
(∑

i∈I

ρi |∇v|2L2(Ωi)
+

∑

i∈{1,...,M}\I

ρi |∇v|2L2(Ωi)

)
≤ C ‖v‖2A , ∀ v ∈ Ṽl,

where the constant C depends on Ω1, . . . ,ΩM .

The abstract Schwarz theory depends greatly on two important properties of the finite

element spaces {Vl}Ll=0, that is, the existence of a stable multilevel decomposition of VL and the

strengthened Cauchy-Schwarz inequality regarding the space decomposition. At this moment

we simply state the two properties and postpone the proofs to the next section.

(A1) Stability of the multilevel decomposition. For any function v ∈ VL, there exists a decom-

position of v:

v = v0 +

L∑

l=1

ñl∑

i=1

vli, v0 ∈ V0, v
l
i ∈ V l

i , (4.4)

and a positive constant Cstab independent of J (ρ), L, and hmin such that

‖v0‖2A +

L∑

l=1

ñl∑

i=1

∥∥vli
∥∥2
A
≤ CstabC

h,ρ
d ‖v‖2A , (4.5)

where d is the dimension of Ω and

Ch,ρ
d :=

{
min{| loghmin|2,J (ρ)}, if d = 2,

min{h−1
min,J (ρ)}, if d = 3.

(4.6)

In particular, there also exists a positive constant C̃stab independent of J (ρ), L, and hmin

such that

‖v0‖2A +

L∑

l=1

ñl∑

i=1

∥∥vli
∥∥2
A
≤ C̃stab| log hmin|2 ‖v‖2A ∀v ∈ ṼL. (4.7)

(A2) Strengthened Cauchy-Schwarz inequality. For any functions

vli, w
l
i ∈ V l

i , 1 ≤ i ≤ ñl, 0 ≤ l ≤ L,

there exists a constant Corth independent of J (ρ), L, and hmin such that

L∑

l=0

ñl∑

i=1

l−1∑

k=0

ñk∑

j=1

a(vli, w
k
j ) ≤ Corth

( L∑

l=0

ñl∑

i=1

∥∥vli
∥∥2
A

) 1

2

( L∑

l=0

ñl∑

i=1

∥∥wl
i

∥∥2
A

) 1

2

. (4.8)

Lemma 4.1. Let Tl = RlAlPl where Rl = RJ
l or RG

l , 0 ≤ l ≤ L. Then the following statements

hold with a constant C > 0 only depending on the domain and the shape regularity of the meshes:
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(E1) Let TA =
∑L

l=0RlAlPl be the additive operator. Then

‖v‖2A ≤ CCh,ρ
d a(TAv, v) ∀v ∈ VL,

‖v‖2A ≤ C| log hmin|2a(TAv, v) ∀v ∈ ṼL.

(E2) For any vl, wk ∈ VL, 0 ≤ l, k ≤ L, we have

L∑

l=0

l−1∑

k=0

a(Tlvl, Tkwk) ≤ C
( L∑

l=0

a(Tlvl, vl)
) 1

2

( L∑

k=0

a(Tkwk, wk)
) 1

2

.

(E3) There exists a constant 0 < ωl < 2 independent of J (ρ), L, hmin such that

‖Tlv‖2A ≤ ωla(Tlv, v) ∀v ∈ VL, 0 ≤ l ≤ L.

If Rl = RJ
l , 1 ≤ l ≤ L, the scaling factor should be so chosen such that ωl < 2.

(E4) For any vl, wl ∈ VL, 0 ≤ l ≤ L, we have

L∑

l=0

a(Tlvl, wl) ≤ C
( L∑

l=0

a(Tlvl, vl)
) 1

2

( L∑

l=0

a(Tlwl, wl)
) 1

2

.

Proof. The lemma can be proved upon using (A1)–(A2) and similar arguments as in [50].

We omit the details here. �

For Algorithm 3.3, we can easily derive a representation of the multigrid error propagation

operator

I −BM
L AL = EME

∗
M , (4.9)

where I is the identity operator on VL, E
∗
M is the conjugate of the operator EM , and

EM := (I − TL) (I − TL−1) · · · (I − T0) , Tl = RlAlPl, 0 ≤ l ≤ L. (4.10)

Using Lemma 4.1 and similar arguments as in [43], we obtain the following theorem.

Theorem 4.1. Let BM
L be the multiplicative multilevel operator in Algorithm 3.3 and Ch,ρ

d be

the constant defined in (4.6). There exists a constant C > 0 only depending on the domain and

the shape regularity of the meshes such that

a((I −BM
L AL)v, v) ≤ δ a(v, v) ∀v ∈ VL, (4.11)

a((I −BM
L AL)v, v) ≤ δ̃ a(v, v) ∀v ∈ ṼL, (4.12)

where

δ := 1− 2− ω

CCh,ρ
d

, δ̃ := 1− 2− ω

C| log hmin|2
, ω := max

0≤l≤L
ωl < 2.

Since a((I − BM
L AL)v, v) = a(E∗

Mv, E
∗
Mv) ≥ 0, we have λmax(B

M
L AL) ≤ 1. From the

estimate (4.11) the minimum eigenvalue of BM
L AL reads

λmin(B
M
L AL) = inf

v∈VL,v 6=0

a(BM
L ALv, v)

‖v‖A
≥ 2− ω

CCh,ρ
d

.
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Denote by m0 = #I the cardinality of the index set I in (4.1). Obviously m0 ≤ M and

dim(ṼL) = dim(VL)−m0 from (4.2). Then by (4.12) we have

λm0+1(B
M
L AL) ≥ inf

v∈ṼL,v 6=0

a(BM
L ALv, v)

‖v‖A
≥ 2− ω

C| log hmin|2
.

Since ω is independent of J (ρ), L, hmin by (E3) of Lemma 4.1, the ℓ2-condition number

κ(BM
L AL) and the effective condition number κm0+1(B

M
L AL) can be bounded as follows:

κ(BM
L AL) ≤ CCh,ρ

d , κm0+1(B
M
L AL) :=

λmax(B
M
L AL)

λm0+1(BM
L AL)

≤ C| log hmin|2.

Lemma 4.2. Let BA
L and B

A

L be the additive multilevel operators in Algorithm 3.1 and 3.2

respectively. Then the operators TA =
∑L

l=0 RlAlPl = BA
LAL, Rl = RJ

l or RG
l , and TA =

1
2 (TA + T ∗

A) = B
A

LAL admit the following stability properties

‖TAv‖A ≤ C‖v‖A, ‖TAv‖A ≤ C‖v‖A ∀v ∈ VL,

where the constant C > 0 only depends on the domain and the shape regularity of the meshes.

Proof. The lemma is a direct consequence of (E2) of Lemma 4.1. �

If RJ
l is symmetric, then TA is symmetric with respect to a(·, ·). From Lemma 4.2 and (E1)

of Lemma 4.1, we know that

κ(BA
LAL) ≤ CCh,ρ

d , κm0+1(B
A
LAL) ≤ C| log hmin|2.

If TA is nonsymmetric, we have the following estimates for Algorithm 3.2:

κ(B
A

LAL) ≤ CCh,ρ
d , κm0+1(B

A

LAL) ≤ C| log hmin|2.

For convenience, we denote by LMAA-PCG, SLMAA-PCG, LMMA-PCG the PCG algo-

rithms with Algorithm 3.1, 3.2, 3.3 as preconditioners respectively. Notice that Theorem 4.1

presents the convergence rate of Algorithm 3.3. To end this section, we conclude the con-

vergence of the multilevel-preconditioned conjugate gradient methods, namely, LMAA-PCG,

SLMAA-PCG, and LMMA-PCG.

Theorem 4.2. Let uh be the finite element solution of (2.2) on TL and uk be the k-th iterate

of the LMMA-PCG algorithm, or the LMAA-PCG with local Jacobi smoothers, or the SLMAA-

PCG algorithm. Then there exists a constant C independent of J (ρ), L, hmin such that

‖uh − uk‖A
‖uh − u0‖A

≤ 2
(
Ch,ρ

d − 1
)m0

(
1− 2

1 + C| log hmin|
)k−m0

, k ≥ m0,

where m0 = #I is the cardinality of I in (4.1) and

Ch,ρ
d :=

{
min{| loghmin|2,J (ρ)}, if d = 2,

min{h−1
min,J (ρ)}, if d = 3.
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Remark 4.1. In Theorem 4.2, the integer m0 only depends on Ω and the distribution of ρ. It

may happen that m0 = 0 for some instances. Thus for any k > k0 with k0 satisfying

2
(
Ch,ρ

d − 1
)m0

(
1− 2

1 + C| log hmin|
)k−m0

≤ 1,

the convergence rate of the PCG algorithms is

1− 2

1 + C| log hmin|
.

Remark 4.2. If the coefficient ρ is quasi-monotone, the convergence of multilevel methods can

be proved independent of J (ρ), L, hmin (see [47]). We do not elaborate on this issue in this

paper.

5. Verification of the Two Properties (A1) and (A2)

This section is devoted to the verification of the two properties (A1) and (A2) of the finite

element spaces. The key ingredient is to construct a local multilevel decomposition of VL
regarding the adaptively refined meshes {Tl}Ll=0.

5.1. Quasi-interpolation operator

Local quasi-interpolation operators play an important role in the analysis of multilevel

decomposition. In this section, we introduce an interpolation operator Πl: L
2(Ω) 7→ Vl which is

a modification of the one studied by Hiptmair and Zheng in [28]. For any T ∈ Tl, we define the

dual basis function ψT
i ∈ P1(T ) by the L2(T )-duality to the barycentric coordinate functions

λi, i = 1, . . . , d+ 1 on T which satisfies
∫

T

ψT
j (x )λi(x )dx = δij for i, j = 1, . . . , d+ 1. (5.1)

By computing the explicit representation of ψT
j we have

C0 ≤ |T | ‖ψT
j ‖2L2(T ) ≤ C1 and C0 ≤ ‖ψT

j ‖L1(T ) ≤ C1, (5.2)

where C0 and C1 only depend on the shape regularity of Tl, 0 ≤ l ≤ L.

For 0 ≤ l ≤ L, the local quasi-interpolation operators Πl : L
2(Ω) 7→ Vl are defined as follows:

Πlv =
∑

p∈Nl

∫

T l
p

ψ
T l
p

p (x )v(x ) dx · φl
p

∀v ∈ L2(Ω), (5.3)

where φl
p
∈ Vl is the nodal basis function belonging to p, T l

p
∈ Tl satisfies T l

p
⊂ Ωl

p
:= supp(φl

p
),

and ψ
T l
p

p is the dual basis function defined in (5.1) and belonging to p ∈ Nl. In view of (5.1),

it is easy to see that

Πlv = v ∀ v ∈ Vl. (5.4)

It is clear that the definition of Πl depends on how to select T l
p
for each p ∈ Nl. We shall adapt

the selection of T l
p
to our multilevel theory regarding the discontinuous coefficient ρ. Notice

that ρ is constant on any element of T0. For any p ∈ N0, we select T 0
p
∈ T0 such that

T 0
p
⊂ Ω0

p
and ρ|T 0

p
= max{ρ|T : T ⊂ Ω0

p
, T ∈ T0}. (5.5)

For 1 ≤ l ≤ L and p ∈ Nl, we select T l
p
successively according to the following policy:
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1. For any vertex p ∈ Nl ∩ Nl−1, we choose a T l
p
∈ Tl such that T l

p
⊆ T l−1

p
.

2. For any vertex p ∈ Nl \ Nl−1, we choose T l
p
∈ Tl such that

T l
p
⊂ Ωl

p
and ρ|T l

p

= max{ρ|T , T ⊂ Ωl
p
, T ∈ Tl}.

Lemma 5.1. There exists a constant C > 0 only depending on the domain and the shape

regularity of the meshes such that

‖Π0v‖2A ≤ CC̃h
d ‖v‖2A ∀v ∈ VL,

‖Π0v‖2A ≤ C ‖v‖2A ∀v ∈ ṼL,

where C̃h
d = | log hmin| if d = 2 and C̃h

d = h−1
min if d = 3.

Proof. For any T ∈ T0 with vertices pi, 1 ≤ i ≤ d + 1, we denote by φi = φ0
pi
, Ti = T 0

pi
,

ψi = ψTi
pi

the nodal basis function, the selected element, and the dual basis function belonging

to pi respectively. From (3.3) we have

‖Π0v‖2A ≤ ‖Π0(I −Qρ
0)v‖

2
A + ‖Qρ

0v‖
2
A .

By the definition of Π0, direct calculations show that

‖∇Π0(I −Qρ
0)v‖

2
L2

ρ(T ) = ρT ‖∇Π0(I −Qρ
0)v‖2L2(T )

≤ CρT

d+1∑

i=1

∣∣∣∣
∫

Ti

ψi(x )(I −Qρ
0)v(x ) dx

∣∣∣∣
2

‖∇φi‖2L2(T )

≤ CρTh
d−2
T |T |−1

d+1∑

i=1

‖(I −Qρ
0)v‖2L2(Ti)

≤ Ch−2
T ‖(I −Qρ

0)v‖
2
L2

ρ(DT ) ,

where DT =
⋃d+1

i=1 Ω0
pi
. Summing the above estimate over all elements in T0 leads to

‖Π0(I −Qρ
0)v‖

2
A ≤ Ch−2

0 ‖(I −Qρ
0)v‖

2
L2

ρ(Ω) ,

where h0 is the mesh size of the initial mesh T0. By the argument in [11, Theorem 4.5], we

obtain the following estimate for the weighted L2-projection:

‖Qρ
0v‖

2
A + h−2

0 ‖(I −Qρ
0)v‖

2
L2

ρ(Ω) ≤ CC̃h
d ‖v‖2A ∀ v ∈ VL,

‖Qρ
0v‖

2
A + h−2

0 ‖(I −Qρ
0)v‖

2
L2

ρ(Ω) ≤ C ‖v‖2A ∀ v ∈ ṼL.

Combining the above estimates concludes the proof. �

5.2. Local multilevel decomposition

For any v ∈ VL, (5.4) indicates the following multilevel decomposition of v :

v =
L∑

l=0

vl, v0 = Π0v, vl = (Πl −Πl−1)v, 1 ≤ l ≤ L. (5.6)
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From the definition of Πl, it is clear that

vl = (Πl −Πl−1)v =
∑

p∈Ñl

vl
p
, vl

p
= vl(p)φ

l
p
, 1 ≤ l ≤ L, (5.7)

where Ñl is the set of smoothing nodes defined by

Ñl := (Nl \ Nl−1)
⋃

{p ∈ Nl ∩Nl−1 : φl
p
6= φl−1

p
or T l

p
6= T l−1

p
}.

Fig. 5.1. The first figure shows the domain Ω and the distribution of ρ such that ρ1 < ρ2 < · · · < ρ8 <

ρ9. The second figure shows the mesh Tl−1. The third and fourth figures show the mesh Tl. The black

dots in the third figure show the nodes in (Nl \ Nl−1) and {p ∈ Nl ∩ Nl−1 : φl
p 6= φl−1

p }. The black

dots in the fourth figure show the nodes in Ñl to which local relaxations are restricted.

The local multilevel algorithms in [46,50] perform local relaxations on the nodes in (Nl\Nl−1)

and {p ∈ Nl ∩Nl−1 : φl
p
6= φl−1

p
}. Our algorithms perform additional relaxations on the nodes

in {p ∈ Nl ∩ Nl−1 : T l
p
6= T l−1

p
} (see Figure 5.1 for the 2D case). Actually, these incremental

relaxations do not have an impact on the optimality of the algorithms.

5.3. Stability estimate

The purpose of this section is to prove that the multilevel decomposition (5.6) satisfies the

stability in (A1). The analysis relies on two assumptions on these meshes.

(H1) The shape regularity measures of the meshes T0, · · · , TL are uniformly bounded, that is,

σ(Tl) ≤ C for all 0 ≤ l ≤ L. Here σ(Tl) stands for the shape regularity measure of Tl and
the constant C is independent of the mesh sizes and the mesh levels.

(H2) There exists a constant integer z > 0 such that

[
ln(hT ′h−1

T )/ ln 2
]
≤ z ∀T ∈ Tl, 1 ≤ l ≤ L,

where T ′ ∈ Tl−1 satisfying T ⊂ T ′ and for any ξ ≥ 0, [ξ] stands for the largest integer less

than or equal to ξ.

Assumption (H1) always holds for the popular bisection algorithms. Assumption (H2) im-

plies that the adaptive refinement strategy should stop in finite bisections and is usually satisfied.

We refer to [46] for a detailed proof of (H2) for the two-dimensional bisection algorithm.

Our theory depends on a close relationship between the adaptively refined meshes {Tl}Ll=0,

and a sequence of quasi-uniformly refined meshes {T̂j}j≥0. Here T̂j is generated by connecting

the edge midpoints of each element in T̂j−1 starting from T̂0 = T0. For d = 2, each triangle in

T̂j−1 is subdivided into four congruent triangles by connecting the midpoints of the four edges.
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For d = 3, each tetrahedron in T̂j−1 is subdivided into eight subtetrahedra by connecting the

midpoints of the six edges.

For any l ≥ 0 and T ∈ Tl, there exists a T0 ∈ T0 satisfying T ⊂ T0. We define

n(T ) =
[
ln(hT0

h−1
T )/ ln 2

]
. (5.8)

It is easy to see that n(T ) = j for any T ∈ T̂j and j ≥ 0. The following lemma describes the

relationship between {Tl}Ll=0 and {T̂j}j≥0 which is used in our analysis.

Lemma 5.2. For any 0 ≤ l ≤ L and T ∈ Tl, there exists a T̂ ∈ T̂n(T ) such that

T ⊂ T̂ and hT̂ ≤ ChT ,

where C only depends on the shape regularity of the meshes.

Proof. First we consider an arbitrary simplex T and define an initial mesh of T by M0(T ) =

{T }. Let M̂(T ) be generated by a unform refinement of M0(T ), namely, by connecting the

midpoints of the edges of T . Thus M̂(T ) contains smaller elements:

M̂(T ) = {K̂1, · · · , K̂4} for d = 2, M̂(T ) = {K̂1, · · · , K̂8} for d = 3.

Clearly hK̂ = 2−1hT for any K̂ ∈ M̂(T ) (see Figure 5.2 (right) for a 2D illustration).
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Fig. 5.2. Two elements satisfying K1 ⊆ K̂1, K2 ⊆ K̂2 in two dimension.

Furthermore, we generate a family of conforming meshes {Mk(T )}Ik=0 by successive bi-

sections of T , where Mk(T ) is a refinement of Mk−1(T ). On the final mesh MI(T ), each

triangular face of T is subdivided as in the left picture of Figure 5.2. In this case, MI(T ) has

6 elements for d = 2 and 22 elements for d = 3:

MI(T ) = {K1, · · · , K6} for d = 2, MI(T ) = {K1, · · · , K22} for d = 3.

It is easy to see that for any K ∈ MI(T ), there exists a K̂ ∈ M̂1(T ) such that

K ⊂ K̂ and
[
ln(hTh

−1
K )/ ln 2

]
= 1. (5.9)

According to (5.9), for any 0 ≤ l ≤ L and T ∈ Tl, there exist two sequences of elements

{Ti}mi=0 and {T̂i}mi=0 such that T0 = T̂0 ∈ T0 and

Ti ⊂ T̂i ∈ M̂(T̂i−1), M̂(T̂i−1) ⊂ T̂i, 1 ≤ i ≤ m, (5.10)

Ti ∈ MI(Ti−1),
[
ln
(
hT0

h−1
Ti

)
/ ln 2

]
= i, 1 ≤ i ≤ m, T ∈

I−1⋃

k=0

Mk(Tm). (5.11)
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From (5.10)–(5.11) we conclude that

m =
[
ln
(
hT0

h−1
Tm

)
/ ln 2

]
=
[
ln
(
hT0

h−1
T

)
/ ln 2

]
= n(T ),

T ⊂ Tm ⊂ T̂m ∈ T̂m and hT̂m
= 2−mhT0

≤ ChTm
≤ ChT .

The proof is finished. �

Lemma 5.3. Let v =
∑L

l=1

∑
p∈Ñl

vl
p

be the decomposition in (5.6)–(5.7). There exists a

constant C > 0 only depending on the shape regularity of the meshes such that

L∑

l=1

∑

p∈Ñl

∥∥vl
p

∥∥2
A
≤ CCh

d ‖v‖2A ∀ v ∈ VL, (5.12)

L∑

l=1

∑

p∈Ñl

∥∥vl
p

∥∥2
A
≤ C| log hmin|2 ‖v‖2A ∀ v ∈ ṼL, (5.13)

where Ch
d = | log hmin|2 if d = 2 and Ch

d = h−1
min if d = 3.

Proof. For any 1 ≤ l ≤ L and any vertex p ∈ Ñl, we choose an element T ′ ∈ Tl−1 such that

p ∈ T ′ and define

Tl(p) = {T ∈ Tl−1 : T ′ ∩ T 6= ∅} and n(l,p) = min{n(T ) : T ∈ Tl(p)},

where n(T ) is defined in (5.8). From Lemma 5.2, for any T ∈ Tl(p), there exists a T̂ ∈ T̂n(l,p)
such that

T ⊂ T̂ and hT ≥ ChT̂ ≥ C2−n(l,p)h0.

Let Q̂ρ
m : L2(Ω) 7→ V̂m be the weighted L2-projection and Q̂ρ

m = Q̂ρ
0 if m < 0, where V̂m is

the linear Lagrangian finite element space on T̂m. Clearly Q̂ρ
n(l,p)v is linear on each element of

Tl(p). By the definition of Πl, we have

ΠlQ̂
ρ
n(l,p)v(p) = Q̂ρ

n(l,p)v(p) = Πl−1Q̂
ρ
n(l,p)v(p). (5.14)

Notice that ∥∥vl
p

∥∥2
A
= |vl(p)|2

∥∥φl
p

∥∥2
A
≤ CρT l

p
hd−2
T l
p

|vl(p)|2 ,

where T l
p
is the element in (5.3). Combining the above estimate and (5.14) yields

L∑

l=1

∑

p∈Ñl

∥∥vl
p

∥∥2
A
≤ C

L∑

l=1

∑

p∈Ñl

ρT l
p

hd−2
T l
p

|(Πl −Πl−1)v(p)|2

= C

L∑

l=1

∑

p∈Ñl

ρT l
p

hd−2
T l
p

∣∣∣(Πl −Πl−1)
(
v − Q̂ρ

n(l,p)v
)
(p)
∣∣∣
2

.

Set w = v − Q̂ρ
n(l,p)v for convenience. Then the definition of the quasi-interpolation operators

(5.1)–(5.3) yields

|Πlw(p)| ≤
∣∣∣
∫

T l
p

ψ
T l
p

p (x)w(x) dx
∣∣∣, |Πl−1w(p)| ≤

∑

q∈Sp

∣∣∣
∫

T l−1

q

ψ
T l−1

q

q (x)w(x) dx
∣∣∣,
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where Sp = {q : q ∈ Ñl ∩ Nl−1, p ∈ interior(Ωl−1
q

)}. Then using (H1) and (H2) we have

ρT l
p

hd−2
T l
p

|(Πl −Πl−1)w(p)|2

≤Chd−2
T l
p

{ ∣∣T l
p

∣∣−1 ‖w‖2L2
ρ(T

l
p
) +

∑

q∈Sp

∣∣T l−1
q

∣∣−1 ‖w‖2L2
ρ(T

l−1

q )

}

≤Ch−2
T l
p

‖w‖2L2
ρ(D

l
p
) ≤ C22n(l,p)h−2

0 ‖w‖2L2
ρ(D

l
p
) ,

where the constant C depends on the integer z in (H2) and Dl
p
is the union of elements in Tl(p).

For any fixed m ≥ 0, the sub-domains in {Dl
p
: 1 ≤ l ≤ L, p ∈ Ñl, n(l,p) = m} are locally

overlapping and their diameters are of the order 2−mh0. Thus the union of these domains is

also a subset of Ω. It follows that

L∑

l=1

∑

p∈Ñl

∥∥vl
p

∥∥2
A
≤ C

L∑

l=1

∑

p∈Ñl

4n(l,p)
∥∥∥v − Q̂ρ

n(l,p)v
∥∥∥
2

L2
ρ(D

l
p
)

≤C
L̂∑

m=0

4m
L∑

l=1

∑

p∈Ñl,
n(l,p)=m

∥∥∥v − Q̂ρ
mv
∥∥∥
2

L2
ρ(D

l
p
)
≤ C

L̂∑

m=0

4m
∥∥∥v − Q̂ρ

mv
∥∥∥
2

L2
ρ(Ω)

,

where L̂ = max{n(l,p) : p ∈ Ñl, 1 ≤ l ≤ L}, and we have L̂ ≤ C |log hmin|. Recall the estimates

for the weighted L2-projection on quasi-uniform meshes (cf. [11], Lemma 3.1-3.3 in [49]) :

L̂∑

m=0

4m
∥∥∥v − Q̂ρ

mv
∥∥∥
2

L2
ρ(Ω)

≤ C Ch
d ‖v‖2A ∀v ∈ VL,

L̂∑

m=0

4m
∥∥∥v − Q̂ρ

mv
∥∥∥
2

L2
ρ(Ω)

≤ C |log hmin|2 ‖v‖2A ∀v ∈ ṼL.

This concludes the proof. �

In [50], it is proved that any v ∈ VL admits a multilevel decomposition

v = ṽ0 +
L∑

l=1

∑

p∈Ñl

ṽl
p
, ṽ0 ∈ V0, ṽl

p
∈ span{φl

p
}

satisfying

‖ṽ0‖2A +

L∑

l=1

∑

p∈Ñl

∥∥ṽl
p

∥∥2
A
≤ CJ (ρ) ‖v‖2A . (5.15)

Clearly assumption (A1) follows from (5.15), Lemma 5.1, and Lemma 5.3.

5.4. Global strengthened Cauchy-Schwarz inequality

The strengthened Cauchy-Schwarz inequality has been established in [43] on quasi-uniform

meshes. On adaptively refined meshes we need to establish a global strengthened Cauchy-

Schwarz inequality. The following proof is different from [46] and [50] and does not elaborate

on the meshes.
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Lemma 5.4. There exists a constant C > 0 only depending on the shape regularity of the

meshes such that, for any functions

vli, w
l
i ∈ V l

i , 1 ≤ i ≤ ñl, 1 ≤ l ≤ L,

the global strengthened Cauchy-Schwarz inequality holds

L∑

l=1

ñl∑

i=1

l−1∑

k=1

ñk∑

j=1

a(vli, w
k
j ) ≤ C

( L∑

l=1

ñl∑

i=1

∥∥vli
∥∥2
A

) 1

2

( L∑

l=1

ñl∑

i=1

∥∥wl
i

∥∥2
A

) 1

2

.

Proof. For convenience we introduce the generation G(T ) of an element T by the number of

bisections for generating T from one element in T0. It is reasonable to assume that

C0θ
m ≤ hT ≤ C1θ

m, m = G(T ), ∀T ∈
L⋃

l=0

Tl,

where 0 < θ < 1 is a constant that only depends on T0 and the shape regularity of the meshes.

For the bisection algorithm that we are considering, θ ≈ 2
1

1−2d .

Then, we have

I0 :=

L∑

l=1

ñl∑

i=1

l−1∑

k=1

ñk∑

j=1

a(vli, w
k
j )

=
L∑

l=1

l−1∑

k=1

∞∑

m,n=0

∑

T∈Tl\Tl−1

G(T )=m

∑

K∈Tk\Tk−1

G(K)=n

∑

p∈N (T ),
q∈N (K)

a(ṽl
p
, w̃k

q
), (5.16)

where N (T ) is the set of vertices of T and

ṽl
p
=

{
vl
p
/Nl(p), if p ∈ Ñl ,

0, otherwise,

and Nl(p) is the number of elements contained in Tl \ Tl−1 which share p ∈ Ñl. We note that

w̃k
q
is defined analogously. Suppose m ≤ n and set

w̃n :=

l−1∑

k=1

∑

K∈Tk\Tk−1

G(K)=n

∑

q∈N (K)

w̃k
q
.

For any T ∈ Tl \ Tl−1,G(T ) = m ≤ n,p ∈ N (T ), we can derive that

a(ṽl
p
, w̃n) ≤ Cθ

n−m
2 ‖∇ṽl

p
‖L2

ρ(Ω
l
p
)‖∇w̃n‖L2

ρ(Ω
l
p
). (5.17)

Indeed, there exists a constant t0 depending only on the shape regularity of the meshes such

that

max
T ′∈Tl,T ′⊂Ωl

p

G(T ′) ≤ min
T ′∈Tl,T ′⊂Ωl

p

G(T ′) + t0.

If n−m ≤ t0, (5.17) holds true by the Cauchy-Schwarz inequality. For the case n−m > t0, we

note that w̃n is piecewise linear in any T ′ ∈ Tl, T ′ ⊂ Ωl
p
and set

w̃n = ξn :=

l−1∑

k=1

∑

K∈Tk\Tk−1

G(K)=n

∑

q∈N (K)∩∂T ′

w̃k
q

on ∂T ′.
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It is clear that

supp(ξn) ∩ T ′ ⊂ ΓT ′ :=
⋃

{K ∈ T̂n : K ⊂ T ′ and ∂K ∩ ∂T ′ 6= ∅}

is a narrow strip along the boundary of T ′. Since ṽl
p
is linear in T ′, using Green’s formula we

have
∫

T ′

ρ∇ṽl
p
· ∇w̃n =

∫

∂T ′

ρ
∂ṽl

p

∂n
w̃n =

∫

∂T ′

ρ
∂ṽl

p

∂n
ξn =

∫

T ′∩ΓT ′

ρ∇ṽl
p
· ∇ξn

≤ |ρT ′ | ‖∇ṽl
p
‖L2(ΓT ′)‖∇ξn‖L2(ΓT ′) ≤ Cθ

n−m
2

∥∥∇ṽl
p

∥∥
L2

ρ(T
′)
‖∇ξn‖L2

ρ(T
′) .

Summing over all T ′ ⊂ Ωl
p
gives (5.17). Applying (5.17) and the local overlapping of the

supports of w̃k
q
and ṽl

p
, we have

I1 : =

∞∑

m=0

∞∑

n=m

L∑

l=1

∑

T∈Tl\Tl−1

G(T )=m

∑

p∈N (T )

a(ṽlp,

l−1∑

k=1

∑

K∈Tk\Tk−1

G(K)=n

∑

q∈N (K)

w̃k
q)

≤ C
∞∑

m=0

∞∑

n=m

θ
n−m

2

L∑

l=1

∑

T∈Tl\Tl−1

G(T )=m

∑

p∈N (T )

∥∥∥∇ṽlp

∥∥∥
L2

ρ(Ω)
·
( l−1∑

k=1

∑

K∈Tk\Tk−1

G(K)=n

∑

q∈N (K)

∥∥∥∇w̃k
q

∥∥∥
2

L2
ρ(Ω

l
p
)

) 1

2

.

It is known that the matrix
(
θ|m−n|/2

)∞

m,n=0
has a finite radius of the spectrum depending only on θ.

Thus,

I1 ≤ C
∞∑

m=0

∞∑

n=m

θ
n−m

2

( L∑

l=1

∑

T∈Tl\Tl−1

G(T )=m

∑

p∈N (T )

∥∥∥∇ṽlp

∥∥∥
2

L2
ρ(Ω)

) 1

2

·
( L∑

k=1

∑

K∈Tk\Tk−1

G(K)=n

∑

q∈N (K)

∥∥∥∇w̃k
q

∥∥∥
2

L2
ρ(Ω)

) 1

2

≤ C
( ∞∑

m=0

L∑

l=1

∑

T∈Tl\Tl−1

G(T )=m

∑

p∈N (T )

∥∥∥∇ṽlp

∥∥∥
2

L2
ρ(Ω)

) 1

2

·
( ∞∑

n=0

L∑

k=1

∑

K∈Tk\Tk−1

G(K)=n

∑

q∈N (K)

∥∥∥∇w̃k
q

∥∥∥
2

L2
ρ(Ω)

) 1

2

≤ C
( L∑

l=1

ñl∑

i=1

∥∥∥vli
∥∥∥
2

A

) 1

2

( L∑

l=1

ñl∑

i=1

∥∥∥wl
i

∥∥∥
2

A

) 1

2

. (5.18)

If m > n, the same arguments show that the remaining terms I0 − I1 of the left hand side of (5.16)

can also be bounded as follows

I0 − I1 ≤ C
( L∑

l=1

ñl∑

i=1

∥∥∥vli
∥∥∥
2

A

) 1

2

( L∑

l=1

ñl∑

i=1

∥∥∥wl
i

∥∥∥
2

A

) 1

2

. (5.19)

Inserting (5.18) and (5.19) into (5.16) yields the stated result. This completes the proof. �

Now we come to the property (A2) in the previous section.

Theorem 5.1. There exists a constant C > 0 only depending on the shape regularity of the

meshes such that for any functions

vli, w
l
i ∈ V l

i , 1 ≤ i ≤ ñl, 0 ≤ l ≤ L,

the global strengthened Cauchy-Schwarz inequality holds

L∑

l=0

ñl∑

i=1

l−1∑

k=0

ñk∑

j=1

a(vli, w
k
j ) ≤ C

( L∑

l=0

ñl∑

i=1

∥∥vli
∥∥2
A

) 1

2

( L∑

l=0

ñl∑

i=1

∥∥wl
i

∥∥2
A

) 1

2

.
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Proof. Note that

L∑

l=0

ñl∑

i=1

l−1∑

k=0

ñk∑

j=1

a(vli, w
k
j ) =

L∑

l=1

ñl∑

i=1

l−1∑

k=1

ñk∑

j=1

a(vli, w
k
j ) +

L∑

l=1

ñl∑

i=1

a(vli, w
0
1). (5.20)

Since the supports of {vli : 1, . . . , ñl} are locally overlapped, an application of Lemma 5.4 shows

that

∥∥∥∥
L∑

l=1

ñl∑

i=1

vli

∥∥∥∥
2

A

= 2

L∑

l=1

ñl∑

i=1

l−1∑

k=1

ñk∑

j=1

a(vli, v
k
j ) +

L∑

l=1

∥∥∥∥
ñl∑

i=1

vli

∥∥∥∥
2

A

≤ C

L∑

l=1

ñl∑

i=1

∥∥vli
∥∥2
A
.

We complete the proof by combining the above estimate, (5.20), Lemma 5.4 and the Cauchy-

Schwarz inequality. �

6. Numerical Results

We present several numerical examples to demonstrate our convergence theory of multilevel

methods. The implementation is based on the FFW toolbox [13] and the adaptive finite element

package ALBERTA [38], [39].

Table 6.1: Example 6.1: Average error reduction factor and the number of iterations of PCG.

R = 1.0

Level 6 7 8 9 10 11

DOFs 10153 22745 48440 101376 199012 408490

LMMA α 0.0907 0.0960 0.0860 0.0937 0.0849 0.0885

-PCG iter 6 6 6 6 6 6

SLMAA α 0.4743 0.4802 0.4744 0.4996 0.4893 0.5056

-PCG iter 19 19 18 20 19 20

R = 104

Level 7 9 10 12 14 16

DOFs 28811 69568 94270 128905 169872 220619

LMMA α 0.2656 0.3177 0.3349 0.3852 0.4311 0.4598

-PCG iter 12 13 14 16 17 19

SLMAA α 0.6324 0.7125 0.7311 0.7686 0.7928 0.8092

-PCG iter 33 46 47 55 61 67

R = 106

Level 7 9 10 12 14 15

DOFs 28745 73571 96955 137204 196927 224420

LMMA α 0.2356 0.2805 0.3006 0.3509 0.3854 0.4007

-PCG iter 13 14 15 15 18 19

SLMAA α 0.6339 0.6886 0.7033 0.7445 0.7665 0.7755

-PCG iter 40 48 49 54 63 66

R = 108

Level 7 9 10 12 14 15

DOFs 28744 73533 96913 139119 182107 208732

LMMA α 0.2140 0.2521 0.2748 0.3161 0.3515 0.3688

-PCG iter 14 15 16 17 18 19

SLMAA α 0.6163 0.6723 0.6831 0.7240 0.7494 0.7594

-PCG iter 43 51 53 59 66 69

In real computations, we have used the newest vertex bisection algorithm and the local

error estimator defined in [20]. Given a finite element approximation uh, for any T ∈ Th, the a
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posteriori error estimator is defined as

η2T := h2TΛT ‖ρ−
1

2

T f‖2L2(T ) +
hT
2

∑

F⊂∂T

ΛF ‖ρ−
1

2

F [ρ∇uh℄ · ν‖2L2(F ), (6.1)

where F is a face of T if d = 3, and F is an edge of T if d = 2, [ρ∇uh℄ is the jump of ρ∇uh
across F . The parameters ΛT ,ΛF , ρF in (6.1) are given by

ΛT =

{
maxT ′∈ΩT

{ ρT

ρT ′

}, if T has one singular node (cf. [20]),

1, otherwise,

ΛF = maxT∈ΩF
{ΛT }, ρF = maxT⊂ΩF

{ρT }, where ΩT = {T ′ ∈ Th : T ′ ∩ T 6= ∅} and

ΩF = {T ∈ Th : ∂T ∩ F 6= ∅}. The global a posteriori error estimator on Th is defined by

ηh :=
( ∑

T∈Th

η2T

) 1

2

.

Based on the above a posteriori error estimator and the AFEM algorithm in [16], we can mark

and refine Th adaptively.

Fig. 6.1. The distribution of ρ (left). A locally refined mesh of Ω (middle). The surface plot of the

discrete solution (right).

Fig. 6.2. Average error reduction factor of LMMA-PCG (left) and SLMAA-PCG (right).
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Fig. 6.3. A locally refined mesh with 1, 537, 132 elements for the case of ǫ = 10−6.

In the following experiments, Algorithm LMMA and LMAA are mainly used as precondi-

tioners for the conjugate gradient method. Let the discrete problem on TL be

ALUL = FL.

We set the initial guess U0
L by the solution of the previous level, i.e., U0

L = IL−1UL−1, where

IL−1 : RNL−1 7→ R
NL is the transfer matrix. Let rk = FL − ALU

k
L be the residual of the

equation at the k-th iteration. The PCG algorithm stops when

‖rk‖/‖r0‖ ≤ 10−6, (6.2)

where ‖v‖ is the l2-norm of the vector v. We define the average error reduction factor of the

PCG algorithm by

α = (
√
ek/

√
e0)

1/iter,

where iter is the number of iterations required to achieve (6.2) and

e0 = (r0)tBLr
0, ek = (rk)tBLr

k, k ≥ 1.

Here BL can be any of the local multilevel algorithms in Algorithm 3.1–3.3. We shall use local

Gauss-Seidel smoothers in Algorithm 3.1–3.3 for all the examples.

Example 6.1. We consider (1.1)–(1.2) in two dimensions with

f = 2π2 sin(4πx1) cos(4πx2), Ω = (−1, 1)× (−1, 1).

The coefficient ρ is piecewise constant and has a checkerboard distribution on Ω, where R is a

positive constant (see Figure 6.1).

In Fig. 6.1, the left picture shows the distribution of the coefficient ρ which takes value 1

in the white regions and value R in the shadow regions. The middle picture shows a locally

refined mesh at the 6-th adaptive iteration for R = 106, and the right picture shows a surface

plot of the associated discrete solution. We find that the mesh is refined considerably in the

regions where the solution is rapidly varying.

In Fig. 6.2 and Table 6.1, the reduction factors and the number of iterations of algorithms

LMMA-PCG and SLMAA-PCG are shown for different coefficients R = 10i, i = 0, 4, 6, 8. When
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Table 6.2: Example 6.2: Average error reduction factor and the number of iterations of LMMA and

LMMA-PCG.

ǫ = 10−4

Level 8 9 10 11 12 13

Nel 48572 96612 193596 385880 770316 1537432

LMMA
α 0.7555 0.7847 0.8089 0.8289 0.8457 0.8603

iter 30 33 37 40 44 48

LMMA α 0.2963 0.3255 0.3472 0.3758 0.4044 0.4200

-PCG iter 12 13 15 16 17 17

ǫ = 10−6

Level 8 9 10 11 12 13

Nel 48572 96612 193596 385880 770316 1537132

LMMA
α 0.7556 0.7848 0.8089 0.8290 0.8458 0.8600

iter 30 33 37 40 44 48

LMMA α 0.2964 0.3256 0.3472 0.3759 0.4045 0.4271

-PCG iter 12 13 15 16 17 19

ǫ = 10−8

Level 8 9 10 11 12 13

Nel 48572 96612 193596 385880 770316 1537132

LMMA
α 0.7556 0.7848 0.8089 0.8290 0.8458 0.8600

iter 30 33 37 40 44 48

LMMA α 0.2964 0.3256 0.3472 0.3759 0.4045 0.4271

-PCG iter 12 13 15 16 17 19

R = 1, both algorithms show uniform convergence with respect to mesh sizes and mesh levels.

When R = 10i, i = 4, 6, 8, the convergence rates of LMMA-PCG and SLMAA-PCG increase

slightly with respect to the number of mesh levels. However we can see that the convergence

rates for these three cases are almost the same regardless the jumps of ρ. The convergence rates

agree well with our theoretical results, i.e. 1− 2
C| log hmin|+1 . From Table 6.1, we also note that

the multiplicative algorithm LMMA-PCG performs much better than the additive algorithm

SLMAA-PCG.

Example 6.2. We consider (1.1) with an inhomogeneous boundary condition. Here Ω is the

“L-shaped” domain

Ω = (−1, 1)3 \ (0, 1)× (−1, 0)× (−1, 1).

Fig. 6.4. Convergence of LMMA (left) and LMMA-PCG (right).
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The coefficient function is defined by

ρ(x ) =

{
ǫ, if x ∈ (0, 1)× (0, 1)× (−1, 1)

⋃
(−1, 0)× (−1, 0)× (−1, 1),

1, elsewhere.

The Dirichlet boundary condition and the right-hand side f are chosen such that the exact

solution is u = r2/3 sin(23θ) in the cylindrical coordinates (r, θ, z).

Fig. 6.4 and Table 6.2 show that the convergence rate α of LMMA is uniform with respect

the choices of ǫ or jumps of the coefficient. We also observe that 1 − α ∝ N
−1/3
el where Nel is

the number of elements of the underlying mesh. We also note that the LMMA-PCG converges

much faster than the LMMA. Figure 6.3 shows a locally refined mesh with 1, 537, 132 elements

for ǫ = 10−6 featuring pronounced local refinements near the reentrant corner.

Example 6.3. We consider (1.1) defined on a domain with an inner screen:

Ω := (−1, 1)3 \ Γ, Γ = {(0, y, z) : y, z ∈ [−1/3, 1/3]}.

We choose the right-hand side according to f = 1.0 and consider the Dirichlet boundary con-

dition by u|Γ = 0, u|∂Ω\Γ = 1.0. The coefficient is defined as follows (cf. Figure 6.5):

ρ(x) =

{
ǫ, in

⋃4
i=1 Ωi,

1, elsewhere,

where

Ω1 = (−1/3, −2/3)× (0, 1/3)× (0, 1/3), Ω2 = (−1/3, −2/3)× (−1/3, 0)× (−1/3, 0),

Ω3 = (1/3, 2/3)× (0, 1/3)× (0, 1/3), Ω4 = (1/3, 2/3)× (−1/3, 0)× (−1/3, 0).

Our computations show that the LMMA needs more than one thousand iterations to achieve

(6.2) for ǫ ≤ 10−4. Thus the LMMA is unfavorable for this example and we only show the

numerical results from the LMMA-PCG.

Fig. 6.6 displays four sections of a locally refined mesh with 1, 154, 472 elements for ǫ = 10−6,

three of which are at x = 2/3, 0,−2/3 and the other one is at y = 0. We observe that the mesh

is locally refined near the boundary of the “screen” and the sub-domains Ω1, . . . ,Ω4. Table

6.3 shows the convergence results of the LMMA-PCG. Although LMMA shows an unpleasant

Fig. 6.5. The domain Ω, subdomains Ω1, . . . ,Ω4, and the inner screen Γ.
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Fig. 6.6. A locally refined mesh with 1, 154, 472 elements for ǫ = 10−6. Three sections at x =

2/3, 0,−2/3 (left). The section at y = 0 (right).

Table 6.3: Example 6.3: Average reduction factor and the number of iterations of LMMA-PCG.

ǫ = 10−2

Level 4 6 8 10 12 13

Nel 16944 45056 121944 266196 984020 1350936

LMMA α 0.2029 0.2396 0.2623 0.2571 0.2830 0.2967

-PCG iter 9 10 11 11 11 12

ǫ = 10−4

Level 4 6 8 10 12 13

Nel 19460 38104 118468 321120 853716 1158312

LMMA α 0.3860 0.3800 0.4001 0.4361 0.4420 0.4649

-PCG iter 15 17 19 21 21 21

ǫ = 10−6

Level 4 6 8 10 12 13

Nel 19532 38176 118932 320388 852004 1154472

LMMA α 0.4507 0.4380 0.4785 0.4969 0.4059 0.4313

-PCG iter 21 24 26 27 19 21

ǫ = 10−8

Level 4 6 8 10 12 13

Nel 19532 38176 118932 320388 852004 1154472

LMMA α 0.5107 0.4837 0.5301 0.5685 0.4470 0.4565

-PCG iter 26 31 33 33 25 21

convergence behavior for ǫ ≤ 10−4, it proves to be an efficient and robust preconditioner for

the conjugate gradient method. This again justifies our theoretical analysis.

Remark 6.1. After the submission of this paper, we found another work on the same topic

by Chen et al. [18] which appeared on the internet in June 2010. The two works are fully

independent. The local multilevel method in [18] is based on the mesh hierarchy obtained by

some coarsening strategy for bisection grids, while our method is based on adaptively refined

meshes using a posteriori error estimates. This also results in different proofs for the uniform

convergence of the multilevel method.
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