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Abstract

The existence of step-like contrast structure for a class of singularly perturbed optimal

control problem is presented by contrast structure theory. By means of direct scheme of

boundary function method, we construct the uniformly valid asymptotic solution for the

singularly perturbed optimal control problem. As an application, an example is given to

illustrate the main result in this paper.
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1. Introduction

The problem of contrast structure is a singularly perturbed problem whose solutions with

both internal transition layers and boundary layers (see, e.g., [1-3]). The significant feature of

the solution is that it will vary rapidly in the thin internal layer. The contrast structure has a

strong application background. For example, in the study of physics , there are cases that their

solutions vary rapidly in the interior of domain. In recent years, the study of contrast structure

is one of the hot research topics in the study of singular perturbation theory. More and more

scholars begin to pay attention to the contrast structure of variational problem. In [4], [5], the

authors consider the contrast structures for the simplest vector variational problem and scalar

variational problem. One of the basic difficulties for such a problem is unknown of where an

internal transition layer is in advance.

Currently, there are mainly two ways to solve this problem. The first way is through

the boundary function method [6]. Usually, this method is applied to necessary or sufficient

optimality conditions. The second alternative is through direct scheme of boundary function

method, which consists in a direct expansion of the optimal control problem. we will apply the

direct scheme to the singularly perturbed optimal control problem. As a result of the scheme, we

get a minimizing control sequence, each new control approximation decreases the performance

index of the given problem. It should be noted that the direct scheme not only make it easy to

obtain the relations for the high-order approximations, but also show the nature of the optimal

control problem.

In this present paper, we not only prove the existence of step-like contrast structure for the

singularly perturbed optimal control problem, but also construct asymptotic solution to the

optimal controller and optimal trajectory.
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2. Problem Formulation

Consider the singularly perturbed optimal control problem


















J [u] =
∫ T

0 f(y, u, t) dt→ min
u
,

µ
dy

dt
= a(t)y + b(t)u,

y(0, µ) = y0 , y(T, µ) = yT .

(2.1)

where µ > 0 is a small parameter. The following assumptions are fundamental in the theory

for the problem in question.

A1. Suppose that the function f(y, u, t) is sufficiently smooth on the domain D = {(y, u, t)|
| y |< A, u ∈ R, 0 ≤ t ≤ T }, where A is positive constant.

A2. Suppose that fuu(y, u, t) > 0 on the domain D.

Formally setting µ = 0 in (2.1), we obtain the reduced problem

J [ū] =

∫ T

0

f(ȳ, ū, t) dt → min
ū
, ū = −b−1(t)a(t)ȳ. (2.2)

For convenience, problem (2.2) can be written in the following equivalent form

J [ū] =

∫ T

0

F (ȳ, t)dt→ min
ȳ
,

where F (ȳ, t) = f(ȳ,−b−1(t)a(t)ȳ, t).

A3. Suppose that there exist two isolated functions ȳ = ϕ1(t) , ȳ = ϕ2(t) such that

min
ȳ
F (ȳ, t) =

{

F (ϕ1(t), t) 0 ≤ t ≤ t0,

F (ϕ2(t), t), t0 ≤ t ≤ T,
(2.3)

lim
t→t

−

0

ϕ1(t) 6= lim
t→t

+
0

ϕ2(t).

A4. Suppose that the transition point t0 is determined by the following equation

F (ϕ1(t0), t0) = F (ϕ2(t0), t0),

and satisfies the condition

d

dt
F (ϕ1(t0), t0) 6=

d

dt
F (ϕ2(t0), t0).

It follows from assumption A3 that

ū(t) =

{

α1(t) = −b−1(t)a(t)ϕ1(t), 0 ≤ t < t0,

α2(t) = −b−1(t)a(t)ϕ2(t), t0 < t ≤ T,

{

Fy(ϕ1(t), t) = 0, Fyy(ϕ1(t), t) > 0, 0 ≤ t ≤ t0,

Fy(ϕ2(t), t) = 0, Fyy(ϕ2(t), t) > 0, t0 ≤ t ≤ T.
(2.4)
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Consider the Hamiltonian function

H(y, u, λ, t) = f(y, u, t) + λµ−1
[

a(t)y + b(t)u
]

,

where λ is Lagrange multiplier.

The necessary optimality conditions imply that























µy′ = a(t)y + b(t)u,

λ′ = −fy(y, u, t)− λµ−1a(t),

µfu(y, u, t) + λ(t)b(t) = 0,

y(0, µ) = y0, y(T, µ) = yT .

(2.5)

From (2.5), we can obtain the following singularly perturbed boundary value problem















µy′ = a(t)y + b(t)u,

µu′ = g1(y, u, t) + µg2(y, u, t),

y(0, µ) = y0, y(T, µ) = yT ,

(2.6)

where

g1 = b(t)f−1
uu fy − a(t)f−1

uu fu − f−1
uu fuy

(

a(t)y + b(t)u
)

,

g2 = b−1(t)b′(t)f−1
uu fu − f−1

uu fut.

Nonlinear problem of type (2.6) was considered in [6], in which the existence of solution with

step-like contrast structure was shown. By means of the result as described in [6], we show the

existence of optimal trajectory with step-like contrast structure.

Now, we state the main result in [6], which we will use in the proofs of our main results.

Theorem 2.1. Consider the following boundary value problem







µ
dy

dt
= F (y, z, t, µ), µ

dz

dt
= G(y, z, t, µ),

y(0, µ) = y0, y(T, µ) = yT .
(2.7)

Suppose that the following assumptions hold:

B1. The reduced system

F (ȳ, z̄, t, 0) = 0, G(ȳ, z̄, t, 0) = 0,

has two isolated roots (ϕ1(t), ψ1(t)) and (ϕ2(t), ψ2(t)).

B2. In the phase plane (ỹ, z̃), the points M1(ϕ1(t̄), ψ1(t̄)) and M2(ϕ2(t̄), ψ2(t̄)) are station-

ary saddle points for the associated system

dỹ

dτ
= F (ỹ, z̃, t̄, 0),

dz̃

dτ
= G(ỹ, z̃, t̄, 0), (2.8)

where t̄ is a parameter, and system (2.8) has a first integral Ωi(ỹ, z̃, t̄) = Ωi(ϕi(t̄), ψi(t̄), t̄),

which passes through Mi, i = 1, 2.

B3. The equations Ωi(ỹ, z̃, t̄) = Ωi(ϕi(t̄), ψi(t̄), t̄) are solvable with respect to z̃:

SM1 : z̃(−) = V (ỹ, ϕ1(t̄), ψ1(t̄), t̄),
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SM2 : z̃(+) = V (ỹ, ϕ2(t̄), ψ2(t̄), t̄).

B4. The equation H(t̄) = z̃(+)− z̃(−) has a solution t̄ = t0 ∈ (0, T ), such that
d

dt
H(t0) 6= 0.

Then the boundary value problem (2.7) has a step-like contrast structure solution satisfying the

limiting relations

lim
µ→0

y(t, µ) =

{

ϕ1(t), t < t0,

ϕ2(t), t > t0,
lim
µ→0

z(t, µ) =

{

ψ1(t), t < t0,

ψ2(t), t > t0.

3. Existence of Step-Like Contrast Structure

As mentioned above, problem (2.6) is a special case of the more general problem (2.7).

Therefore, under suitable conditions, the extremal trajectory (the solution to the system of

Euler equations (2.6)) contains a step-like contrast structure.

It is easy to see that the associated system for (2.6) can be written as











du

dτ
= b(t̄)f−1

uu fy − a(t̄)f−1
uu fu − f−1

uu fuy
(

a(t̄)y + b(t̄)u
)

,

dy

dτ
= a(t̄)y + b(t̄)u,

(3.1)

where t̄ ∈ [0, T ] is a parameter.

Now we will state and prove some useful lemmas, which will be used to prove our main

results. We begin with the following lemma.

Lemma 3.1. Suppose that A1 -A4 hold. Then associated system (3.1) has two equilibria Mi(ϕi

(t̄), αi(t̄)), i = 1, 2 , which are both saddle points.

Proof. Let

H(y, u, t̄) = b(t̄)f−1
uu fy − a(t̄)f−1

uu fu − f−1
uu fuy

(

a(t̄)y + b(t̄)u
)

,

G(y, u, t̄) = a(t̄)y + b(t̄)u.

Obviously, Mi

(

ϕi(t̄), αi(t̄)
)

, i = 1, 2 are two isolated solutions of the reduced system

H(y, u, t̄) = 0, G(y, u, t̄) = 0.

Moreover, the characteristic equation of the system (3.1) is given by

λ2 − a2(t̄)− b2(t̄)

(

f̄−1
uu f̄yy − 2b−1(t̄)a(t̄)f̄−1

uu f̄uy

)

= 0,

where f̄−1
uu , f̄yy, f̄uy are calculated in

(

ϕi(t̄), αi(t̄), t̄
)

, i = 1, 2. Using assumption (2.4), we

obtain

λ2 = a2(t̄) + b2(t̄)

(

f̄−1
uu f̄yy − 2b−1(t̄)a(t̄)f̄−1

uu f̄uy

)

> 0.

Hence, in the phase plane (y, u), Mi

(

ϕi(t̄), αi(t̄)
)

, i = 1, 2 are both saddle points. �
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Lemma 3.2. For fixed t̄ ∈ [0, T ], associated system (3.1) has a first integral
(

a(t̄)y + b(t̄)u

)

fu(y, u, t̄)− b(t̄)f(y, u, t̄) = C, (3.2)

where C is a constant.

Proof. Let y′ =
dy

dτ
, u′ =

du

dτ
. Then the first equation in (3.1) can be written as

fuu(y, u, t̄)u
′ = b(t̄)fy(y, u, t̄)− a(t̄)fu(y, u, t̄)− fuy

(

a(t̄)y + b(t̄)u
)

. (3.3)

Using the second equation of (3.1) , we get

fuu(y, u, t̄)u
′ − b(t̄)fy(y, u, t̄) + a(t̄)fu(y, u, t̄) + fuyy

′ = 0. (3.4)

In view of y′′ = a(t̄)y′ + b(t̄)u′, we obtain

d

dτ

(

y′fu(y, u, t̄)− b(t̄)f(y, u, t̄)

)

= 0.

Therefore, the first integral for (3.1) is given by (3.2). �

Lemma 3.3. Suppose that A1-A2 and u 6= −a(t̄)b−1(t̄)y hold. Then, for fixed t̄ ∈ [0, T ], the

first integral (3.2) is solvable with respect to u.

Proof. Let

g(y, u, t̄) =

(

a(t̄)y + b(t̄)u

)

fu(y, u, t̄)− b(t̄)f(y, u, t̄)− C.

Obviously

gu(y, u, t̄) = b(t̄)fu(y, u, t̄) +

(

a(t̄)y + b(t̄)u

)

fuu(y, u, t̄)− b(t̄)fu(y, u, t̄)

=

(

a(t̄)y + b(t̄)u

)

fuu(y, u, t̄) 6= 0.

By the implicit function theorem , the equation g(y, u, t̄) = 0 is solvable with respect to u:

u = h(y, t̄, C), (y, t̄) ∈ D1, (3.5)

where D1 = {(y, t)||y| ≤ A, 0 ≤ t̄ ≤ T }.
Let us continue the verification of the assumptions of Theorem 2.1. Obviously, there exist

two separate orbits SM1 and SM2 that pass through the saddle pointsM1 andM2, which satisfy

the equations

SM1 : (a(t̄)y + b(t̄)u)fu(y, u, t̄)− b(t̄)f(y, u, t̄) = −b(t̄)f(ϕ1(t̄), α1(t̄), t̄), (3.6a)

SM2 : (a(t̄)y + b(t̄)u)fu(y, u, t̄)− b(t̄)f(y, u, t̄) = −b(t̄)f(ϕ2(t̄), α2(t̄), t̄). (3.6b)

It follows from Lemma 3.3 that

u(−)(τ, t̄) = h(−)(y(−), t̄, ϕ1(t̄)), u(+)(τ, t̄) = h(+)(y(+), t̄, ϕ2(t̄)). (3.7)

Let

H(t̄) = u(−)(0, t̄)− u(+)(0, t̄) = h(−)(y(−)(0), t̄, ϕ1(t̄))− h(+)(y(+)(0), t̄, ϕ2(t̄)),

where

y(−)(0) = y(+)(0) =
1

2
(ϕ1(t̄) + ϕ2(t̄)) = β(t̄).



Step-Like Contrast Structure of Singularly Perturbed Optimal Control Problem 7

Lemma 3.4. Suppose that A1-A4 hold. Then, we get

a(t̄) + b(t̄)hy(ϕi(t̄), t̄) = ±
√

(

b2(t̄)fyy − 2a(t̄)b(t̄)fuy + a2(t̄)fuu
)

f−1
uu , i = 1, 2. (3.8)

where fyy, fuy and fuu are calculated in (ϕi(t̄), αi(t̄), t̄), i = 1, 2 .

Proof. Differentiating the implicit function, we have

hy(y, t̄) =
du

dy
=
b(t̄)fy − a(t̄)fu − (a(t̄)y + b(t̄)u(t̄))fyu

(a(t̄)y + b(t̄)u(t̄))fuu
.

From A2, A3, we obtain

(

b2(t̄)fyy − 2a(t̄)b(t̄)fuy + a2(t̄)fuu

)

f−1
uu > 0 and f−1

uu > 0.

Using L’Hospital’s rule , in the neighborhood of saddle points, we obtain (3.8). �

Lemma 3.5. Suppose that A1-A4 hold. Then H(t0) = 0 if and only if

f(ϕ1(t0), α1(t0), t0) = f(ϕ2(t0), α2(t0), t0). (3.9)

Proof. Setting τ = 0, t̄ = t0 in (3.6a) and (3.6b), we obtain

[a(t0)β(t0) + b(t0)h
(−)(t0)]fu(β(t0), h

(−)(t0), t0)− b(t0)f(β(t0), h
(−)(t0), t0)

= −b(t0)f(ϕ1(t0), α1(t0), t0), (3.10a)

[a(t0)β(t0) + b(t0)h
(+)(t0)]fu(β(t0), h

(+)(t0), t0)− b(t0)f(β(t0), h
(+)(t0), t0)

= −b(t0)f(ϕ2(t0)), α2(t0), t0), (3.10b)

where

h(−)(t0) = h(−)(β(t0), ϕ1(t0), t0), h(+)(t0) = h(+)(β(t0), ϕ2(t0), t0), (3.10c)

Necessity follows directly from (3.10), and sufficiency follows from (3.5). �

Lemma 3.6. Suppose that A1-A4 hold. Then
d

dt
H(t0) 6= 0 if and only if

d

dt
f(ϕ1(t0), α1(t0), t0) 6=

d

dt
f(ϕ2(t0), α2(t0), t0). (3.11)

Proof. Setting τ = 0 in (3.6) yields

(a(t̄)β(t̄) + b(t̄)h(−)(t̄))fu(β(t̄), h
(−)(t̄), t̄)− b(t̄)f(β(t̄), h(−)(t̄), t̄)

= −b(t̄)f(ϕ1(t̄), α1(t̄), t̄), (3.12a)

(a(t̄)β(t̄) + b(t̄)h(+)(t̄))fu(β(t̄), h
(+)(t̄), t̄)− b(t̄)f(β(t̄), h(+)(t̄), t̄)

= −b(t̄)f(ϕ2(t̄), α2(t̄), t̄), (3.12b)

where

h(−)(t̄) = h(−)(β(t̄), ϕ1(t̄), t̄), h(+)(t̄) = h(+)(β(t̄), ϕ2(t̄), t̄). (3.12c)
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Differentiating (3.12) with respect to t̄, we obtain

d

dt̄

(

a(t̄)β(t̄) + b(t̄)h(−)(t̄)

)

fu(β(t̄), h
(−)(t̄), t̄) +

(

a(t̄)β(t̄) + b(t̄)h(−)(t̄)

)

d

dt̄
fu(β(t̄), h

(−)(t̄), t̄)

−
(

b′(t̄)f(β(t̄), h(−)(t̄), t̄) + b(t̄)
d

dt̄
f(β(t̄), h(−)(t̄), t̄)

)

=−
(

b′(t̄)f(ϕ1(t̄), α1(t̄), t̄) + b(t̄)
d

dt̄
f(ϕ1(t̄), α1(t̄), t̄)

)

, (3.13)

d

dt̄

(

a(t̄)β(t̄) + b(t̄)h(+)(t̄)

)

fu(β(t̄), h
(+)(t̄), t̄) +

(

a(t̄)β(t̄) + b(t̄)h(+)(t̄)

)

d

dt̄
fu(β(t̄), h

(+)(t̄), t̄)

−
(

b′(t̄)f(β(t̄), h(+)(t̄), t̄) + b(t̄)
d

dt̄
f(β(t̄), h(+)(t̄), t̄)

)

=−
(

b′(t̄)f(ϕ2(t̄), α2(t̄), t̄) + b(t̄)
d

dt̄
f(ϕ2(t̄), α2(t̄), t̄)

)

. (3.14)

Letting t̄ = t0 yields
(

a(t0)β(t0) + b(t̄)h(−)(t0)

)

fu2(β(t0), h(t0), t0)
d

dt
H(t0)

=− b(t0)

(

d

dt
f(ϕ1(t0), α1(t0), t0)−

d

dt
f(ϕ2(t0), α2(t0), t0)

)

. (3.15)

Using assumptions A1 and A2, and also the fact that different orbits do not intersect with the

line ū = αi(t0), i = 1, 2 at the point y = β(t0), we know that
d

dt
H(t0) 6= 0 if and only if (3.11)

holds. �

From Lemmas 3.2 and 3.5, it is easy to obtain the next lemma.

Lemma 3.7. Suppose that A1-A4 hold. Then there exists t̄ = t0 at which associated system

(3.1) has a heteroclinic orbit connecting saddle pointsM1(ϕ1(t0), α1(t0)) andM2(ϕ2(t0), α2(t0)).

From the above discussions, we know that the boundary value problem (2.6) satisfies all

the assumptions of Theorem 2.1. Then problem (2.1) has an extremal trajectory y(t, µ) with a

step-like contrast structure.

Theorem 3.1. Suppose that A1-A4 hold. Then for sufficiently small µ > 0, the optimal control

problem (2.1) has an extremal trajectory y(t, µ) with a step-like contrast structure

lim
µ→0

y(t, µ) =

{

ϕ1(t), 0 ≤ t < t0,

ϕ2(t), t0 < t ≤ T.

4. Construction of Asymptotic Solution

An asymptotic solution of problem (2.1) is sought in the form















y(t, µ) =
∞
∑

k=0

µk(ȳk(t) + Lky(τ0) +Q
(−)
0 y(τ)), 0 ≤ t < t∗,

u(t, µ) =
∞
∑

k=0

µk(ūk(t) + Lku(τ0) +Q
(−)
0 u(τ)),

(4.1)



Step-Like Contrast Structure of Singularly Perturbed Optimal Control Problem 9















y(t, µ) =
∞
∑

k=0

µk(ȳk(t) +Q
(+)
0 y(τ) +Rky(τ1)), t∗ < t ≤ T,

u(t, µ) =
∞
∑

k=0

µk(ūk(t) +Q
(+)
0 u(τ) +Rku(τ1)),

(4.2)

where τ0 = tµ−1, τ = (t − t∗)µ−1, τ1 = (t − T )µ−1, Lky(τ0) are coefficients of boundary

layer terms at t = 0, Rk(τ1) are coefficients of boundary layer terms at t = T , Q
(∓)
k (τ) are left

and right coefficients of internal transition terms at t = t∗.

The position of a transition time t∗(µ) ∈ [0, T ] is unknown in advance. Suppose that t∗ has

also asymptotic expression of the form

t∗ = t0 + µt1 + · · ·+ µktk + · · · .

The coefficients of the above series are determined during the construction of an asymptotic

solution.

From the main results of [4], we obtain

min
u
J [u] = min

u0

J(u0) +

n
∑

i=1

µi min
ui

J̃i(ui) + · · · ,

where

J̃i(ui) = Ji(ui, ũi−1, · · · , ũ0), ũk = arg(min
uk

J̃k(uk)), 0 ≤ k ≤ i− 1.

Substituting (4.1) and (4.2) into (2.1), and equating separately the terms on t, τ0, τ and

τ1 by the boundary function method, we can obtain a series of variational problems to de-

termine {ȳk(t), ūk(t)}, {Lky(τ0), Lku(τ0)}, {Q(∓)
k y(τ), Q

(∓)
k u(τ)}, {Rky(τ1), Rku(τ1)}, k ≥ 0

respectively.

The variational problem to determine the zero-order coefficients of regular terms {ȳ0(t), ū0(t)}
are given by







J0(ū0) =
∫ T

0 f(ȳ0, ū0, t) dt→ min
ū0

,

a(t)ȳ0 + b(t)ū0 = 0.
(4.3)

By assumption A3, we get

ȳ0 =

{

ϕ1(t) , 0 ≤ t < t0,

ϕ2(t) , t0 < t ≤ T,
(4.4a)

ū0 =

{

α1(t) = −a(t)b−1(t)ϕ1(t) , 0 ≤ t < t0,

α2(t) = −a(t)b−1(t)ϕ2(t) , t0 < t ≤ T,
(4.4b)

The following variational problems to determine {Q(∓)
0 y(τ), Q

(∓)
0 u(τ)} are given by























Q
(∓)
0 J =

∫ 0(+∞)

−∞(0) ∆
(∓)
0 f(ϕ1,2(t0) +Q

(∓)
0 y, α1,2(t0) +Q

(∓)
0 u, t0) dτ → min

Q
(∓)
0 u

,

d

dτ
Q

(∓)
0 y = a(t0)(ϕ1,2(t0) +Q∓

0 y) + b(t0)(α1,2(t0) +Q
(∓)
0 u),

Q
(∓)
0 y(0) = β(t0)− ϕ1,2(t0), Q

(∓)
0 y(∓∞) = 0,

(4.5a)

where

∆
(∓)
0 f = f(ϕ1,2(t0) +Q

(∓)
0 y, α1,2(t0) +Q

(∓)
0 u, t0)− f(ϕ1,2(t0), α1,2(t0), t0). (4.5b)
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Making the substitutions

ỹ(∓) = ϕ1,2(t0) +Q
(∓)
0 y(τ), ũ(∓) = α1,2(t0) +Q

(∓)
0 u(τ),

we obtain






















Q
(∓)
0 J =

∫ 0(+∞)

−∞(0) ∆
(∓)
0 f̃(ỹ(∓)(τ), ũ(∓)(τ), t0) dτ → min

ũ(∓)(ỹ(∓))
,

dỹ(∓)

dτ
= a(t0)ỹ

(∓) + b(t0)ũ
(∓),

ỹ(∓)(0) = β(t0), ỹ(∓)(∓∞) = ϕ1,2(t0).

(4.6)

The substitution
dỹ(∓)

a(t0)ỹ(∓) + b(t0)ũ(∓)
= dτ, (4.7)

produces the following variational problem, which is explicitly independent of τ

Q
(∓)
0 J =

∫ β(t0)(ϕ2(t0))

ϕ1(t0)(β(t0))

∆0f̃(ỹ
(∓), ũ(∓), t0)

a(t0)ỹ(∓) + b(t0)ũ(∓)
dỹ → min

ũ(∓)(ỹ(∓))
. (4.8)

The necessary condition for a minimum of the integrand has the form
(

a(t0)ỹ
(∓) + b(t0)ũ

(∓)

)

fu − b(t0)f(ỹ
(∓), ũ(∓), t0) = −b(t0)f(ϕ1,2(t0), α1,2(t0), t0). (4.9)

In view of (3.6), we have that ũ(∓) = h(∓)(ỹ(∓), t0) is the minimum, as it satisfies

(a(t0)ỹ + b(t0)ũ)
−2(a(t0)ỹ + b(t0)ũ

(∓))fũ2 > 0. (4.10)

The equations to determine Q
(∓)
0 y are given by

dQ
(∓)
0 y

dτ
= a(t0)

(

ϕ1,2(t0) +Q
(∓)
0 y

)

+ b(t0)h
(∓)(ϕ1,2(t0) +Q

(∓)
0 y, t0).

A5. Suppose that the following initial problems







dQ
(∓)
0 y

dτ
= a(t0)(ϕ1,2(t0) +Q

(∓)
0 y) + b(t0)h

(∓)(ϕ1,2(t0) +Q
(∓)
0 y, t0),

Q
(∓)
0 y(0) = β(t0)− ϕ1,2(t0),

(4.11)

have continuously differentiable solutions Q
(∓)
0 y(τ), −∞ ≤ τ ≤ +∞.

Substituting Q
(∓)
0 y(τ) into (4.5), it is easy for us to get Q

(∓)
0 u(τ), thus Q

(∓)
0 y(τ) and

Q
(∓)
0 u(τ) are determined. From Lemma 3.4 we get

a(t0) + b(t0)h
(−)
y (ϕ1(t0), t0) > 0, a(t0) + b(t0)h

(+)
y (ϕ2(t0), t0) < 0,

which imply that

|Q(−)
0 y(τ)| ≤ C

(−)
0 eκ0τ , κ0 > 0, τ < 0,

|Q(+)
0 y(τ)| ≤ C

(+)
0 e−κ1τ , κ1 > 0, τ > 0,

|Q(−)
0 u(τ)| ≤ C

(−)
1 eκ0τ , κ0 > 0, τ < 0, (4.12)

|Q(+)
0 u(τ)| ≤ C

(+)
1 e−κ1τ , κ1 > 0, τ > 0.



Step-Like Contrast Structure of Singularly Perturbed Optimal Control Problem 11

Below, we give the equations and their conditions for determining {L0y(τ0), L0u(τ0)}


















L0J =
∫∞
0

∆0f(ϕ1(0) + L0y, α1(0) + L0u, 0) dτ0 → min
L0u

,

d

dτ0
L0y = a(0)(ϕ1(0) + L0y) + b(0)(α1(0) + L0u),

L0y(0) = y0 − ϕ1(0), L0y(∞) = 0,

(4.13a)

where

∆0f = f(ϕ1(0) + L0y, α1(0) + L0u, 0)− f(ϕ1(0), α1(0), 0), (4.13b)

and the problem to determine {R0y(τ1), R0u(τ1)} is given by



















R0J =
∫ 0

−∞ ∆0f(ϕ2(T ) +R0y, α2(T ) +R0u, T ) dτ1 → min
R0u

,

d

dτ1
R0y = a(T )(ϕ2(T ) +R0y) + b(T )(α2(T ) +R0u),

R0y(0) = yT − ϕ2(T ), R0y(−∞) = 0,

(4.14a)

where

∆0f = f(ϕ2(T ) +R0y, α2(T ) +R0u, T )− f(ϕ2(T ), α2(T ), T ). (4.14b)

A6. Suppose that the boundary data y0 − ϕ1(0) and y
T − ϕ2(T ) in the problems L0J and

R0J belong to certain neighborhoods of the origin that guarantee the existence of these

optimal control problems.

Then, we have so far constructed the leading terms

{ȳ∗0(t), ū∗0(t)}, {L0y
∗(τ0), L0u

∗(τ0)}, {Q0y
∗(τ), Q0u

∗(τ)}, {R0y
∗(τ1), R0u

∗(τ1)}

of asymptotic series for the problem (4.1) and (4.2). Additionally, we can obtain the minimum

values of the corresponding optimal control problems J∗
0 , L0J

∗, Q
(∓)
0 J∗, R0J

∗:

J∗
0 (ū0) =

∫ T

0

f(ȳ∗0 , ū
∗
0, t) dt, (4.15a)

L0J
∗ =

∫ ϕ1(0)

y0

∆
(∓)
0 f(y̌∗, ǔ∗, 0)

a(0)y̌∗ + b(0)ǔ∗
dy̌, (4.15b)

Q
(∓)
0 J∗ = ±

∫ β(t0)

ϕ1,2(t0)

∆
(∓)
0 f(ỹ(∓)∗, ũ(∓)∗, t0)

a(t0)ỹ(∓)∗ + b(t0)ũ(∓)∗
dỹ, (4.15c)

R0J
∗ =

∫ yT

ϕ2(T )

∆
(∓)
0 f(ŷ∗, û∗, T )

a(T )ŷ∗ + b(T )û∗
dŷ, (4.15d)

where

y̌∗ = ϕ1(0) + L0y
∗(τ0), ǔ∗ = α1(0) + L0u

∗(τ0),

ŷ∗ = ϕ2(T ) +R0y
∗(τ1), û∗ = α2(T ) +R0u

∗(τ1).

Theorem 4.1. Suppose that A1-A6 hold. Then for sufficiently small µ > 0 there exists a step-

like contrast structure solution y(t, µ) of the problem (2.1). Moreover, the following asymptotic

expansions hold

y(t, µ) =

{

ϕ1(t) + L0y(τ0) +Q
(−)
0 y(τ) +O(µ), 0 ≤ t < t0,

ϕ2(t) +R0y(τ1) +Q
(+)
0 y(τ) +O(µ), t0 < t ≤ T.

(4.16a)
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u(t, µ) =

{

α1(t) + L0u(τ0) +Q
(−)
0 u(τ) +O(µ), 0 ≤ t < t0,

α2(t) +R0u(τ1) +Q
(+)
0 u(τ) +O(µ), t0 < t ≤ T.

(4.16b)

5. An Example

Consider the problem























J [u] =
∫ 2π

0

(

1

4
y4 − 1

3
y3 sin t− y2 + y sin t+

1

2
u2

)

dt→ min
u
,

µ
dy

dt
= −y + u,

y(0, µ) = 0 , y(2π, µ) = 2,

(5.1)

where

f(y, u, t) =
1

4
y4 − 1

3
y3 sin t− y2 + y sin t+

1

2
u2.

For each t, we have

ȳ0(t) =

{

−1, 0 ≤ t < π,

1, π < t ≤ 2π.
(5.2)

min
ȳ
F (ȳ0, t) =

{

− 1
4 − 2

3 sin t, 0 ≤ t ≤ π,

− 1
4 + 2

3 sin t, π ≤ t ≤ 2π.
(5.3)

The transition point t0 = π is determined by the equation sin t0 = 0.

In this example, different orbits SM1 and SM2 , passing through the saddle points M1(t̄) and

M2(t̄), respectively, have the form

SM1 : u(−) = y(−) +

√
2

2
(1− y(−)2), SM2 : u(+) = y(+) +

√
2

2
(1 − y(+)2). (5.4)

The left and right zero-order terms of transition layer are determined by the following problems

dQ
(∓)
0 y

dτ
= −Q(∓)

0 y +Q
(∓)
0 u , Q

(∓)
0 y(0) = ±1, Q

(∓)
0 y(∓∞) = 0, (5.5)

whose solutions are

Q
(−)
0 y =

2e
√
2τ

1 + e
√
2τ
, Q

(−)
0 u =

(2 + 2
√
2 + 2e

√
2τ )e

√
2τ

(1 + e
√
2τ )2

, (5.6a)

Q
(+)
0 y =

−2

1 + e
√
2τ
, Q

(+)
0 u =

(2
√
2e

√
2τ − 2e

√
2τ − 2)

(1 + e
√
2τ )2

. (5.6b)

Similarly, we have

L0y =
2e−

√
2τ0

1 + e−
√
2τ0

, L0u =
2e−

√
2τ0 + 2e−2

√
2τ0 − 2

√
2e−

√
2τ0

(1 + e−
√
2τ0)2

, (5.7a)

R0y =
2

3e−
√
2τ1 − 1

, R0u =
6e−

√
2τ1 − 2 + 6

√
2e−

√
2τ1

(3e−
√
2τ1 − 1)2

. (5.7b)
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Finally, the formal asymptotic solution is

y(t, µ) =















−1 +
2e−

√
2τ0

1 + e−
√
2τ0

+
2e

√
2τ

1 + e
√
2τ

+O(µ), 0 ≤ t < π,

1 +
2

3e−
√
2τ1 − 1

+
−2

1 + e
√
2τ

+O(µ), π < t ≤ 2π.

and

u(t, µ) =



















−1 +
2e−

√

2τ0 + 2e−2
√

2τ0 − 2
√
2e−

√

2τ0

(1 + e−
√

2τ0)2
+

(2 + 2
√
2 + 2e

√

2τ )e
√

2τ

(1 + e
√

2τ )2
+O(µ), t < π,

1 +
6e−

√

2τ1 − 2 + 6
√
2e−

√

2τ1

(3e−
√

2τ1 − 1)2
+

(2
√
2e

√

2τ − 2e
√

2τ − 2)

(1 + e
√

2τ )2
+O(µ), π < t ≤ 2π.
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