
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 1, No. 5, pp. 639-663

DOI: 10.4208/aamm.09-m0930
October 2009

Heat Convection Between Two Confocal Elliptic Tubes
Placed at Different Orientations

F. M. Mahfouz1 and H. M. Badr2,∗
1 Department of Mechanical Engineering, University of Engineering & Technology,
Taxila, Pakistan
2 Department of Mechanical Engineering, King Fahd University of Petroleum &
Minerals, KFUPM Box #322, Dhahran, Saudi Arabia

Received 02 April 2009; Accepted (in revised version) 24 June 2009
Available online 30 July 2009

Abstract. In this paper, transient and steady natural convection heat transfer in an
elliptical annulus has been investigated. The annulus occupies the space between
two horizontal concentric tubes of elliptic cross-section. The resulting velocity and
thermal fields are predicted at different annulus orientations assuming isothermal
surfaces. The full governing equations of mass, momentum and energy are solved
numerically using the Fourier Spectral method. The heat convection process be-
tween the two tubes depends on Rayleigh number, Prandtl number, angle of incli-
nation of tube axes and the geometry and dimensions of both tubes. The Prandtl
number and inner tube axis ratio are fixed at 0.7 and 0.5, respectively. The problem
is solved for the two Rayleigh numbers of 104 and 105 considering a ratio between
the two major axes up to 3 while the angle of orientation of the minor axes varies
from 0 to 90◦. The results for local and average Nusselt numbers are obtained and
discussed together with the details of both flow and thermal fields. For isothermal
heating conditions, the study has shown an optimum value for major axes ratio
that minimizes the rate of heat transfer between the two tubes. Another important
aspect of this paper is to prove the successful use of the Fourier Spectral Method in
solving confined flow and heat convection problems.

AMS subject classifications: 80A20, 35Q80
Key words: Heat convection, Elliptic tubes, Fourier spectral methods, Rayleigh number, Prand-
tle number.

1 Introduction

As it has been the case for fundamental engineering problems, natural convection in
an annular enclosure has been the target of persistent scientific research. The research
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has been directed to this problem because of its pertinence to many practical engineer-
ing applications. These applications include nuclear reactor systems, thermal storage
and solar heating systems. The annular space can be geometrically formed by the
region between either concentric or eccentric two elliptical tubes. The concentric ellip-
tical tube geometry can represent different annuli configurations ranging from the an-
nulus formed between two concentric circular tubes to annulus formed by a flat plate
surrounded by an elliptical tube. In case of annulus formed between two concentric,
confocal elliptic tubes, the geometry of the annulus is controlled by two parameters.
These are the ratio of the major axis of outer tube to the major axis of inner tube and
the axis ratio of both tubes.

The problem of steady natural convection in a horizontal annulus between two
concentric/eccentric circular tubes was considered by many researchers. The work of
Kuehn and Goldstein [1] comes in the vanguard, with pioneering experimental and
theoretical results and with good, thorough literature review. The results in that work
covered the most details of steady heat transfer characteristics and flow patterns de-
veloped in the annulus. The heat transfer results were presented in terms of Nusselt
number and equivalent conductivity. The equivalent conductivity is defined as the
actual heat flux divided by the heat flux that would occur by pure conduction. The
authors have further extended their experimental study [2] to include the natural con-
vection in an eccentric circular annulus; the case which has been considered later by a
number of researchers [3–10].

In comparison with the circular concentric and eccentric cases, a few number of
studies were conducted on natural convection in a non-circular enclosures such as
the elliptic annulus considered in this study. Lee and Lee [11] have investigated ex-
perimentally and theoretically, through a few test cases, steady natural convection of
air in a symmetric annulus formed between two concentric, confocal elliptic tubes.
They used the conventional finite-difference method to solve the governing equations
that were written in stream function-vorticity formulation. Their numerical results
were verified through comparisons with the experimental results performed using the
Mach-Zehnder interferometer and smoke flow visualization. Elshamy et al. [12] used
the finite-volume approach to investigate numerically the steady natural convection
in horizontal symmetric annulus formed between two confocal elliptic tubes. They
presented the results in terms of the local and average Nusselt numbers together with
correlations for the average Nusselt number.

In their numerical investigation to study the steady natural convection in some
horizontal concentric and eccentric elliptical configurations, Cheng and Chao [13]
used the finite-volume discretization technique method to solve the governing equa-
tions that were written in terms of primitive variables. They discretized the governing
equations using a curvilinear grid system that was generated by a body-fitted coordi-
nate transformation method. They presented their heat transfer results for a number
of different symmetrical elliptic configurations, expressing their results in terms of
equivalent conductivity.

Zhu et al. [14] used the Differential Quadrature (DQ) method to study numerically



F. M. Mahfouz, H. M. Badr / Adv. Appl. Math. Mech., 5 (2009), pp. 639-663 641

the steady natural convection in a number of symmetrical elliptic annuli configura-
tions. The governing equations written in stream function-vorticity formulation were
transformed from physical Cartesian domain to computational domain using an ana-
lytical function. The authors have showed that the DQ method is capable of producing
accurate numerical solutions with small number of mesh points.

The above literature review shows that the previous studies on elliptic enclosures
have focused mainly on steady natural convection problems and in case of symmetric
configurations. The only attempt to investigate the case of asymmetric elliptic enclo-
sure was made by Schreiber and Singh [15]. In that study, they investigated natural
convection in a horizontal elliptic annulus placed at different orientation with respect
to gravity vector. They used the Fourier series expansion method to reduce the gov-
erning PDE into ODE and then employed a package that was designed to solve the
ODE through finite element collocation method. Their study, however, focused on the
special case of steady natural convection from a flat plate surrounded by an elliptical
tube. The lack of detailed information, especially those related to the effect of annulus
orientation and major axes ratio, on the transient and steady heat transfer and fluid
flow in an asymmetric annulus formed between two confocal elliptic tubes was the
first motivation for this study. On the other hand, the Fourier Spectral Method (FSM)
has been used very successfully in solving heat transfer/fluid flow problems associ-
ated with unconfined flow regimes. However, the method has not been used, to the
best of authors’ knowledge, in tackling the confined flow associated problems. So, the
second motivation for this study was to examine the suitability of the FMS in handling
confined heat convection/fluid flow associated problems.

2 Problem formulation

The annulus geometry, shown in Fig. 1, is the two-dimensional space sandwiched be-
tween two confocal, concentric elliptical horizontal tubes. The tubes are long enough
to create a two-dimensional velocity and thermal fields. The minor axes of the two el-
liptic tubes are aligned and oriented at an arbitrary angle, λ, with respect to the gravity
vector. The temperature of the inner surface of the annulus is kept uniform at Ti while
that of the outer surface is kept uniform at To ( To<Ti ). The resulting buoyancy driven
flow of the boussinesq fluid that fills the annulus is assumed to be laminar and two
dimensional. The equations of conservation of mass, momentum and energy can be
written in Cartesian coordinates in terms of stream function, vorticity and temperature
as follows:

∂ζ ′

∂τ
+

∂ψ′

∂y′
∂ζ ′

∂x′
− ∂ψ′

∂x′
∂ζ ′

∂y′
= ν

(
∂2ζ ′

∂x′2
+

∂2ζ ′

∂y′2

)
+

1
ρ

(
∂Fy′

∂x′
− ∂Fx′

∂y′

)
, (2.1)

ζ ′ +
∂2ψ′

∂x′2
+

∂2ψ′

∂y′2
= 0, (2.2)
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∂T
∂τ

+
∂ψ′

∂y′
∂T
∂x′

− ∂ψ′

∂x′
∂T
∂y′

=
k
ρc

(
∂2T
∂x′2

+
∂2T
∂y′2

)
, (2.3)

where τ is the time, ρ is the density, ν is the kinematics viscosity, k is the thermal
conductivity and c is the specific heat. ψ′ is the stream function, ζ ′ is the vorticity, T is
the temperature and

Fx′ = ρgβ(T − To) sin(λ), Fy′ = ρgβ(T − To) cos(λ),

are the components of the buoyancy force Fb.

x
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y
'
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Figure 1: Physical domain and coordinate system.

The steady flow and thermal fields in the annular space between the two tubes are
obtained by studying the time-development of both fields starting from a well-defined
initial condition until reaching the steady state. At time t=0, the inner surface is as-
sumed to be suddenly heated to a temperature Ti, while the outer surface temperature
is kept unchanged at To. The fluid in the annuls is initially at rest and at the same uni-
form temperature, To, of outer wall. The boundary conditions are the impermeability
and no-slip condition together with the uniform temperature at the inner and outer
surfaces. These boundary conditions can be expressed mathematically as follows:

∂ψ′

∂x′
= 0,

∂ψ′

∂y′
= 0, and T = Ti, on the inner surface, (2.4a)

ψ′ =
∂ψ′

∂x′
= 0,

∂ψ′

∂y′
= 0, and T = To, on the outer surface. (2.4b)
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Let us introduce the following dimensionless variables,

x =
x′

ai
, y =

y′

ai
, t =

τα

a2
i

,

ψ =
ψ′

α
, ζ = −ζ ′

a2
i

α
, φ =

T − To

Ti − To
,

where ai is the length of semi-major axis of the inner tube and α is the thermal diffu-
sivity of the fluid. In order to prepare the governing equations to be tackled by Fourier
Spectral method, lets us also introduce the elliptic coordinates (ξ, η) defined as

x = d cosh(ξ) cos(η), y = d sinh(ξ) sin(η),

where (d=d′/ai) is the dimensionless focal distance. The use of the above orthogonal
coordinates has the privilege of expressing the boundary conditions along coordinate
lines without the need of interpolation. The governing equations can now be written
in the elliptic coordinates as:

∂ζ

∂t
= Pr

(
∂2ζ

J∂ξ2 +
∂2ζ

J∂η2

)
+

∂ψ

J∂ξ

∂ζ

∂η
− ∂ψ

J∂η

∂ζ

∂ξ

+
dRa Pr

8
(
cosh ξ sin η sin λ− sinh ξ cos η cos λ

) ∂φ

J∂ξ

+
dRa Pr

8
(
sinh ξ cos η sin λ + cosh ξ sin η cos λ

) ∂φ

J∂η
, (2.5)

ζ =
∂2ψ

Jξ2 +
∂2ψ

J∂η2 , (2.6)

∂φ

∂t
=

(
∂2φ

J∂ξ2 +
∂2φ

J∂2η

)
+

∂ψ

J∂ξ

∂φ

∂η
− ∂ψ

J∂η

∂φ

∂ξ
, (2.7)

where
J = d2(cosh2 ξ − cos2 η),

is the determinant of the Jacobian of coordinate transformation matrix,

Ra =
gβ

να
(2ai)3(Ti − To),

is the Rayleigh number and Pr=ν/α is the Prandtl number.
The velocity components in ξ and η direction are related to the stream function by

Vξ =
1

J
1
2

∂ψ

∂η
, Vη = − 1

J
1
2

∂ψ

∂ξ
.

In the new variables, the initial condition for the temperature of the stagnant fluid
inside the annulus at times t≤0 is φ=0 that is exactly the same as that of the outer
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surface. At the start of computations (t=0) the inner surface of the annulus assumes a
sudden temperature rise to φ=1 and from that moment the time development of both
flow and thermal fields starts.

The boundary conditions (2.4) can now be expressed as

∂ψ

∂ξ
= 0,

∂ψ

∂η
= 0, and φ = 1, at ξ = ξi, (2.8a)

ψ =
∂ψ

∂ξ
= 0,

∂ψ

∂η
= 0, and φ = 0, at ξ = ξo, (2.8b)

where ξi defines the inner tube surface (= tanh−1 Ari) while ξo defines the outer tube
surface (= tanh−1 Aro),

Ari =
√

1− (1− Ar2
o)× Mr2,

Mr is the outer to inner tube major axes ratio (= ao/ai).

3 The Method of solution

The method used for solving the governing equations (2.5)-(2.7) to obtain the time
development of both velocity and thermal fields is based on approximating the stream
function, vorticity and temperature using Fourier series expansion. The approach is
similar to that used by Badr and Dennis [16]. The stream function ψ, vorticity ζ and
temperature φ are now approximated as

ψ(ξ, η, t) =
1
2

Fo(ξ, t) +
N

∑
n=1

(
fn(ξ, t) sin(nη) + Fn(ξ, t) cos(nη)

)
, (3.1a)

ζ(ξ, η, t) =
1
2

Go(ξ, t) +
N

∑
n=1

(
gn(ξ, t) sin(nη) + Gn(ξ, t) cos(nη)

)
, (3.1b)

φ(ξ, η, t) =
1
2

Ho(ξ, t) +
N

∑
n=1

(
hn(ξ, t) sin(nη) + Hn(ξ, t) cos(nη)

)
, (3.1c)

where Fo, fn, Fn, Go, gn, Gn, Ho, hn and Hn are the Fourier coefficients and N repre-
sents the number of terms considered in the Fourier series. Substitution of ψ, ζ and
φ defined in (3.1a)-(3.1c) in Eqs. (2.5)-(2.7) results in the following set of differential
equations:

∂2Fo

∂ξ2 =
d2

2
(cosh 2ξGo − G2), (3.2a)

∂2 fn

∂ξ2 − n2 fn =
d2

2

(
cosh 2ξgn − 1

2
[
g(n+2) + sgn(n− 2)g|n−2|

])
, (3.2b)

∂2Fn

∂ξ2 − n2Fn =
d2

2

(
cosh 2ξGn − 1

2
[
δn2Go + G(n+2) + G|n−2|

])
, (3.2c)
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d2
(

cosh 2ξ
∂Go

∂t
− ∂G2

∂ξ

)
= 2 Pr

∂2Go

∂ξ2 + So(ξ, t), (3.3a)

d2
[
cosh 2ξ

∂gn

∂t
− 1

2

(∂g(n+2)

∂t
+ sgn(n− 2)

∂g|n−2|
∂t

)]

= 2 Pr
(∂2gn

∂ξ2 − n2gn

)
+ nFn

∂Go

∂ξ
− nGn

∂Fo

∂ξ
+ Sn1(ξ, t), (3.3b)

d2
[
cosh 2ξ

∂Gn

∂t
− 1

2

(
δn2

∂Go

∂t
+

∂g(n+2)

∂t
+

∂g|n−2|
∂t

)]

= 2 Pr
(∂2Gn

∂ξ2 − n2Gn

)
− n fn

∂Go

∂ξ
+ ngn

∂Fo

∂ξ
+ Sn2(ξ, t), (3.3c)

d2
(

cosh 2ξ
∂Ho

∂t
− ∂H2

∂ξ

)
= 2

∂2Ho

∂ξ2 + Zo(ξ, t), (3.4a)

d2
[
cosh 2ξ

∂hn

∂t
− 1

2

(∂h(n+2)

∂t
+ sgn(n− 2)

∂h|n−2|
∂t

)]

= 2
(∂2hn

∂ξ2 − n2hn

)
+ nFn

∂Ho

∂ξ
− nHn

∂Fo

∂ξ
+ Zn1(ξ, t), (3.4b)

d2
[
cosh 2ξ

∂Hn

∂t
− 1

2

(
δn2

∂Ho

∂t
+

∂H(n+2)

∂t
+

∂H|n−2|
∂t

)]

= 2
(∂2Hn

∂ξ2 − n2Hn

)
− n fn

∂Ho

∂ξ
+ nhn

∂Fo

∂ξ
+ Zn2(ξ, t), (3.4c)

where So, Sn1, Sn2, Zo, Zn1 and Zn2 are all easily identifiable functions. Eqs. (3.2a)-(3.4c)
define (6N + 3) differential equations that should be solved simultaneously at every
time step to get the details of the flow and thermal fields. The initial and boundary
conditions for all Fourier functions presented in Eqs. (3.2)-(3.4) are deduced from (2.8)
and can be expressed as:

t = 0 : at ξ = ξi,

Fn = fn =
∂Fn

∂ξ
=

∂ fn

∂ξ
=

∂Fo

∂ξ
= 0, Hn = hn, and Ho = 2, (3.5a)

and for ξi < ξ ≤ ξ0,
[∂Fo

∂ξ
, Fn,

∂Fn

∂ξ

]
= 0, fn =

∂ fn

∂ξ
= 0, Go = Gn = gn,

and Ho = Hn = hn = 0, (3.5b)
t > 0 : at ξ = ξi

Fn = fn =
∂Fn

∂ξ
=

∂ fn

∂ξ
=

∂Fo

∂ξ
= 0, Ho = 2, Hn = hn = 0, (3.5c)

and at ξ = ξ0,

Fn = fn =
∂Fn

∂ξ
=

∂ fn

∂ξ
=

∂Fo

∂ξ
= 0, and Ho = Hn = hn = 0. (3.5d)
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Integrating both sides of Eq. (3.2a) with respect to ξ between ξ=ξi and ξ=ξo and using
the boundary conditions in Eq. (3.5) gives the following integral condition:

∫ ξo

ξi

d2

2
(cosh 2ξGo − G2) dξ = 0. (3.6a)

Similarly, multiplying both sides of Eqs. (3.2b) and (3.2c) by e−nξ and integrating
from ξ=ξi to ξ=ξo and using boundary conditions (3.5), one can obtain the following
integral conditions

∫ ξo

ξi

d2

2

(
cosh 2ξgn − 1

2
[
g(n+2) + sgn(n− 2)g|n−2|

])
e−nξdξ = 0, (3.6b)

∫ ξo

ξi

d2

2

(
cosh 2ξGn − 1

2
[δn2Gn + G(n+2) + G|n−2|]

)
e−nξdξ = 0, (3.6c)

where δn2=1 if n=2 and δn2=0 if n 6=2.
The above integral conditions are used at every time step to calculate the values

of the functions Go, gn and Gn on the inner tube surface (ξ=ξi). These functions are
then used to predict the vorticity distribution at the inner tube surface. The vorticity
distribution at outer wall is calculated from the same three functions but calculated at
the outer wall (ξ=ξo).

Assume that the number of points in the ξ direction is Np that makes a grid size
equal to (ξo − ξi)/(Np − 1). The value of Np is taken as 101 in the low Ra cases and
increases with the increase of Ra until reaching 181 at Ra=105. The number of terms in
Fourier series is taken as 5 terms at the start of computations and then more terms are
added as time increases until reaching steady state. The maximum number of terms
used in most cases is 40. The solution procedure is the same as that described by
Badr and Dennis [16] and Mahfouz and Badr [17]. The only difference is the presence
of the unknown terms g(n+2), and H(n+2) in Eqs. (3.3)-(3.6). These terms were first
approximated and corrected through an iterative procedure at every time step.

After obtaining the stream function and temperature distributions, the flow ve-
locities and heat transfer characteristics can be easily determined. The heat transfer
results can be presented in terms of either the equivalent conductivity or the Nusselt
number. The former will be considered for comparisons with previous works while
the latter will be used to present the heat transfer results in this study.

The local Nusselt numbers at the inner and outer surfaces of the annulus are de-
fined as

Nui =
hiLi

k
, Nuo =

hoLo

k
, (3.7)

where k is the fluid thermal conductivity and Li and Lo are characteristic lengths re-
lated to the inner and outer walls, hi and ho are the local heat transfer coefficients at
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both walls and are defined as:

hi =
q̇i

Ti − To
, q̇i = −k(

∂T
∂sn

)i,

ho =
q̇o

Ti − To
, q̇o = −k(

∂T
∂sn

)o,

where q̇ is the rate of heat transfer per unit area, Sn is the normal direction to the
surface. From the above definitions one can deduce

Nui = −Li

ai

(
J−

1
2

∂φ

∂ξ

)

i
, Nuo = −MrLo

ao

(
J−

1
2

∂φ

∂ξ

)

o
, (3.8)

where
J = d2(cosh2 ξ − cos2 η).

The average Nusselt number is defined as

Nu =
1
P

∫ P

0
NudP,

where P is the perimeter of the elliptic section. Taking the characteristic lengths Li
and Lo as Pi/π and Po/π respectively, the average Nusselt number at inner and outer
surfaces can be expressed as:

Nui = −
(

∂Ho

∂ξ

)

i
, Nuo = −

(
∂Ho

∂ξ

)

o
. (3.9)

The energy balance in the steady state entails that the heat transfer through the an-
nulus from the inner surface should be equal to that dissipated to the surrounding
from the outer surface. The above definitions for local and average Nusselt numbers
are taken deliberately to express this fact. That is the average values of Nui and Nuo
should be equal when reaching the steady state.

4 Accuracy of the numerical solution

In order to validate the method of solution and the numerical technique, numerical
results were first obtained for some special cases and then compared with the corre-
sponding data previously reported in the literature. The case of natural convection
within a concentric annulus with geometric parameters Ari=0.998, and Mr=2.6 and
filled with air (Pr=0.7) at Ra=1.95× 104 and Ra=9.75× 104 is considered for compar-
ison. The results are presented in Figs. 2 and 3 and compared with the earlier data
reported by Kuehn and Goldstein [1] and Cheng and Chao [13]. The present results
for streamlines and isotherms patterns, as shown in Fig. 2 are in very good agreement
with the corresponding ones of Kuehn and Goldstein [1]. The results for local equiva-
lent conductivity distribution on inner and outer surfaces, which are presented in Fig.
3 together with that of Kuehn and Goldstein [1] and Cheng and Chao [13], are also in
good agreement.
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Ra = 1.95× 104

Ra = 1.95× 104

(a) Present (b) Kuehn and Goldstein [1]
Figure 2: Streamlines pattern (right) and isotherms (left) of concentric circular annulus and comparison
with Ref. [1]. (a) Present. (b) Ref. [1].

5 Results and discussion

The time developments of both flow and thermal fields within the annulus for the case
of both major axes vertical (i.e., λ=90◦), Ra=104, Mr=2.6 and at times t=0.05, 0.1, 0.3,
1 and 3 are shown in Figs. 4 – 6. The time development for the streamlines and the
isotherm patterns is shown in Fig. 4, while Fig. 5 shows the time development of the
tangential velocity component, Vη , and its distribution along the minor axes (η=90◦).
The time development of temperature distribution along the major axis (η=0) is pre-
sented in Fig. 6. In this special case, the streamlines and isotherm patterns are both
symmetrical about the vertical major axis and therefore only one half of each field is
plotted in Fig. 4. It is clear from the figure that the flow field is formed of two circu-
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Num. ( 13 )

Inner wall

Outer wall

Figure 3: Equivalent conductivity distribution at inner and outer walls of concentric circular annulus and
comparison with Refs. [1, 13].

lating crescent-shaped eddies, one on each half of the annulus. Each eddy is formed
of a flow current moving upward near to the inner surface and downward near of
outer surface. The streamline, separating the two circulating eddies, passes through
two separation points and two stagnation points. One of the two separation points is
located at the top of inner surface at η=0 and the other at the bottom of outer surface
at η=180◦. One the other hand, one of the two stagnation points is located at the top
of outer surface at η=0 and the other at the bottom of inner surface at η=180◦.

At small time, t=0.05, Fig. 4a shows a newborn buoyancy driven eddy in the right
side circulating with its center close to the inner surface. At this stage, the induced
circulating flow is very weak as can be inferred from the small values of the stream
function as well as from the small values of tangential velocity plotted in Fig. 5. At this
stage, the heat transfer rate from the inner surface is very high as a result of high tem-
perature difference between the inner surface and the adjacent fluid. The heat transfer
through the annulus in that early stage is dominated by heat conduction within a
very thin thermal layer in the vicinity of the inner tube surface. Such a mode has
been called pseudo-conduction by Grigull and Hauf [18] as cited by Kuehn and Gold-
stein [1]. The domination of conduction is reflected in the shape of isotherms which
appear as almost elliptic loops encircling the inner tube surface. At this time stage, the
temperature gradient at η=0 close to the inner surface is very high while having very
low values at the outer surface as depicted from Fig. 6. At time t=0.1 (Fig. 4b), the
conduction mode of heat transfer is still dominating but with more effect of convec-
tion currents which increase the maximum value of stream function. At that time, the
values of Vη near both inner and outer surfaces increase as shown in Fig. 5 signaling
an increasing effect of convection currents causing some deflection in the isotherms at
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(a) (b)

(c) (d)

(e)

Figure 4: The time development of both flow
and thermal fields in terms of streamlines (right)
and isotherms patterns (left) for an annulus with
vertical major axis annulus for the case of Ra =
104, and Mr = 2.6. (a) t = 0.05. (b) t = 0.1.
(c) t = 0.3. (d) t = 1.0. (e) t = 3.

the upper zone where the thermal plume formation is expected. With further increase
in time, t=0.3 (Fig. 4c), the upward circulating flow is clearly intensified in the upper
region with more increase in the values of the stream function than those at t=0.05 and
0.1. This was accompanied with upward shifting of the eddy center and with clear de-
veloping of thermal plume in the upper zone of the annulus. In the thermal plume
region, the isotherms are highly condensed near the top of the outer surface which
indicates higher temperature gradient (see Fig. 6) and so higher rates of heat trans-
fer. With further increase of time to t=1 (Fig. 4d) the flow and thermal fields become
closer to the steady state which is almost reached at t=3 (Fig. 4e). At this steady state,
the flow field becomes strongly circulating and the thermal field becomes established
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Figure 5: The Vη distribution along the minor axis, η = 90◦ at different times.

with a clear thermal plume in the upper part of the annulus.
Fig. 7 shows the distribution of local Nusselt number at the annulus inner surface

(Fig. 7a) and outer surface (Fig. 7b) for the same above case and at the same times. It
can be seen from Fig. 7a that at small time, t=0.05, Nu has relatively higher values at
all points of the inner surface with the highest at the bottom end. This reflects high
heat transfer rate from the entire inner surface of the annulus at that early stage. It also
reflects the effect the convection currents which, though very weak, cause an increase
in heat transfer at the lower stagnation point of the inner tube. At that early time, the
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Figure 6: The temperature distribution along the major axis, η = 0 at different times.
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Figure 7: The time development of Nusselt number distribution along (a) the inner surface and along (b)

the outer surface for the vertical case at Ra = 104 and Mr = 2.6.

thermal layer has been initiated in the vicinity of the inner wall surface but has not yet
reached the outer wall, indicating zero heat transfer and accordingly zero Nu at that
surface. As time increases to t=0.3, the Nusselt number distribution along the inner
surface is still characterized by higher values at η=180◦ and lower values at η=0 but
with further decrease at all points which declares a reduction in heat rates from inner
surface as a result of thicker thermal layer. Meanwhile, the situation at the outer wall
surface becomes different since the thermal boundary layer has already reached the
outer surface and heat is dissipating from that surface at higher rates especially in the
thermal plume region. In the lower part of the annulus near the outer surface, the
fluid is almost stagnant causing small heat transfer rates and so very small values of
Nuo. At t=1, the flow and thermal fields are approaching steady state with intensive
convective flow currents emanating upward vigorously and impinging the outer wall
at the uppermost vertical part of the annuls, causing a clear thermal plume in that
region.

The time development of Nu at the inner and outer surfaces is shown in Figs. 8a-d
for the case of vertical annulus when Ra=104 and for different major axes ratios. The
time developments of Nu at the inner and outer surfaces for the case of pure con-
duction regime are shown in the same figures. The transient conduction solution is
obtained by solving the energy equation with convection terms set to zeros. The fig-
ure shows that the time variation of Nui at inner surface is generally similar to that
for elliptic tube placed in an infinite medium (see Badr [22]). At the start of heating
process, the heat is initially transferred from the inner wall through a very thin con-
duction layer, causing high heat transfer rate and so high Nui values. The initial time
stages are characterized by fast growth of the thermal layer resulting in a quick de-
crease in heat transfer rate. In these stages, the conduction heat transfer dominates
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Figure 8: The time development of Nu for inner and outer surfaces for the case of vertical annulus (λ = 90)

and Ra = 104 and at different major axes ratios. (a) Mr = 1.6. (b) Mr = 2. (c) Mr = 2.6. (d) Mr = 3.

and the contribution of convection is almost negligible. This can be inferred from the
coinciding of Nu-t curve with that of conduction at these small times. Once the con-
duction thermal layer thickens enough, the convection starts effectively to take part in
heat transfer process until the steady state is slowly approached. The steady state is
reached when the rate of heat transfer from the inner surface is equal to that dissipated
from the outer surface, thus satisfying the steady energy balance. When such steady
state is reached, the Nusselt numbers at the inner and outer walls, Nui and Nuo, will
have the same value based on the present definitions. One more observation related to
heat transfer from the inner surface is that for a relatively higher value of Mr (Mr>2)
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the transition from conduction dominated mode to convection dominated mode is ac-
companied with an overshot in heat transfer rate and so an overshot in Nu (see Figs.
8c and 8d). This phenomenon is also reported in the case of transient heat convec-
tion from single isothermal elliptic or circular cylinder placed in infinite medium, see
Ref. [19–23].

It is also clear from Figs. 8a-8d that the heat dissipated from the outer surface (and
so Nuo) starts after a certain period of time delay. This period is actually the time
needed to create a negative temperature gradient at the outer surface. Such tempera-
ture gradient takes place after the formation of a thermal fluid layer adjacent to that
surface. That hot layer can exist due to either conduction diffusion or even through the
circulating fluid heated by the inner surface. At small times, this hot circulating fluid
is slow and gets cooled before reaching the outer surface resulting in zero temperature
gradient and zero Nuo. As time increases, the hot thermal boundary layer is formed
close to the outer surface and the heat from outer surface starts dissipating resulting
in a continuous increase of Nuo until reaching steady state. The time delay for a given
value of Ra depends on the annulus size and geometry. The narrower the annulus
gap the smaller the time delay and vice versa. In case of a relatively narrow gap of
Mr=1.6, the time delay is about 0.04 and increases to 0.13 for a gap with Mr=2.0 and
further increases to 0.22 for gap of Mr=2.6 and for the widest gap considered in this
study of Mr=3 it reaches 0.36. One can also observe from the figures that the time
delay for this range of Mr is approximately equal to that of pure conduction or a bit
smaller which means that the conduction diffusion mechanism is controlling this time
delay period. For wider gaps, the delay period in the case of pure conduction is longer
than that for the case of natural convection. The contribution of natural convection to
steady heat transfer depends on the size of the annulus. The narrow annulus gaps
hinder the convection currents and weaken heat convection. In these cases the heat
transfer is mainly due to conduction. While in case of a relatively ample or wider an-
nulus gaps the convection currents move freely and intensively, enhancing effectively
the heat transfer process. The contribution of convection or the percentage increase of
heat transfer due to convection in case of a narrow annulus gap (Fig. 8a) is about 3%
in case of Mr=1.6 and about 50% in case of Mr=2. Such percentage increases signifi-
cantly for a relatively wider annulus gap with an increase up to 90% in case of 2.6 and
further up to 120% in case of Mr=3 (Fig. 8d).

The results obtained for the average Nusselt number for the cases considered at
Ra=104 and Ra=105 and at different angles of inclination, λ, and major axes ratios,
Mr, are shown in Table 1. It is clear from the table that Nu increases with the increase
of Ra for constant values of λ and Mr. However, for a narrower annulus gap with
Mr=1.2, the conduction mode of heat transfer is very dominant and the effect of con-
vection and so Ra and λ is negligible as can be observed in the table. One can also
observe from Table 1 that the effect of angle of inclination, though not significant, is
similar to that reported by Badr [22] for the case of an elliptic tube placed in an infinite
medium. The obtained results indicate that at fixed values of Ra and Mr, Nu increases
with the increase of the angle of inclination from 0 to 90◦. Table 1 also shows that for a
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Figure 9: The average Nusselt number, Nu variation with Mr for the case of 104, λ = 30.

given angle, λ=0, Nu reaches its minimum at Mr=2.0, for Ra=104 and at Mr=1.6 for
Ra=105. This gives rise to the possibility of having a minimum value for Nu at a cer-
tain value of Mr for every value of Ra. In order to delineate this point some detailed
calculations were carried out at Ra=104 and λ=30◦ with a step of 0.1 for Mr. The
results which are presented in Fig. 9 clearly show that Nu is minimum at Mr=1.95.
The minimum value for Nu, as can be inferred from the results, is Ra dependent; as
Ra increases the value of Mr creating Numin decreases. The existence of Numin can
be explained based on the fact that heat transfer from the inner surface is controlled
by two mechanisms, namely, the conduction and convection modes. The effect of Mr
on these two modes is different. As Mr increases, the conduction resistance increases
and the conduction mode becomes less effective. On the other hand, the increase of
Mr causes an increase in the convection currents and the convection mode becomes

Table 1: The average Nusselt number at Ra = 104 and Ra = 105 and at different Mr and λ.

Nu
Mr=1.2 Mr=1.6 Mr=2.0 Mr=2.6 Mr=3

Ra λ (6.603)* (2.971)* (2.151)* (1.652)* (1.461)*
104 0 6.602 2.992 2.610 3.020 3.185

30◦ 6.603 3.006 2.672 3.145 3.334
60◦ 6.603 3.031 2.772 3.243 3.482
90◦ 6.604 3.042 2.810 3.291 3.515

105 0 6.607 4.376 4.994 5.314 5.415
30◦ 6.615 4.488 5.225 5.510 5.634
60◦ 6.616 4.645 5.301 5.810 5.989
90◦ 6.618 4.715 5.442 5.915 6.115

* steady Nucond.
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more effective. Therefore, as a result of increasing Mr the contribution of conduction
gets lower while the contribution of convection gets higher. The opposite effect of
the two mechanisms creates a minimum Nusselt number at a certain value of Mr for
every value of Ra.

The effect of the major axis ratio, Mr, on the steady streamline and isotherm pat-
terns is shown in Fig. 10 for the case of Ra=104 when the two major axes are horizontal
(λ=0) while its effect on the local Nusselt number and vorticity distributions for the
same case is shown in Figs. 11 and 12. Fig. 10 shows that for a narrow gap annulus
(Mr≤1.6), the isotherms appear as almost concentric ellipses declaring the domination
of the conduction mode. The fluid velocity in this case is low as a result of small aver-
age area of the annulus gap. Such low velocities can be inferred from the small values
of the stream function. The local Nusselt number distribution along the outer sur-
face, Fig. 11b, shows no significant variations along the surface. This again reflects the
domination of conduction mode and the weak contribution of the convection mode.
As the axis ratio increases to Mr=2, the annulus gap becomes wider and the fluid
motion as appears from the higher values for stream function, becomes more notice-
able with the centre of the two eddies moving up and with clear signs of developing a
thermal plume at the top part of the annulus. As Mr increases further to Mr=2.6 and
3, the fluid circulation becomes more vigorous, leading to severe fluid impingement
on the upper part of the annulus and more development of the thermal plume. The
more intensive fluid motion is reflected as an increase of vorticity at all points on the

(a) (b)

(c) (d)
Figure 10: The patterns of flow and isotherms for the case of Ra = 105, λ = 0 and at different values of
Mr. (a) Mr = 1.2. (b) Mr = 1.6. (c) Mr = 2. (d) Mr = 2.6.
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for the case Ra = 104, λ = 0 and different values of Mr.
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Figure 12: The vorticity distribution along (a) the inner surface and along (b) the outer surface for the case

Ra = 104, λ = 0 and different values of Mr.

inner and outer surfaces as shown in Fig. 12a, b. This is accompanied by the develop-
ment of the thermal plume in the upper part of the annulus resulting in an appreciable
increase in Nuo in that region.

Fig. 13 Shows the patterns of flow and isotherms for the case of Ra=104 and Mr=2
at different angle of inclination. It can be seen from the figure that the flow field still
possesses two circulating eddies one on each side. These two eddies are no longer
symmetric (except for λ=0, 90◦) but rather distorted. However, the flow along the
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(a)

(b)

(c)

(d)

Figure 13: The patterns of streamlines (right) and isotherms (left) for the case of Ra = 104 and Mr = 2
and at different angle of inclination. (a) λ = 0. (b) λ = 30. (c) λ = 60. (d) λ = 90.

inner and outer surfaces is still having separation and stagnation points. The flow
stagnates at the lower end of the inner surface and separates at the top part of the
surface. While the flow stagnates at the top part of outer surface and separates from
the lower part. The points of stagnation are usually the points of high Nu while that
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Figure 14: The local Nusselt number distribution along (a) the inner surface and along (b) the outer surface

for the case Ra = 104, λ = 0 and different values of Mr.
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Figure 15: The vorticity distribution along (a) the inner surface and along (b) the outer surface for the case

of Ra = 104, Mr = 2 at different angles of inclination.

of separation are the points of low Nu as shown in Fig. 14. The separation and stag-
nation points for the cases of inclined ellipses are no longer at 0 and 180◦ but rather
deviates as shown in Fig. 14. In order to trace the points of separation and stagnation,
the vorticity distribution on each surface is calculated and presented in Fig. 15. The
points of zero vorticity at the wall are the points of either separation or stagnation.
For the symmetrical cases (cases of λ=0, 90◦), the points of separation and stagnation
are located on the vertical line of symmetry. For the case of λ=30◦, the separation
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and stagnation points for the inner surface are respectively 58◦ and 227◦ while the
separation and stagnation points for the outer surface are 60◦ and 231◦. For the case
of λ=60◦, these four points in sequence are 26◦, 200◦, 29◦ and 203◦. The values of
these points or angles simply tells approximately that the flow at the upper part of the
annulus summon up vertically, regardless of inclination, forming a thermal plume in
the vertical upper part of the annulus same as the case of symmetrical annulus. The
effect is clear in Nu distribution on the outer surface where it can be seen that the Nu
reaches maximum at the uppermost vertical point in all cases.

6 Conclusions

The problem of transient and steady natural convection in an elliptical annulus has
been numerically investigated using the Fourier Spectral Method (FMS). The heat con-
vection within the annulus is dependent on Rayleigh number, Prandtl numbers, angle
of inclination of minor axes to gravity vector, ratio of outer tube major axis to inner
tube major axis and the axes ratio of the inner tube. The results are obtained at two val-
ues of Rayleigh number of 104 and 105. The major axes ratio is varied up to 3 while the
angle of orientation of the minor axes is varied up to 90◦. The Prandtl number and in-
ner tube axis ratio are fixed at 0.7 and 0.5, respectively. The results for the special case
of natural convection in concentric annulus are first obtained and compared with the
earlier reported data and very good agreement has been found. The results for local
and average Nusselt numbers are presented and discussed together with the details
of both flow and thermal fields at various annulus orientations. The study has shown
that at a certain Ra there is a value of the major axes ratio at which the heat trans-
fer through the annulus reaches its minimum. This value decreases as Ra increases.
The use of the Fourier Spectral Method in handling the present problem proves its
success as a powerful numerical tool for solving confined heat convection/fluid flow
associated problems.
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Appendix

Nomenclature

ai length of semi-major axis of inner tube
Ari axis ratio of inner tube
Aro axis ratio of outer tube
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ao length of semi-major axis of outer tube
bi length of semi- minor axis of inner tube
bo length of semi-minor axis of outer tube
c specific heat of the fluid

d′ ellipse eccentricity (ai =
√

1− Ar2
i )

d dimensionless ellipse eccentricity (= d′/ai)
fn, Fn Fourier coefficients
Fb buoyancy force
g gravitational acceleration
gn, Gn Fourier coefficients
h, h local and average heat transfer coefficients
hn, Hn Fourier coefficients
J Jacobian of coordinate transformation
k thermal conductivity
Mr major axes ratio (= ao/ai)
Nu, Nu local and average Nusselt numbers
Pr Prandtl number (= ν/α)
Ra Rayleigh number (= gβ(2ai)3(Ts − T∞)/αν)
t dimensionless time
T temperature
x′, y′ Cartesian coordinates
x, y dimensionless Cartesian coordinates
X∗ the distance from inner tube surface along line η = 0, (= (x′ − ai)/(ao − ai))
Y∗ the distance from inner tube surface along line η = 90, (= (y′ − bi)/(bo − bi))

Greek symbols

α thermal diffusivity
β coefficient of thermal expansion
φ dimensionless temperature = (T − To)(Ti − To)
η, ξ elliptical coordinates
λ annulus major axes angle of inclination to the horizontal
ν kinematics viscosity
ρ density
τ time
ψ′, ψ dimensional and dimensionless stream functions
ζ ′, ζ dimensional and dimensionless vorticity

Subscripts

i at the inner tube surface
o at the outer tube surface
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