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Abstract. In this paper, we apply the discontinuous Galerkin method with Lax-
Wendroff type time discretizations (LWDG) using the weighted essentially non-
oscillatory (WENO) limiter to solve a multi-class traffic flow model for an inho-
mogeneous highway. This model is a kind of hyperbolic conservation law with
spatially varying fluxes. The numerical scheme is based on a modified equivalent
system which is written as a ”standard” hyperbolic conservation form. Numerical
experiments for both the Riemann problem and the traffic signal control problem
are presented to show the effectiveness of the method.
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1 Introduction

The first discontinuous Galerkin (DG) method was introduced in 1973 by Reed and
Hill [18], in the framework of neutron transport (steady state linear hyperbolic equa-
tions). A major development of the DG method was carried out by Cockburn et al.
in a series of papers [2–6], in which a framework was established to solve nonlinear
hyperbolic conservation laws:

{
ut +∇ · f (u) = 0,
u(x, 0) = u0(x).

(1.1)

They proposed to use an explicit, nonlinear stable and high order Runge-Kutta time
discretizations [19] and DG discretization in space with exact or approximate Rie-
mann solvers as interface flux and limiters such as the total variation bounded (TVB)
limiters [20] or weighted essential non-oscillatory (WENO) type limiters [15, 16] to
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achieve nonoscillatory properties for strong shocks. The method is termed as Runge-
Kutta discontinuous Galerkin method (RKDG). The DG method has following advan-
tages: Easy handling of complicated geometry and boundary conditions (common to
all finite element methods), allowing hanging nodes in the mesh; Compact, communi-
cation only with immediate neighbors, regardless of the order of the scheme; Explicit,
because of the discontinuous basis, the mass matrix is local to the cell, resulting in
explicit time stepping (no systems to solve); Parallel efficiency, achieves 99% parallel
efficiency for static mesh and over 80% parallel efficiency for dynamic load balancing
with adaptive meshes [1].

An alternative approach to discretize the time derivative term could be using a
Lax-Wendroff type time discretization procedure, which is also called the Taylor type
referring to a Taylor expansion in time. This approach is based on the idea of the clas-
sical Lax-Wendroff scheme [11], and it relies on converting all the time derivatives in
a temporal Taylor expansion into spatial derivatives by repeatedly using the PDE and
its differentiated versions. The spatial derivatives are then discretized by the DG ap-
proximations. The Lax-Wendroff type time discretization, which is also referred to as
the Taylor-Galerkin method for the finite element methods, usually produces the same
high order accuracy with a smaller effective stencil than that of the Runge-Kutta time
discretization, and it uses more extensively the original PDE. Since the Lax-Wendroff
time discretization is an one step method instead of the multi-step Runge-Kutta time
discretization, the LWDG method can save a certain amount of computational cost
over the RKDG method, thus is more cost effective.

Lighthill and Whitham [13] and Richards [17] independently proposed a simple
continuum model, known as the LWR model, to describe the characteristics of traffic
flow. In this model, a traffic stream model (relationship between traffic state variables
of flow, speed and density, e.g., [10]) is supplemented by the continuity equation of
vehicles, and the resulting partial differential equation presumably could be solved
to obtain the density as a function of space and time. Although aiming at providing
a coarse representation of traffic behavior, the LWR model is capable of reproducing
qualitatively a remarkable amount of real traffic phenomena such as shock formation.
However, there are still some puzzling traffic phenomena that this simple LWR model
cannot address or explain, such as the two-capacity or reverse-λ state in the funda-
mental diagram, hysteresis of traffic flow and platoon dispersion.

Recently, multi-class models (MCLWR models) have been developed in an attempt
to explain these puzzling traffic phenomena by modeling users’ lane changing behav-
ior and multiple vehicle types [7, 8]. Although the MCLWR model is simple in na-
ture, it was found that the model is capable of producing the desired properties of a
macroscopic traffic flow model and it explains many puzzling phenomena mentioned
before. In [23], the MCLWR model was solved by a first-order Lax-Friedrichs finite dif-
ference scheme. However, this scheme may produce smeared solutions near disconti-
nuities due to excessive numerical viscosity. Then Lebacque [12] successfully applied
the Godunov scheme, introduced by Godunov [9], to solve the LWR model. It is sub-
ject to smaller numerical viscosity, but requires a Riemann solver as its building block,
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which is very difficult even impossible to develop for the MCLWR model. In [25],
a high-order WENO scheme is applied to solve the MCLWR model. This scheme is
more efficient than the low-order Lax-Friedrichs and Godunov schemes.

In this paper, we apply the LWDG method using WENO limiter to solve the MCLWR
model on an inhomogeneous highway. Firstly, we define all the necessary variables in
this model:

• The number of lanes: a(x);
• The free flow(maximum) velocities of m types of vehicles: {vl, f (x)}m

l=1;

• The density per lane of the lth type: ρl(x, t);
• The total density per lane: ρ(x, t) = ∑m

l=1 ρl(x, t);
• The velocity of the lth type of vehicles: vl(ρ);
• The maximum of the free flow velocities vl, f (x) of the lth type at location x:

v f ≡ maxx max1≤l≤m(vl, f (x)).

Furthermore, we assume that {vl}m
l=1 are related by

vl = bl(x)v(ρ), v′(ρ) < 0, bl(x) = vl, f (x)/v f . (1.2)

Accordingly, {bl(x)}m
l=1 represent the velocity differences between m vehicles and

0≤bl(x)≤1.
Then we derive the model equations from the mass conservation of m types of

vehicles, which read

(a(x)ρl)t + (a(x)ρlbl(x)v(ρ))x = 0, 1 ≤ l ≤ m. (1.3)

Eq. (1.3) is a natural extension of the MCLWR model. For convenience, we intro-
duce the conservative solution variables ul=a(x)ρl , and the component of flux fl
=blulv(∑ ul/a). Thus we get the solution vector u=(u1, . . . , um)T and the flux vec-
tor f =( f1, . . . , fm)T. Accordingly, the model equations can be written as

ut + fx(u, θ(x)) = 0, (1.4)

where θ(x) represents all inhomogeneous factors on the road, namely,

θ(x) =
(

a(x), b1(x), . . . , bm(x)
)

.

In this traffic flow problem, each density ρl and the total density ρ are bounded by a
jam density ρjam, and thus

u/a ∈ D, D =
{

u/a|ρl ≥ 0, l = 1, . . . , m;
m

∑
l=1

ρl ≤ ρjam

}
. (1.5)

Moreover, the function v(ρ) of (1.2) satisfies

v(0) = v f , v(ρjam) = 0.
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This traffic system has significant practical meaning in real world. For instance, the
changes of value of θ(x) represents the drop or increase in traffic capacity at corre-
sponding locations, such as road junctions, curves and slopes and traffic accidents.
In particular, bl=bl(x, t) can serve as a switch function in traffic signal problem, as is
shown in Section 3. These changes are usually very sharp, so all the coefficients in θ
can be treated as being discontinuous at the change. This means the flux f (u, θ(x)) is
a discontinuous function of location x through the discontinuous function θ(x). As is
pointed out in [26], it is usually impossible (for m>2) to solve the eigen-polynomial of
system (1.4) explicitly, let alone the solutions to Riemann problems. Thus we can only
use approximate Riemann solvers such as the Lax-Friedrichs solvers for numerical
schemes. It will be not be efficient to apply the numerical schemes for conservation
laws, such as TVD, WENO and RKDG, to solve the traffic system with discontinu-
ous flux. In order to overcome this problem, we need to transform system (1.4) into
“standard” conservation form, and all our following discussions are under the mod-
ified equivalent system of (1.4), in which all of the components of θ are variables. In
this case, the hyperbolicity of the system can be proved, and the wave patterns of the
Riemann problem can also be predicted [26].

In this paper, the LWDG method is applied to the modified system. The organi-
zation of this paper is as follows. In section 2, we describe in detail the construction
and implementation of the LWDG method for a multi-class traffic flow model. In sec-
tion 3 we provide numerical examples to demonstrate the behavior of the schemes.
Concluding remarks are given in section 4.

2 Description of LWDG for a multi-class traffic flow model

A Lax-Wendroff type time discretization procedure for the discontinuous Galerkin
method has been developed to solve hyperbolic conservation laws in [14]. Now we
apply this method to this traffic flow model of one-dimensional system conservation
laws.

For convenience, we treat θ as a scalar in the following discussions, but the results
are applicable to the system case. Consider the modified equivalent system

Ut + F(U)x = 0, (2.1)

where

U(x, t) =
(

u1(x, t), . . . , um+1(x, t)
)T

=
(

a(x)ρ1(x, t), . . . , a(x)ρm(x, t), a(x)
)T

,

is a vector and

F(U) =
(

f 1(u1, . . . , um+1), . . . , f m+1(u1, . . . , um+1
)T

,

is a vector function of U.
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We denote the cells by Ii=[xi− 1
2
, xi+ 1

2
], the cell centers by xi= 1

2 (xi− 1
2
+ xi− 1

2
), and

the cell sizes by ∆xi=xi+ 1
2
− xi− 1

2
. Let ∆t be the time step, tn+1=tn + ∆t. By the tem-

poral Taylor expansion we obtain

U(x, t + ∆t) = U(x, t) + ∆tUt +
∆t2

2
Utt +

∆t3

6
Uttt + . . . . (2.2)

If we would like to obtain (k + 1)th order accuracy in time, we would need to approx-
imate the first k + 1 time derivatives. In this paper we will proceed up to third order
in time and the procedure can be naturally extended to any higher orders.

The temporal derivative terms in (2.2) can be replaced with the spatial ones com-
ponent by component using the original equations (2.1):

Ut = −F(U)x = −F
′
(U)Ux, (2.3)

Utt = −(F
′
(U)Ux)t = −(F

′
(U)Ut)x = −F

′
(U)xUt − F

′
(U)Uxt, (2.4)

Uxt = −F
′
(U)xUx − F

′
(U)Uxx, (2.5)

Uttt = −(F
′
(U)tUt + F

′
(U)Utt)x, (2.6)

where Ux, Ut, Uxt, Uxx, Utt are vectors whose component is the corresponding deriva-
tive of each component of U, F

′(U) is the Jacobian matrix of (2.1), and F
′(U)x, F

′(U)t
can be viewed as the matrix whose components are the corresponding derivative of
each component of F

′(U).
Then we can write the approximation to (2.2) up to third order as:

U(x, t + ∆t) = U(x, t)− ∆tF̃x, (2.7)

with

F̃ = F +
∆t
2

(F
′
(U)Ut) +

∆t2

6
(F

′
(U)tUt + F

′
(U)Utt).

The standard discontinuous Galerkin method is then used component by component
to discretize F̃x in (2.7), as described in detail below.

The test function space is given by Vk
h = {p : p|Ii ∈ Pk(Ii)}, where Pk(Ii) is the

space of polynomials of degree ≤ k on the cell Ii. We adopt a local orthogonal basis
over Ii, {v(i)

l (x), l = 0, 1, . . . , k}, namely the Legendre polynomials

v(i)
0 (x) = 1, v(i)

1 (x) =
x− xi

∆xi
, v(i)

2 (x) = (
x− xi

∆xi
)2 − 1

12
, . . . .

Other basis functions can be used as well, without changing the numerical method,
since the finite element discontinuous Galerkin method depends only on the choice of
space Vk

h , not on the choice of its basis functions.
The numerical solution Uh(x, t) in the space Vk

h can be written as:

Uh(x, t) =
k

∑
l=0

U(l)
i (t)v(i)

l (x), for x ∈ Ii,
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and the degrees of freedom U(l)
i (t) are the moments defined by

U(l)
i (t) =

1
al

∫

Ii

Uh(x, t)v(i)
l (x)dx, l = 0, 1, . . . , k,

where al=
∫

Ii
(v(i)

l (x))2dx are the normalization constants since the basis is not or-
thonormal. In order to determine the approximate solution, we evolve the degrees
of freedom U(l)

i :

U(l)
i (tn+1) = U(l)

i (tn)− ∆t
al

(
−

∫

Ii
F̃

d
dx

v(i)
l (x)dx + ˆ̃Fi+ 1

2
v(i)

l (xi+ 1
2
)

− ˆ̃Fi− 1
2
v(i)

l (xi− 1
2
)
)

, l = 0, 1, . . . , k, (2.8)

where ˆ̃Fi+ 1
2

is a numerical flux which depends on the values of numerical solution uh

and its spatial derivatives at the cell interface xi+ 1
2
, both from the left and from the

right. This numerical flux is related to the so-called generalized Riemann solvers [22].
As indicated before, for m>2, it is impossible to achieve the solutions to the Riemann
problems. Thus in this paper, we use the following simple Lax-Friedrichs flux

ˆ̃Fi+ 1
2

=
1
2

(
F̃−

i+ 1
2
+ F̃+

i+ 1
2
− α(U+

i+ 1
2
−U−

i+ 1
2
)
)

.

Here U±
i+ 1

2
and F̃±

i+ 1
2

are the left and right limits of the discontinuous solution Uh and

the flux F̃ at the cell interface xi+ 1
2
, and

α = max
U

ρ(F
′
(U)). (2.9)

where ρ(F
′(U)) is the spectral radius of the Jacobian matrix F

′(U). The integral term
in (2.8) can be computed either exactly or by a suitable numerical quadrature accurate
to at least O(∆xk+l+2). In this paper we used four points Gauss-Lobatto quadratures
for k = 2.

As indicated in [15], if the solutions have strong discontinuities, the original LWDG
scheme will generate significant oscillations and even nonlinear instability. In this pa-
per we adopt the WENO limiter developed in [15] for LWDG method. The idea is
to first identify ”troubled cells”, namely those cells where limiting might be needed,
then to abandon all moments in those cells except the cell averages and reconstruct
those moments from the information of neighbouring cells using a WENO method-
ology. Unlike the RKDG methods, by which the limiting procedure is performed in
every inner Runge-Kutta stage, we only need to perform the limiting procedure once
per time step for the one step LWDG method. For the case of system, the DG dis-
cretization is performed on each component. And in order to achieve better qualities
at the price of more complicated and costly computations, we use a local characteris-
tic decomposition in the limiting procedure. For the details of such local characteristic
field decompositions, we refer to [21]. The limiter and the WENO reconstructions are
all performed under local characteristic projections.
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3 Numerical results

In this section, we show the numerical results for both the Riemann problem and the
traffic signal control problem by LWDG and RKDG methods described in Section 2.
We will only show the test results for the third order LWDG and RKDG methods to
save the space. In all the computation, we take CFL number CFL=0.12 for LWDG
method, and CFL=0.18 for RKDG method. The TVB limiter with TVB constant M=10
is used as ”troubled cell” indicator, and WENO reconstruction is applied to recon-
struct the first and second moments in the troubled cell.

The velocities of (1.2) are set to be linear [10], v(ρ) = v f (1− ρ/ρjam). In all of the
illustrations, the densities ρl and ρ are scaled by ρjam so that we can assume 0≤ρl , ρ≤1,
and the spatial and temporal lengths L and T of the computational domain (0, L) ×
(0, T) are scaled to (0, 1)× (0, T/L).

Example 3.1. We consider the Riemann problem with bl(x)(l = 1, 2, 3) are constants,

b1(x) = 0.5, b2(x) = 0.75, b3(x) = 1, L = 8000m, T = 400s, v f = 20m/s,

where T is the simulation time, and with following scaled initial conditions:

(a) (a, ρ1, ρ2, ρ3) =
{

(3, 0.02, 0.03, 0.02), if x ≤ 0.2,
(1, 0.15, 0.05, 0.1), if x > 0.2,

(b) (a, ρ1, ρ2, ρ3) =
{

(3, 0.1, 0.05, 0.05), if x ≤ 0.5,
(2, 0.2, 0.1, 0.3), if x > 0.5,

(c) (a, ρ1, ρ2, ρ3) =
{

(2, 0.3, 0.25, 0.15), if x ≤ 0.5,
(3, 0.15, 0.2, 0.25), if x > 0.5,

(d) (a, ρ1, ρ2, ρ3) =
{

(2, 0.4, 0.1, 0.2), if x ≤ 0.35,
(3, 0.3, 0, 0.1), if x > 0.35.

Under these assumptions, by Section 2, the Jacobian matrix F
′(U) in Eq. (2.3) can be

written as:

F
′
(U) =




a11 − 1
u4

v f b1u1 − 1
u4

v f b1u1
1
u2

4
v f b1u1(u1 + u2 + u3)

− 1
u4

v f b2u2 a22 − 1
u4

v f b2u2
1
u2

4
v f b2u2(u1 + u2 + u3)

− 1
u4

v f b3u3 − 1
u4

v f b3u3 a33
1
u2

4
v f b3u3(u1 + u2 + u3)

0 0 0 0




,

where

a11 = v f b1(1− u2 + u3

u4
)− 2v f b1u1

u4
,

a22 = v f b2(1− u1 + u3

u4
)− 2v f b2u2

u4
,

a33 = v f b3(1− u1 + u2

u4
)− 2v f b3u3

u4
.
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Then we can calculate the derivatives of each component of F
′
(U) with respect to x and t to

get F
′
(U)x in Eq. (2.4) and F

′
(U)t in Eq. (2.6).

In Table 1, we provide a CPU time comparison between LWDG and RKDG methods. The
computation is performed on a Dell OptiPlex GX620nSF, P4-3.20 with 1GB ram. We can see
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Figure 1: Example 3.1: The computed densities by the third order LWDG (Green Square) and the third
order RKDG (Blue Plus) with N = 200 cells at t = 0.05, against the reference solutions (Red Solid Lines)
by the third order RKDG with N = 2000 cells for initial condition (a); The ρ1, ρ2, ρ3 and total density are
plotted in subfigures (a)-(d), respectively.
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Figure 2: Same as Fig. 1, except for initial condition (b).
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Figure 3: Same as Fig. 1, except for initial condition (c).

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+
+

+

+

+

+
+
++++++++++++++++++++++++++++++++++++

+

+

+

++
+++++++++++++++++++++++++++++++++++++++++

+++
+++
+++++

+++++++++++++++++++++++++++++++++++

x

D
en

si
ty

-1

0 0.2 0.4 0.6 0.8 1

0.15

0.2

0.25

0.3

0.35

0.4
"Exact"
LWDG
RKDG+

(a)

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+
+
+
+
++++++++++++++++++++++++++++++++++++++

+

+
++++++++++++++++++++++++++++++++++

++++++++
+
+
+
+
+
+
+
+
+
++++++++++++++++++++++++++++++++++++++

x

D
en

si
ty

-2

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.1 "Exact"
LWDG
RKDG+

(b)
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+
+
+

+

+
+
++++++++++++++++++++++++++++++++++++++

+

+
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+
++
++++++++++++++++++

x

D
en

si
ty

-3

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

"Exact"
LWDG
RKDG+

(c)

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+
+

+

+

+

+
+
++++++++++++++++++++++++++++++++++++

+

+

+

+++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++++++++++++++++

x

T
ot

al
D

en
si

ty

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7
"Exact"
LWDG
RKDG+

(d)
Figure 4: Same as Fig. 1, except for initial condition (d).

that in general the RKDG methods cost about 80 percent more in CPU time than the LWDG
methods for this problem, even though the CFL number for the RKDG method used in the
computation is 1.5 times of those for LWDG methods because of the limitation on linear sta-
bility.

The computed densities ρ1, ρ2, ρ3 by both the LWDG and RKDG methods with k=2 using
N=200 cells are plotted at t=0.05 against the reference solution by RKDG methods with k=2
with N=2000 cells in Figs. 1, 2, 3 and 4 for initial condition (a), (b), (c) and (d), respectively.
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Table 1: Example 3.1: CPU time. Below IC stands for initial condition.

IC a b c d
LWDG 10.34375 8.8125 8.53125 8.21875
RKDG 18.65625 15.90625 15.359375 14.8125

We can see that the computed densities ρ1, ρ2 and ρ3 by both the LWDG and RKDG methods
have a good agreement to the reference solutions, respectively.

Example 3.2. Traffic signal control problem. Now we apply the developed scheme to the traffic
signal control problem, in which the functions of θ are also temporal. This is very common in
traffic problems. We use the same data as in [26]. At the stop line which is near x=0.35 on a
road with a section length L=1200m, v f =20m/s and a constant a(x), the signal display turns
from green to red(at t=0s) and holds for 30s, and then turns back to green for another 30s. We
suppose that all bl(x)(l = 1, 2, 3) are described by the following:

(b1, b2, b3) =
{

(0, 0, 0), if 0.34 < x < 0.36, 0 < t− 60[t/60] ≤ 30s,
(0.5, 0.75, 1), otherwise.

Under these assumptions, the Jacobian matrix F
′
(U) in Eq. (2.3) is as following:

F
′
(U) =




a11 −v f b1u1

a
−v f b1u1

a
a14 0 0

−v f b2u2

a
a22 −v f b2u2

a
0 a25 0

−v f b3u3

a
−v f b3u3

a
a33 0 0 a36

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

where

a11 = v f b1

(
1− u2 + u3

a

)
− 2v f b1u1

a
, a22 = v f b2

(
1− u1 + u3

a

)
− 2v f b2u2

a
,

a33 = v f b3

(
1− u1 + u2

a

)
− 2v f b3u3

a
, a14 = v f u1

(
1− u1 + u2 + u3

a

)
,

a25 = v f u2

(
1− u1 + u2 + u3

a

)
, a36 = v f u3

(
1− u1 + u2 + u3

a

)
.

Similar to that in Section 2, we can calculate the derivatives of each component of F
′
(U) with

respect to x and t to get F
′
(U)x in Eq.(2.4) and F

′
(U)t in Eq.(2.6).

The initial condition of all {ρl}m
l=1 is :

U(x, 0)
a

= (0.05, 0.25, 0.1)T , (3.1)

and the numerical result is shown in Fig. 5, from which a waiting queue can be clearly seen
before the stop line, which propagates backward during the interval before the green signal.
Moreover, the total density ρ reaches its maximum in the queue. Fig. 6 demonstrates the whole
evolution of the total density in a period of 60s, in which the queuing and dissipation near the
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Figure 5: Example 3.2: Densities of all classes at t=30s, k=2 (left); Total density at t=30s, k=2 (right).
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Figure 6: Change of total density for the simulation time T=60s, k=2.

stop line are well reflected. The three shocks appearing on the right-hand side of the stop line
represent overtaking between the three types of vehicles.

We can also simulate traffic signal control for any longer time since the change of signal
lights is periodic, and set the number of vehicles to be any larger although the code will be
quite long and messy.

4 Conclusions

In this paper, the discontinuous Galerkin methods with Lax-Wendroff time discretization is
applied to simulate the MCLWR model on an inhomogeneous highway. The numerical ex-
amples demonstrate the robustness of the LWDG method using WENO limiters. Since the
Lax-Wendroff time discretization is an one step method instead of the multi-step Runge-Kutta
time discretization, the LWDG method can save a certain amount of computational cost over
the RKDG method; thus is more cost effective. Based on the modified standard hyperbolic
conservation system (despite it being non-strictly hyperbolic), the Lax-Friedrichs flux gives
correct numerical viscosity for the convergence of the numerical solutions to physically rele-
vant solutions, while the WENO limiting procedure reduces the surplus numerical viscosity
to achieve a high level of resolution of the claimed waves.
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