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Abstract. This paper compares two models predicting elastic and viscoelastic prop-
erties of large arteries. Models compared include a Kelvin (standard linear) model
and an extended 2-term exponential linear viscoelastic model. Models were vali-
dated against in-vitro data from the ovine thoracic descending aorta and the carotid
artery. Measurements of blood pressure data were used as an input to predict ves-
sel cross-sectional area. Material properties were predicted by estimating a set of
model parameters that minimize the difference between computed and measured
values of the cross-sectional area. The model comparison was carried out using
generalized analysis of variance type statistical tests. For the thoracic descending
aorta, results suggest that the extended 2-term exponential model does not improve
the ability to predict the observed cross-sectional area data, while for the carotid
artery the extended model does statistically provide an improved fit to the data.
This is in agreement with the fact that the aorta displays more complex nonlinear
viscoelastic dynamics, while the stiffer carotid artery mainly displays simpler linear
viscoelastic dynamics.
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1 Introduction

The arterial walls of the cardiovascular system are known to display complex me-
chanical responses under physiological conditions. The typical arterial wall consists
of three layers: an innermost layer, “the intima”, mainly composed of endothelial cells,
a middle layer, “the media”, composed of elongated smooth muscle cells, elastin and
collagen, and an outer layer “the adventitia” comprising a varied number of elastic
sheets, bundles of collagen fibrils, and a network of elastic fibrils. These layers and
the composition of the layers are shown in Fig. 1.

Figure 1: Histological slices displaying a cross section of the arterial wall for the thoracic descending aorta
(left) and the carotid artery (right) from ovine arteries. The vessels were stained with orcein using the
Cajal-Gallengo method, which allows discrimination of the three main wall components that determine the
arterial biomechanical behavior: smooth muscle cells (yellow), elastin (dark red), and collagen (blue). Note
that the carotid artery has a higher proportion of smooth muscle cells (≈ 60%) than the thoracic descending
aorta (≈ 40%), while the aorta has more elastin fibers than the carotid artery.

In this study, our focus is on viscoelastic modeling of the passive dynamic me-
chanical responses of the arterial wall under in-vitro conditions that mimic in-vivo
physiological conditions. Within this context, two models will be evaluated by com-
parison to experimental pressure-area data for two arteries: the thoracic descending
aorta and the carotid artery. The aorta is the largest artery in the cardiovascular sys-
tem while the carotid artery is significantly smaller. For sheep arteries, the thoracic
descending aorta typically has a diameter of 2 cm, while the carotid artery has a di-
ameter of approximately 0.8 cm. The collagen-elastin-smooth muscle cell composition
of these two types of arteries is different; the aorta contains a significant amount of
elastin fibers and fewer smooth muscle cells (approximately 40% of the aortic vessel
wall is composed of smooth muscle cells), while the carotid artery has less elastin and
significantly more smooth muscle cells (approximately 60%) [15]. Another difference
between the two vessels is that the separation between elastin fibers, collagen fibers,
and smooth muscle cells are more distinguished for the carotid artery than for the
aorta; see Fig. 1.

For both vessels, the media layer gives rise to the majority of the vessel’s viscoelas-
tic behavior, and it is the presence and organization of fibers and smooth muscle cells
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that allow the arteries to stretch while, simultaneously, inhibiting over-expansion due
to fluid pressure exerted on the vessel walls by the blood flow [16, 20, 23], preventing
their rupture.

Viscoelastic responses are evidenced via the presence of hysteresis-like loops in
parametric plots of pressure-area data. Many models have been developed to study
the mechanical properties of the systemic arteries, but few studies have been validated
against in-vitro data designed to mimic arterial wall deformation under in-vivo physi-
ological conditions. For a recent review discussing previous modeling approaches see
Kassab [14].

Quasilinear viscoelasticity (QLV) theory has been widely used to characterize the
viscoelastic mechanics of biological soft tissues [11,13,24]. In large part, the success of
QLV theory in this context is based on its ability to tailor both the viscoelastic relax-
ation function and the nonlinear elastic stress-strain response to observed mechanical
responses for the specific soft tissue of interest. The Fung-type continuous spectrum
relaxation function [11] has seen wide usage due to its consistency with the relatively
rate-insensitive response of many soft tissues to dynamical mechanical loading over
a range of frequencies, see e.g., [24]. However, numerical evaluation of the associated
continuous spectrum integral can be tedious and, consequently, a common remedy is
to re-approximate the relaxation function using a few terms of an exponential series or
a model with a finite number of relaxation terms that in the limit approaches a model
with a continuum relaxation spectrum [5–7].

The goal of this study is to predict mechanical properties of the arterial wall. We
predict these properties by solving an inverse problem. Mechanical properties are ex-
tracted from model parameters by solving a nonlinear least squares problem minimiz-
ing the difference between model computed and measured values of cross-sectional
area. We will compare two linear viscoelastic relaxation models formulated to re-
late pressure and cross-sectional area dynamics observed in-vitro under physiological
flow conditions. The two models studied are the Kelvin (standard linear) model and
an extended 2-term exponential series linear viscoelastic model.

2 Models and methods

In this study, blood pressure is treated as an input to the mechanical models which,
in turn, are used to simulate deformation of the vessel’s cross-sectional area. In this
section, we describe the two viscoelastic models, the experimental data employed to
solve the inverse problem, and statistical techniques used for analysis and comparison
of the models.

2.1 Kelvin viscoelastic model

The Kelvin model can be derived under the assumption that the artery can be ideal-
ized as a thin walled tube [12]. We formulate the model by relating vessel strain s and



154 Valdez-Jasso, et al. / Adv. Appl. Math. Mech., 2 (2009), pp. 151-165

transmural arterial pressure p mmHg as

s(t) + τσ
ds
dt

=
r0

Eh

(
p + τε

dp
dt

)
, s(t) =

(
1−

√
A0

A(t)

)
, (2.1)

where in our subsequent model A(t) cm2 is the cross-sectional area of the vessel and
A0=πr2

0 cm2 is the zero-pressure area. The material parameters are the zero-pressure
radius r0 cm, the vessel wall thickness h cm, elastic (stiffness) modulus E mmHg, and
the viscoelastic relaxation times τε sec and τσ sec. Since the parameters E and h are
linearly dependent, we take the product Eh as one independent parameter, resulting
in a total of four independent parameters for the Kelvin model. Note that (2.1) reduces
to an elastic model when the relaxation times are set to zero, i.e., for τσ=τε=0.

The Kelvin model is the simplest viscoelastic model that, simultaneously, captures
effects of creep, stress relaxation and storage of strain energy at equilibrium. In our
previous study [22], material properties (r0, Eh, τσ, τε) were extracted using nonlin-
ear optimization minimizing the least squares error between measured and computed
model values of cross-sectional area, A(t). Model estimates were obtained using p(t)
as an input to predict A(t) using (2.1) to relate the quantities.

To avoid numerical differentiation of the pressure data, (2.1) was re-written in an
equivalent hereditary integral form, obtained by integrating (2.1) from 0 to t seconds.
The resulting integral model is given by

s(t) =
(

s(0)− r0

Eh
τε

τσ
p(0)

)
e−t/τσ +

r0

Eh
τε

τσ
p(t)

+
r0

Eh
τσ − τε

τ2
σ

∫ t

0
e−(t−γ)/τσ p(γ) dγ. (2.2)

In the context of our application, it is noted that we associate t=0 with an intermediate
state of vessel deformation, as opposed to a zero-strain state. While a zero-strain state
can be achieved in-vitro, our modeling approach is to mimic in-vivo conditions, where
it is not possible to achieve a zero-strain state.

2.2 Extended viscoelastic model

Refinement of the Kelvin model typically incorporates two extensions. The first is
the consideration of nonlinear (finite) strains, while the second is the incorporation
of additional relaxation time scales that represent the diverse viscoelastic mechanical
response of the constituent fibers of a soft tissue. Fung’s quasilinear viscoelasticity
(QLV) theory [11] provides a framework within which to develop such models. The
QLV representation of viscoelastic models is typically of the form

s(t) =
∫ t

−∞
K(t− γ)

∂s(e)[p(γ)]
∂γ

dγ, (2.3)
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where K(t) is a reduced creep function, and the inverse elastic response is specified by
a function s(e)[p]. In our application, time integration is performed from 0 to t seconds,
and the unknown functions in (2.3) for the Kelvin model are

s(e)[p] =
r0

Eh
p, K(t) = 1− τσ − τε

τσ
e−t/τε . (2.4)

This correspondence is more clearly seen by re-writing (2.2), using integration-by-
parts, to obtain

s(t) =
(

s(0)− r0

Eh
p(0)

)
e−t/τσ +

r0

Eh
p(0)

+
r0

Eh

∫ t

0

(
1− τσ − τε

τσ
e−(t−γ)/τσ

)
dp(γ)

dγ
dγ

=
(

s(0)− r0

Eh
p(0)

)
e−t/τσ +

r0

Eh
p(0) +

∫ t

0
K(t− γ)

d
dγ

( r0

Eh
p(γ)

)
dγ,(2.5)

where K(t) is as stated in (2.4), and the terms outside the integral arise due to consid-
eration of an intermediate state of vessel deformation at t=0 seconds.

The focus of the current study is the development and analysis of an extended
model accounting for additional viscoelastic relaxation times within the confines of
the small strain assumption. As such, the first relation in (2.4) will remain the same,
while the function K(t) and the terms outside the integral in (2.5) will be modified. We
introduce a new creep function G(t) that involves two independent relaxation times
by writing

G(t) = 1− A1e−t/b1 − A2e−t/b2 , A1, A2 ≥ 0 and b1, b2 > 0. (2.6)

When extending (2.5), we incorporate G(t) both inside and outside the integral. Con-
sider the following model

s(t) =
(

s(0)− r0

Eh
p(0)

)
G(t) +

r0

Eh
p(0) +

r0

Eh

∫ t

0
G(t− γ)

dp
dγ

dγ. (2.7)

Continuity of s(t) in the limit s→0+ yields the relation

s(0) =
(

s(0)− r0

Eh
p(0)

)
(1− A1 − A2) +

r0

Eh
p(0)

= s(0)−
(

s(0)− r0

Eh
p(0)

)
(A1 + A2),

giving rise to the constraint that A1=A2=0. Hence, an alternative to the extension of
(2.4) and (2.5) that is given by (2.7) is now considered.

We revise the proposed extended model by adding a new function

L(t) = B1e−t/b1 + B2e−t/b2
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to the term outside the integral. The new extended model is given by

s(t) =
(

s(0)− r0

Eh
p(0)

)
L(t) +

r0

Eh
p(0) +

r0

Eh

∫ t

0
G(t− γ)

dp
dγ

dγ.

Continuity of s(t) in the limit t→0+ yields the relation

s(0) =
(

s(0)− r0

Eh
p(0)

)
(B1 + B2) +

r0

Eh
p(0).

This gives rise to the new constraint

B1 + B2 = 1 ⇒ B2 = 1− B1.

Thus, the extended model simplifies to

s(t) =
(

s(0)− r0

Eh
p(0)

) (
B1e−t/b1 + (1− B1)e−t/b2

)
+

r0

Eh
p(0)

+
r0

Eh

∫ t

0

[
1− A1e−(t−γ)/b1 − A2e−(t−γ)/b2

] dp
dγ

dγ. (2.8)

We note that this model can be reduced to the Kelvin model, i.e., (2.4) and (2.5), in the
special case

B1 = 1, A1 =
τσ − τε

τσ
, A2 = 0, b1 = τσ, b2 arbitrary. (2.9)

We remark that our extended model can be viewed as an extension of the Kelvin
model to permit multiple relaxation times b1, b2, ..., to improve the approximation to
either the Fung QLV kernel model or the internal strain variable approach of [5–7],
each of which permit a continuum of relaxation times in generalized viscoelastic for-
mulations.

2.3 Parameter estimation

Similar to the efforts in our previous study [22], we used pressure as an input to predict
cross-sectional area of the vessel. Also, similar to our previous study [22] we re-wrote
the model (2.8) using integration-by-parts to avoid using the derivative of pressure as
an input. Thus, we obtained

s(t) =
(

s(0)− r0

Eh
p(0)

) (
B1e−t/b1 + (1− B1)e−t/b2

)

+
r0

Eh
p(t) (1− A1 − A2) +

r0

Eh
p(0)

(
A1e−t/b1 + A2e−t/b2

)

+
A1

b1

r0

Eh

∫ t

0
e−(t−γ)/b1 p(γ)dγ +

A2

b2

r0

Eh

∫ t

0
e−(t−γ)/b2 p(γ)dγ. (2.10)
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For convenience the relations for A1 and b1 in (2.9) are substituted into (2.10) prior to
data analysis. Consequently, the four independent parameters in the Kelvin model
(2.5), θK={r0, Eh, τσ, τε} are contained in the set of the 7 independent parameters of
the extended viscoelastic model (2.10), θE={θK; b2, A2, B1}.

The models presented in this study have been validated using in-vitro experimen-
tal data that mimic the in-vivo hemodynamic conditions in Merino sheep. The data
include in-vitro measurements of blood pressure pj and vessel diameter Dj. Cross-
sectional area is obtained from the diameter measurements by aj=π(Dj/2)2. Note,
in the following we treat the extracted cross-sectional areas as data. Both time series
were measured under physiological flow, pressure, and stretch conditions with a sam-
pling rate of 200 Hz. During experiments, the vessel segments were mounted in a
mock circulation system, and a pulse wave generated by an artificial Jarvik heart was
propagated through the system. The frequency of the pulse waves was set to mimic
the heart rate of a sheep. In this study, data from one sheep from two vessels (the aorta
and the carotid artery) were analyzed. Location of these vessels are shown in Fig. 2.
Details of the experimental protocol can be found in [1, 18, 19, 22].

The two models (the Kelvin model and the extended viscoelastic model) were an-
alyzed via solution of the associated inverse problem. Solution of the inverse prob-
lem aims at selection of a set of parameters from a set of initial parameters using
techniques from nonlinear optimization that allow estimation of model parameters
by minimizing the difference between computed and measured quantities. In this
study, we estimated model parameters (using blood pressure as an input) by mini-
mizing the difference between computed and measured values of cross-sectional area.
To set up the inverse problem we used values from Fung’s work [12] to get a initial
parameter value for elastic modulus E. Initial parameter values for the wall-thickness
h and the unstressed vessel radius r0 were obtained from the experimental procedure
as described by Valdez-Jasso et al., [22]. Initial values for the relaxation times were
estimated and set such that they were an order of magnitude apart. For the extended
viscoelastic model, we used optimized values from the Kelvin model as initial param-
eter estimates. Initial parameter values are given in Table 1. To solve the nonlinear in-
verse problem we used the Nelder-Mead method (a simplex method) as implemented
in the Matlab function fminsearch.

2.4 Statistical model

Given that the data set predicting vessel area contains n scalar observations, we as-
sume that the statistical model can be written as

Ỹj = Aj(θ) + Aj(θ)ρεj, j = 1, 2, ...n, (2.11)

where Aj=A(tj, θ) is the model evaluated at times tj for each observation obtained
from the strain-cross-sectional area relation presented in (2.1), θ∈Rnp , where np is
the size of the set of theoretical true parameter values for the model A(t) and ρ is
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a non-negative real value. Furthermore, it is assumed that the measurement errors
εj, j=1, 2, ..., n, are independent identically distributed (i.i.d.) random variables with
mean E[εj]=0 and constant variance var[εj]=σ2

0 , where σ2
0 is unknown.

The statistical model (2.11) dictates use of ordinary least squares (OLS) when ρ=0
and for any other values of ρ it suggests use of generalized least squares (GLS). The
two cases of GLS studied here were ρ=0.5 and ρ=1 [2, 9].

An iterative approach is needed for implementing the GLS method. The first iter-
ate θ(0) uses the set of optimized parameters θ̂ found using OLS (with the weight w=1
and ρ=0). Given the kth iterate θ(k), to generate the (k + 1)st iterate, we calculated the
weights, w(k)

j =1/Aj(θ(k))2ρ, for a fixed value of ρ (equal to either 0.5 and 1). Once
the weight was calculated, the corresponding weight was included in the error term

∑n
j w(k)

j |Aj(θ)− aj|2, which is then minimized over θ to obtain θ(k+1). This iterative
procedure was continued until the standard error was constant [2, 8, 9].

In addition to analyzing the Kelvin model via solution of the GLS, we compared
the Kelvin model and the extended model using statistical comparison techniques,
which provide quantitative measures of the results. The model comparison is carried
out using generalized analysis of variance type statistical tests that involve the residual
sums of squares. Since the Kelvin model involves a restricted parameter set in the
space of parameters for the extended model, the extended model reduces to the Kelvin
model when θ is restricted to ΘH={θ ∈ Θ|Hθ=constant}, where H, a (3× 4) matrix
of rank r=3, and the constant are given by




0 1 0 0
0 0 1 0
0 0 0 1







θk
b2
A2
B1


 =




1
0
1


 .

Thus, to compare the models we tested the null hypothesis H0 : θE ∈ ΘH.

In order to test the significance of extending the Kelvin model by including addi-
tional relaxation times, we used the error terms computed via solution of the OLS of

Figure 2: Sketch of the major ovine arteries. Experimental measurements pj of pressure and cross-sectional

area aj are obtained from the thoracic descending aorta marked by (PA) and from the carotid artery marked

by (CA).
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the Kelvin and the extended models, and define a test statistic

Un = n
JK(θK)− JE(θE)

JE(θE)
, (2.12)

which under conditions similar to those in an asymptotic sampling distribution the-
ory [2–4, 8], converges as n→∞ to a random variable with a χ2(r) distribution, where
r is the difference in degrees of freedom of the two models. In this case we can use the
χ2(3) distribution to test our hypothesis: if the corresponding test statistic realization
Ûn is greater than τ̄, where τ̄ is a critical value associated with some specific 1− α con-
fidence level, then we reject H0 (i.e., reject the Kelvin model). Otherwise, we cannot
reject H0. Rejection of H0 suggests statistically that the extended model is an improved
description of the data. Given a 95% confidence level, the τ̄ critical value for α=0.05 is
τ̄=7.814 (see http://www.statsoft.com for χ2(3) tables). Here we test the probabil-
ity P(Un>τ̄)=α. Illustrative examples using this model comparison methodology can
be found in Chapter 5 of [4] and Chapter 3 of [8].

3 Results

3.1 Optimization results

As described above, we used the Nelder-Mead method to determine a set of param-
eters that minimize the OLS error between the computed and measured values of
cross-sectional area. The OLS error is given by

J(θ) =
1
n

n

∑
j

∣∣Aj(θ)− aj
∣∣2,

where aj is the measured cross-sectional area data, Aj(θ)=A(tj, θ) are the computed
model values of the cross-sectional area for given parameter values θ, and n is the
number of observations. We optimize J(θ) to obtain the OLS parameter estimates θ̂,
resulting in the parameter values given in Table 1.

We also carried out the inverse problems for both models using GLS optimiza-
tion criteria. Fig. 3 depicts the GLS residuals computed using the Kelvin model with
ρ=1. Results are predicted for both the thoracic descending aorta (top graphs) and
the carotid artery (bottom graphs). Results suggest that our assumption of constant
variance may fail for both vessels (i.e., both data sets). Nonetheless, we perform a
comparison of the two models and their relative reduction in residuals for the OLS
determined parameters of Table 1.

3.2 Uncertainty analysis

After carrying out the optimizations and obtaining the results reported in Table 1, we
computed the relevant realizations for the test statistics as defined in (2.12). For the
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Table 1: Initial and optimized parameter values for the Kelvin model and the extended viscoelastic model
for the thoracic descending aorta and the carotid artery.

Thoracic descending aorta Carotid artery
Kelvin Extended Kelvin Extended

Init Opt (θ̂K) Init Opt (θ̂E) Init Opt (θ̂K) Init Opt (θ̂E)
r0 cm 0.93 0.86 0.86 0.86 0.45 0.44 0.44 0.45
Eh mmHg cm 234 669 669 659 203 1505 1505 2604
τσ ×102 sec 5.00 5.94 5.00 44.5
τε ×102 sec 2.50 2.96 2.50 13.7
A1 0.50 0.48 0.50 0.35
A2 0.50 0∗ 0.50 0.44
b1 ×102 sec 5.00 6.64 5.00 44.4
b2 ×102 sec 2.50 4.80 2.50 3.51
B1 0.50 0∗ 0.50 0∗
J ×107 13400 13200 2.92 1.73

thoracic descending aorta, we find JK(θ̂K)=13400 × 10−7 and JE(θ̂E)=13200 × 10−7.
For this data set we had n=302 so using (2.12) we obtain the test statistic

Ûn = n
JK(θ̂K)− JE(θ̂E)

JE(θ̂E)
= 4.58.

Thus for the thoracic descending aorta we conclude that inclusion of more relaxation
times (use of the extended model) does not provide a statistically significant improve-
ment over the Kelvin model (at the 95% confidence level, where τ̄=7.814). Using a
similar calculation for the carotid artery (the data in this case was for n=335), we
found Ûn=230.43. Thus, for the carotid artery data, the inclusion of an additional
relaxation time provides a statistically significantly improved model.

4 Discussion

This study demonstrates that both the Kelvin and the extended models are able to
predict viscoelastic features of the vessel wall deformation under in-vitro conditions
that mimic physiological flow, pressure, and stretch. Prediction of elastic modulus
times wall thickness Eh shows that the aorta is significantly less stiff than the carotid
artery, i.e., Ehaorta¿Ehcarotid (see Table 1). In addition, we observe that one of the
relaxation time scales is an order of magnitude larger for the carotid artery than for
the aorta. This is confirmed by computing the phase-shift. For the Kelvin model the
phase-shift can be predicted by

tan(δ) =
ω(τσ − τε)
1 + ω2τστε

, ω =
2π

T
,

where ω 1/sec is the frequency and T sec is the length of the cardiac cycle. It should
be noted that this equation is derived to study phase shifts of a pure harmonic wave,
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Figure 3: Results from the GLS using thoracic descending aorta (first row) and carotid artery (second row),

both presenting the case when ρ=1. Left column shows the residual rj=(aj − Aj(θ̂))/Aj(θ̂) as a function
of time, and the right column shows the residual as a function of the model. Results from other values of
ρ (not shown) looked similar.

and in our study the pressure waves propagating along the vessels are composed of
multiple frequencies. For the Kelvin model, the phase-shift δ=15.8 degrees for the
thoracic descending aorta and δ=21.3 degrees for the carotid artery. These results
confirm the biological notion that the carotid artery is more viscoelastic than the aorta.
This agrees with the histological observation that the viscoelastic smooth muscle cells
are more abundant in the carotid artery than in the thoracic descending aorta [15].

In addition to these components, the aorta also contains fibers supporting the ves-
sel wall and cells aligned in a helix [20]. Furthermore, the adventitia may have a more
prominent role in the aorta than in the smaller arteries [10]. As a result, the aorta
exhibits a more complex “nonlinear” stiffening, evidenced by decreasing slope of the
pressure-area curve as pressure increases. This can be seen by analyzing the hysteresis
loops shown in Fig. 5 (right column).

Note how the upper part of the pressure-area curve representing the relaxation
phase of the cardiac cycle changes slope for the aorta, while the carotid artery does
not display these dynamics. Consequently, neither the Kelvin model nor the extended
model is capable of adequately reproducing this important component of the mechan-
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Figure 4: Results from the thoracic descending aorta (top graphs) and carotid artery (bottom graphs)
comparing the Kelvin model (dark line) and the extended model (dashed line) using pressure data (gray
line) as an input to predict vessel area data (gray line). The left panels show vessel area as a function of
time, blood pressure (input), and the error between computed Aj(θ) and measured aj areas. The right

column shows relation between pressure and area for one cycle from the thoracic descending aorta (top
graph) and from the carotid artery (bottom graph).

ical deformation for the thoracic descending aorta data. This is also confirmed by the
statistical tests used to compare the models, which showed that the two models cannot
be distinguished for the aorta. The carotid artery does not display significant nonlin-
ear stiffening, but it displays significant viscoelastic damping. Consequently, for this
vessel our statistical analysis confirmed that the extended model improves predictions
of the vessel deformation. The latter can also be observed by the improved fit to the
pressure-area data for the carotid artery, i.e., J=1.73× 10−7 for the extended model
versus J=2.92× 10−7 for the Kelvin model (see Table 1).

These findings are in agreement with previous studies, e.g., Kassab [14] and Schulze-
Bauer and Holzapfel [21], which suggest that hyperelastic models are more appropri-
ate for predicting elastic deformation of the aorta. As such, future studies by our
group are considering development of nonlinear extensions to the linear viscoelastic
models described above.

Another question to be addressed in future studies relates to the observation that,
for the extended model, our calculations (not presented here) reveal that the parame-
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Figure 5: Results from the thoracic descending aorta (top graphs) and carotid artery (bottom graphs)
comparing the Kelvin model (dark line) and the extended model (dashed line) using pressure data (gray
line) as an input to predict vessel area data (gray line). The left panels show vessel area as a function of
time, blood pressure (input), and the error between computed Aj(θ) and measured aj areas. The right

column shows relation between pressure and area for one cycle from the thoracic descending aorta (top
graph) and from the carotid artery (bottom graph).

ters are correlated and solutions to the inverse problem only ensures a local minimum.
For the Kelvin model, parameters are not correlated and solutions to the inverse prob-
lem always gave the same set of parameters, even when initial parameter values for
optimization were varied by several orders of magnitude. Preliminary results with
the extended model showed that even small variations in initial parameter values
gave rise to significant changes in the optimized parameter values, without chang-
ing the end cost. In particular, we observed that values for B1 tend to switch between
positive values close to zero and larger than 1, giving rise to a switch in the roles of
the two relaxation factors. One way to avoid this kind of behavior is to enforce more
constraints on the model parameters, e.g., one could enforce B1¿1. Another option is
to use sensitivity analysis combined with subset selection to estimate a reduced set of
parameters to be optimized. Such techniques have been used successfully in previous
studies, see e.g., [17]. In this study the goal was to compare the two models to test if
the extended model is more accurate; thus the parameter uniqueness question is not
addressed here. We remark that if the model is to be used for analysis of large data
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sets, this question must be addressed before numerous simulations are conducted.
In summary, this study demonstrates the importance of including viscoelasticity

when modeling deformation of the large ovine arteries and, in particular, that appli-
cation of an extended viscoelastic model for the carotid artery significantly improves
accuracy over the simpler Kelvin model. On the other hand, for the thoracic descend-
ing aorta, it is necessary to develop a more advanced model accounting for nonlinear
responses to achieve an improvement in data fitting.
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