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Abstract. We review recent developments in lattice Boltzmann method for react-
ing flows in porous media. We present the lattice Boltzmann approaches for in-
compressible flow, solute transport and chemical reactions in both the pore space
and at the fluid/solid interfaces. We discuss in detail the methods to update solid
phase when significant mass transfer between solids and fluids is involved due to
dissolution and/or precipitation. Applications in different areas are presented and
perspectives of applying this method to a few important fields are discussed.
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1 Introduction

Reacting flows in natural and man-made porous media are ubiquitous, particularly in
various energy, earth and environment systems. Examples include electrochemical en-
ergy conversion devices (fuel cells and batteries), stimulation of petroleum reservoirs,
geologic storage of carbon dioxide and nuclear wastes, subsurface contaminant mi-
gration, bioremediation etc. In these examples, the inherently complex morphology
of such porous media coupled with multi-physicochemical transport and interfacial
processes over multiple length scales makes this problem notoriously difficult and
consequently poses several open questions. On one hand, most of the key processes,
including fluid mobility, chemical transport, adsorption and reaction, are ultimately
governed by the pore-scale interfacial phenomena, which occur at scales of microns.
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On the other hand, because of the wide disparity in length scales, it is virtually impos-
sible to solve the pore-scale governing equations at the scale of interest. As a result,
a continuum formulation (macroscopic approach) of reactive transport in porous me-
dia based on spatial averages and empirical parameters is often employed. As the
spatial averaging is taken over length scales much larger than typical pore and grain
sizes, spatial heterogeneities at smaller scales are unresolved. These unresolved het-
erogeneities, together with the empirical parameters often unrelated to physical prop-
erties, lead to significant uncertainties in reactive flow modeling at the larger scale.
Therefore, to reduce uncertainties in the numerical modeling of reactive transport pro-
cesses at the scale of interest, it is imperative to better understand these processes at
the pore scale and to incorporate pore-scale effects in the continuum scale [34, 35].

The problem of reacting flows in porous media has been studied extensively at
the pore scale using various approaches under different simplifying conditions [2, 3,
8, 10, 12, 17, 20–23, 25–28, 43, 53]. The lattice Boltzmann method (LBM), a relatively
new numerical method in computational fluid dynamics [6, 44], has undergone great
advances and developed into a powerful numerical tool for simulating complex fluid
flows and modeling physics in fluids in the past two decades. Owning to its advantage
in handling nonequilibrium dynamics, especially in fluid flow applications involving
interfacial dynamics and its ease to treat complex boundaries (geometries), the LBM
offers a promising approach for investigating pore-scale phenomena involving react-
ing flows in porous media. In this article, we review recent developments in LBM
for reacting flows in porous media. Earlier work on lattice gas and lattice Boltzmann
methods and their applications in reaction-diffusion systems can be found in the ex-
cellent review by Chen et al. [5].

2 Lattice Boltzmann method for fluid flow

The flow of a single aqueous fluid phase in the pore space of a porous medium can be
simulated by the following evolution equation (the so-called LBGK equation) [4, 41]

fα(x + eαδt, t + δt) = fα(x, t)− fα(x, t)− f eq
α (x, t)

τ
. (2.1)

In the above equation, δt is the time increment, fα the distribution function along the
α direction in velocity space, f eq

α the corresponding equilibrium distribution function
and τ the dimensionless relaxation time. For the commonly used two-dimensional,
nine-speed LB model (D2Q9) as shown in Fig. 1, the discrete velocities eα have the
following form:
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Figure 1: Schematic illustration of a D2Q9 lattice.

and f eq
α is given by

f eq
α (ρ, u) = ωαρ + ρsα(u), (2.3)

where

sα(u) = ωα

(3eα · u
c2 +

9(eα · u)2

2c4 − 3u · u
2c2

)
. (2.4)

In the above equations,

c =
δx
δt

,

where δx is the space increment and ωα are weight coefficients with ω0=4/9, ωα=1/9
for α=1, 2, 3, 4 and ωα=1/36 for α=5, 6, 7, 8. It has been shown that Eq. (2.1) can be
proved to recover the continuity and Navier-Stokes (NS) equations in the nearly in-
compressible limit [4, 41]. The fluid density and velocity are calculated using

ρ = ∑
α

fα, (2.5a)

ρu = ∑
α

eα fα. (2.5b)

The density variation and Mach number of the fluid must be very small for an accu-
rate simulation of incompressible flows. These requirements, especially small density
variations, limit the applicability of conventional LB models for practical problems
involving flow through porous media, because in these problems, fluid motion is of-
ten driven by large pressure gradients, or, equivalently, elevated density gradients.
For low permeability media, even if the pore velocity (Mach number) is small, the
pressure (density) gradient can be very large. Therefore, use of the conventional LB
model to simulate flow in porous media may introduce significant density changes
(and hence compressibility error). Furthermore, when the velocity field obtained from
the conventional LB model is applied to solute transport simulation, one may obtain
an unphysical breakthrough curve (breakthrough too early) for a tracer, or worse, an
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unphysical disequilibrium of an otherwise chemically equilibrated system for reac-
tive solutes [34]. This has been largely neglected in previous LB modeling of reacting
flows.

Therefore, when flow and transport in porous media are concerned, an incom-
pressible LB model is more desirable. There are several incompressible LB models in
the literature. Here we only give a brief overview of the one constructed by Guo et
al. [13] as it is applicable to both steady and unsteady flows. In this model, the evolu-
tion equation is the same as the conventional LBGK equation (2.1), but the equilibrium
distribution equation is given by

f eq
α =





−4σ
p

ρc2 + sα(u), α = 0,

λ
p

ρc2 + sα(u), α = 1− 4,

γ
p

ρc2 + sα(u), α = 5− 8,

(2.6)

where σ, λ and γ are parameters satisfying

λ + γ = σ, λ + 2γ =
1
2

.

Eq. (2.6) has been shown to recover the following incompressible NS equations [13]

∇ · u = 0, (2.7a)
∂u
∂t

+∇ · (uu) = −1
ρ
∇p + ν∇2u, (2.7b)

with the velocity and pressure given by

u =
8

∑
α=1

eα fα, (2.8a)

p
ρ

=
c2

4σ

( 8

∑
α=1

fα + s0(u)
)

, (2.8b)

and the viscosity is determined by

ν =
(τ − 1

2 )(δx)2

3δt
. (2.9)

To demonstrate the compressibility effect of the conventional LB model on solute
transport in porous media, we simulated flow and solute transport in a limestone
rock at the pore scale. The pore structure was derived from a digitized image of a
limestone rock thin section (Fig. 2). The size of the image is 320× 240 lattice spacings,
corresponding to a physical domain of 4× 3 centimeters. Flow is simulated using the
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Figure 2: Illustration of a rock thin section used in the flow and solute transport simulations. Black regions
refer to solid grains.

conventional (compressible) and incompressible LB models. Solute transport is simu-
lated using the LB model based on the two calculated velocity fields, i.e., compressible
and incompressible velocity fields. The breakthrough curves for solute transport are
compared with 1D FLOTRAN (a continuum scale model) simulations [33].

In Fig. 3 are shown breakthrough curves obtained with the 1D FLOTRAN simula-
tion and with the LB simulations based on the compressible and incompressible veloc-
ity fields for two different pressure gradients. In the FLOTRAN simulation, the num-
ber of nodes is 320. The average Darcy velocity is calculated from the velocity field
obtained using the incompressible LB model, the tortuosity is derived from separate
simulations of diffusion through this porous medium using both LB and FLOTRAN
simulations and the dispersivity remains a fitting parameter [34]. In the continuum-
scale simulation using FLOTRAN, each node is assigned the same porosity, perme-
ability, tortuosity, Darcy velocity and dispersivity values. Therefore, the medium used
in the continuum-scale simulation is homogenized, with each node having the same
medium properties of the whole medium, as it was treated in [24]. For the case of
smaller pressure gradient, the three breakthrough curves coincide with each other

Figure 3: Time evolution of the concentration at the exit (breakthrough curve) for the thin section shown in
Fig. 2. Solid line, square and diamond symbols denote the results of 1D FLOTRAN and LB simulations based
on incompressible and compressible velocity fields, respectively. LB concentrations are averaged vertically:
(a) ∆p=0.02; (b) ∆p=0.2, both in LB units.
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(Fig. 3a), indicating that a single-continuum model with a homogenized medium is
sufficient to simulate the transport process in the medium represented by the thin sec-
tion, as far as the breakthrough curve is concerned. This conclusion is supported by
the observation that most of the pore space in the medium is connected and acces-
sible by flow, unlike the structured medium in [34], which has a significant amount
of dead-end pore space only accessible by diffusion and hence has to be modeled by
a dual-continuum model. For a larger pressure gradient, however, the breakthrough
curve based on the compressible velocity field deviates from the other two curves by
predicting an earlier breakthrough, as shown in Fig. 3b.

3 Lattice Boltzmann method for chemical reactions in the
pore space

3.1 Kinetic reactions

The LB models for chemically reacting fluid flows were first introduced by [9, 29]. In
their models, the LB equations for transport have a similar form as the flow equation
with the addition of a source/sink term representing chemical reactions. The chemical
reactions used in [9] represent the Selkov model. In a more general case, homogeneous
chemical reactions taking place in an aqueous fluid can be written in the following
form [21]:

0 
N

∑
k=1

νkr Ak, r = 1, · · · , NR, (3.1)

where N is the total number of solute species, NR is the number of reactions, Ak de-
notes the kth species and νkr is the stoichiometric coefficient. If the concentrations
of the aqueous species are assumed to be sufficiently low so that their effect on the
density and velocity of the solution is negligible, then the reactive transport of solute
species can be described using another set of distribution functions, gαk, which satis-
fies a similar evolution equation as fi

gαk(x + eαδt, t + δt) =gαk(x, t)− gαk(x, t)− geq
αk(Ck, u)

τk

+ ωα

NR

∑
r=1

νkr Ir, k = 1, · · · , N, (3.2)

where Ir is the reaction rate of the r-th reaction, Ck is the solute concentration of the
k-th species, τk is the relaxation time related to the diffusivity by

Dk =
(τk − 1/2)(δx)2

3δt
, (3.3)

for the D2Q9 lattice, and geq
αk is the equilibrium distribution function of the kth species,

which has the following form:

geq
αk(Ck, u) = ωαCk + Cksα(u), (3.4)
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the concentration Ck is defined in terms of the distribution function by the following
equation

Ck = ∑
α

gαk, (3.5)

similar to the density in the flow equation. Using the Chapman-Enskog expansion
technique, one can prove that the above LB equation (3.2), recovers the pore-scale
advection-diffusion-reaction equation for an incompressible flow field [9]

∂Ck

∂t
+ (u · ∇)Ck = ∇ · (Dk∇Ck) +

NR

∑
r=1

νkr Ir. (3.6)

Therefore, one can solve the reactive transport problem by solving Eq. (3.2) for each
species, assuming all reaction rate constants are known.

Using their LB model, Dawson et al. [9] simulated pure diffusion, homogeneous
chemical reactions and pattern formation due to Turing instability. Their numerical
results agreed well with theoretical predictions and captured the basic physics as pre-
dicted by the macroscopic reaction-diffusion equations. Qian et al. [42] simulated front
dynamics and scaling properties for the irreversible reaction: A + B→C. They verified
the asymptotic results concerning the scaling exponents and the scaling function of
the production rate at long times. Weimar and Boon [52] simulated an athermal flow
which advects reactant species. They considered a nonlinear reactive system described
by the Brusselator model. Yan and Yuan [55] simulated the Belousov-Zhabotinskii re-
action and showed that the LBM could capture the well-known chemical clock of the
diffusion-reaction system. The reactive LBM has also been used to simulate combus-
tion [11, 54], bacterial chemotaxis [16] and bacterial growth in porous media [56].

3.2 Local-equilibrium reactions

For a chemical system with many species, solving Eq. (3.2) for each species may be
very computationally expensive. Moreover, to solve these equations would require
knowledge of all the reaction rates Ir as functions of the species concentrations through
kinetic rate laws. For many reactions, however, their intrinsic rates are sufficiently
rapid that the reactions may be assumed to be in instantaneous equilibrium. Their
actual rates are then controlled by the rate of transport of species to and from the site
of reaction. For these reactions it would be desirable if the conservation equations
could be formulated in such a way that rates corresponding to these fast reactions
could be replaced by conditions of local equilibrium in the form of appropriate mass
action equations.

In a previous paper, Kang et al. [21] have derived the following LB equation for
the total primary species concentrations for chemical systems with reactions written
in canonical form

Gαj(x + eαδt, t + δt) = Gαj(x, t)−
Gαj(x, t)− Geq

αj (Ψj, u)

τaq
, (3.7)
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where j = 1, · · · , NC, and NC is the number of primary species, Ψj is the total concen-
tration of the j-th primary species, Gαj is its distribution function along the α direction,
Geq

αj is the corresponding equilibrium distribution function and τaq is the dimension-
less relaxation time for all the aqueous species. Here only species-independent dif-
fusion is considered, guaranteeing conservation of charge in the aqueous phase. Dif-
ferent diffusion coefficients can be obtained by varying δx or δt in Eq. (3.3). More infor-
mation on LBM simulation of electrochemical systems that includes species-dependent
diffusion can be found in [15]. For the D2Q4 model, the equilibrium distribution takes
the following linear form:

Geq
αj =

Ψj

4
+

Ψj

2c2 (eα · u), (3.8a)

with eα =
(

cos
(α− 1)π

2
, sin

(α− 1)π

2

)
c, α = 1, 2, 3, 4. (3.8b)

Noble [39] has shown that Eq. (3.7) can recover the following pore-scale advection-
diffusion equation for Ψj

∂Ψj

∂t
+∇ ·Ωj = 0, (3.9a)

with

Ψj = ∑
α

Gαj, (3.9b)

and Ωj = uΨj −D∇Ψj, (3.9c)

as the flux of the total concentration of the j-th primary species due to both advection
and diffusion. The diffusivity is given by

D =
(τaq − 1/2)(δx)2

2δt
. (3.10)

Assuming the homogeneous reactions are in instantaneous equilibrium, we have
the following mass action equations [35, 36]

Ci = (γi)−1Ki

NC

∏
j=1

(γjCj)νji , (3.11)

where νji are the stoichiometric coefficients, Ki is the equilibrium constant of the i-th
homogeneous reaction, γi is the activity coefficient of the i-th secondary species and
Cj and Ci are solute concentrations for primary and secondary species, respectively.
They are related to Ψj by

Ψj = Cj +
NR

∑
i=1

νjiCi, (3.12)

where NR is the number of independent homogeneous reactions, or, equivalently, sec-
ondary species.



Q. J. Kang, P. C. Lichtner and D. R. Janecky / Adv. Appl. Math. Mech., 5 (2010), pp. 545-563 553

Therefore, by rewriting the homogeneous reactions in the canonical form, formu-
lating a LB equation for total concentration Ψj and replacing the rates of these reactions
with mass action equations, the number of unknowns and evolution equations is re-

(a) (b)

Figure 4: Resulting geometries at time=15625 seconds for two different mineral reaction rate constants:
(a) large reaction rate constants; (b) small reaction rate constants.

Figure 5: Distribution of solute concentrations, pH value and reaction rates at time=15625 seconds for
small reaction rate constants.
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duced from NC + NR to NC. The reduction can be significant for a system with many
aqueous species, as demonstrated in the following example.

Kang et al. [19] simulated the injection of a fluid saturated with 170 bars CO2(g)
into a limestone rock at the pore scale. In their study, the pore structure shown
in Fig. 2 is used. The chemical system of Na+, Ca2+, Mg2+, H+, SO2−

4 , CO2(aq)
and Cl− with the reaction of calcite to form dolomite and gypsum is consid-
ered. Secondary species included in the simulation are: OH−, HSO−

4 , H2SO4(aq),
CO2−

3 , HCO−
3 , CaCO3(aq), CaHCO+

3 , CaOH+, CaSO4(aq), MgCO3(aq), MgHCO+
3 ,

MgSO4(aq), MgOH+, NaCl(aq), NaHCO−
3 (aq) and NaOH(aq). For this system, NC=7,

but NC + NR=23. Initial fluid composition is pH 7.75 and 2.69 m NaCl brine, equi-
librium with minerals calcite, dolomite and gypsum at 25◦C. Initial rock composition
is calcite. Secondary minerals include dolomite and gypsum. For boundary condi-
tions, a constant pressure gradient is imposed across the domain for flow. When flow
reaches steady state, a fluid with a pH of 3.87 and in equilibrium with 179 bars CO2(g)
and minerals dolomite and gypsum is introduced at the inlet. Zero gradient boundary
conditions are imposed at the outlet. Two different cases are considered with different
mineral reaction rates to show their effects on solution concentration, mineral depo-
sition and change in geometry. Resulting geometries at time=15625 seconds for two
different mineral reaction rate constants are plotted in Fig. 4. Damkohler number is
7.375 for calcite and gypsum and 0.7375 for dolomite for the faster mineral reactions
and 7.375×10−2 for calcite and gypsum and 7.375×10−3 for dolomite for slower reac-
tions. Concentration distribution of total Ca2+ and Mg2+, pH and reaction rates for
calcite, dolomite and gypsum for the slower reactions are plotted in Fig. 5. The meth-
ods used to handle mineral reactions and to update solid phase will be discussed in
the following sections.

As can been seen from the figures, as the reaction rate constants decrease, the de-
position of dolomite becomes more uniform surrounding the dissolving calcite grains.
Only a small amount of gypsum forms on top of dolomite. At some point in the simu-
lation, the major pores for flow become blocked halting further fluid flow through the
medium. The pH is uniform over the entire pore space. All reaction rates have finite
values at the mineral surface in the whole domain, outlining the solid geometry. The
reaction rate is negative for calcite and positive for dolomite and gypsum, confirming
that calcite is dissolving while dolomite and gypsum are precipitating.

4 Lattice Boltzmann method for chemical reactions at
fluid-solid interfaces

Early work on chemical reactions at solid surfaces was based on lattice gas automa
(LGA). Wells et al. [53] pioneered an LGA model that coupled solute transport with
chemical reactions at mineral surfaces and in pore networks. In their model, chemi-
cal reactions considered at solid surfaces included precipitation/dissolution, sorption
and catalytic reaction. Dissolution and precipitation reactions were simulated by al-
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lowing wall nodes to serve as sources or sinks for mass of a dissolved component.
Whenever a particle collides with a wall, a unit of mass may be exchanged, thus in-
creasing or decreasing the local concentration in solution depending upon the satura-
tion state of the fluid.

Sullivan et al. [45,46] simulated 2D and 3D packed bed reactors using a LBM. They
accounted for the local fluid velocity by including reaction via concentration changes
in the equilibrium distribution. Miller et al. [38] simulated anisotropic crystal growth
from melt, using a LBM with enhanced collisions for hydrodynamics coupled with
a phase-field model for the anisotropic liquid/solid phase transition. Other LBMs
treated chemical reactions at the fluid-solid interfaces through boundary conditions.
Kelemen and co-workers [28] extended the LBM with a dissolution boundary condi-
tion such that the fluid particle colliding with the wall has a probability of detaching
a solid particle. Verhaeghe and co-workers [49] designed boundary conditions to im-
pose a concentration or a flux on a solid interface for use in multicomponent LBMs.
Kang et al. [25–27] developed LB models for simulating coupled flow and dissolu-
tion/precipitation in porous media for systems with one or two aqueous species and
simple reaction kinetics. In [27], they studied the effects of Peclet and Damköhler
numbers on solid alteration and solute concentration and investigated the conditions
at which the effects of dissolution and precipitation on solid alteration can be reversed
approximately and minimize hysteresis. Later, Kang et al. [21] developed a more gen-
eral LB pore-scale model for simulating reactive transport in systems with multiple
aqueous components and minerals. Their model takes into account advection, diffu-
sion, homogeneous reactions among multiple aqueous species, heterogeneous reac-
tions between the aqueous solution and minerals, as well as the resulting geometrical
changes in pore space.

In the models by Kang et al. [21,25–27], the boundary condition for the thermal LB
model proposed by He et al. [14] was used to derive the boundary condition for the
concentration distribution function at the fluid/solid interface. As a result, the solute
mass is not strictly conserved by heterogeneous reactions occurring at the mineral in-
terface. In a more recent publication, Kang and co-workers [22] rigorously derived the
boundary condition for the distribution function of the total concentrations by using a
correct expression of the particle distribution functions in terms of the corresponding
total concentrations and their gradients and by using a relation satisfied by the non-
equilibrium portion of the distribution functions. With this new boundary condition,
the solute mass is strictly conserved.

In Kang et al.’s method, the following boundary condition for the total concentra-
tions Ψj has been employed [21]

D ∂Ψj

∂n
= −

Nm

∑
m=1

νjmkm (1− KmQm) . (4.1)

In this equation, n is the direction normal to the interface pointing toward the fluid
phase, km is the reaction rate constant, Km is the equilibrium constant and the ion
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Figure 6: Schematic illustration of a D2Q4 lattice at a wall node.

activity product Qm is defined by

Qm =
NC

∏
j=1

(γjCj)νjm . (4.2)

The formulation of the unknown distribution functions at the fluid/solid interface de-
pends on the orientation of the surface. For a wall node shown in Fig. 6, the unknown
distribution function G2j can be calculated by [22]

G2j =
Ψj

2
− G4j, (4.3)

where Ψj is determined from Eq. (3.12) after Cj is calculated from the following non-
linear algebraic equation through the Newton-Raphson iteration method

2G4j =
Ψj

2
− 1

c

Nm

∑
m=1

νjmkm(1− KmQm). (4.4)

5 Update of solid phase

To accurately model chemical reactions at fluid-solid interfaces, it is necessary to ac-
count for the time evolution of solid phase, especially when significant mass transfer
between solids and fluids is involved due to dissolution and/or precipitation. Verberg
and Ladd [47, 48] designed an algorithm for simulation of chemical erosion in rough
fractures. An optimized LB scheme is used to solve the time-independent Stokes flow
equations. A continuous bounce-back scheme allows for the boundary to be located
anywhere between two grid nodes. The new solid structure is determined based on
the local flux of tracer particles across the solid surface, where the assumption is made
that the reaction kinetics are instantaneous and that the dissolution is therefore diffu-
sion controlled. In Verhaeghe’s work, the amount of species injected in the system was
calculated from the difference between populations leaving and entering the system.
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The amount of dissolved solid was then made equal to the amount of injected species
divided by the difference between the solid concentration and the actual concentra-
tion in the cell. Kang et al. [20] proposed two methods to update solid phase. In both
methods, the volume of the stationary solids satisfies the following equation

∂Vm

∂t
= Vmam I∗m, (5.1)

where Vm, Vm and am are dimensionless volume, molar volume and specific surface
area of the m-th mineral, respectively and I∗m is the reaction rate for the m-th mineral
reaction at the mineral interface. Solute diffusion in the solid phase is neglected and
mineral reactions are assumed to only occur at the fluid-solid interface. Each interface
node represents a control volume (a control area in the 2D case) with a size of 1× 1
(in lattice units) and is located at the center of this volume. As can be seen from Fig. 6,
node Q is the center of the control volume surrounded by dashed lines. The initial
control volume is given a dimensionless volume V0

m. The volume is updated at each
time step explicitly according to the equation

Vm(t + δt) = Vm(t) + Vmam I∗mδt, (5.2)

where δt is the time increment. In this study both δt and am equal unity in lattice units.
When Vm reaches certain threshold values, the pore geometry needs to be up-

dated. For dissolution, the solid node associated with Vm can be simply removed
(i.e., changed to a pore node), when Vm reaches zero. For precipitation, however, there
are multiple ways to add a solid node when Vm reaches a certain threshold value. A
random-growth method was proposed by Kang et al. for both single-species [25, 27]
and multi-component systems [21]. In that method, the growth has no preference
in any particular direction and the method has been shown to be lattice-effect free.
Fig. 7 shows crystal growth from a supersaturated solution of a single species based
on this random-growth method. Clearly crystal shape in case (d) is a fairly round
shape. Growth in preferred directions can be achieved by incorporating correspond-
ing physics in the growth rules. For example, polygonal and dendritic crystals with
symmetry have been produced by aligning the direction of growth to that of the maxi-
mum concentration gradient and different morphologies have been obtained by vary-
ing the probability of adding a solid node in that direction [37]. The results shown
in Fig. 4 are also based on the random-growth method, but for a multi-component
system.

In the above methods, the grid size is assumed to be small enough that each node
is only represented by one mineral at one time and the effect of both dissolution and
precipitation is recorded at that node through Eq. (5.2). In reality, changes of solid
morphology can involve scales much smaller than the lattice or pore size used in
the simulations. In another method, we assume that each node can be represented
by multiple minerals whose initial total volume fraction amounts to unity. The vol-
ume fraction of each mineral is still updated by Eq. (5.2) and dissolution recorded in
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Figure 7: Crystal structures developed at different Da numbers and at solute saturation 1.2: (a)
Da=600; (b) Da=150; (c) Da=48; (d) Da=2.

the solid node. Mass accumulation due to precipitation, however, is recorded at the
neighboring pore nodes. As seen in Fig. 6, when

∑
m

Vm(Q) = 0, (5.3)

node Q is changed to a fluid node. When

∑
m

Vm(S) = 1, (5.4)

Figure 8: Resulting geometry (black and white) and volume fraction for the smaller reaction rate constants.
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node S becomes a solid node composed of multiple minerals. In contrast to previous
methods [21, 27] for updating pore geometry, the current method can account for co-
existence of multiple minerals at the same node and the growth is deterministic rather
than random. Fig. 8 shows resulting geometry and volume fraction for the smaller
reaction rate constants using this method to update the solid phase. Now some solid
nodes are not pure, but consist of different minerals. Their composition can be seen
from the volume fraction of each mineral. Although the methods used are totally
different, there is a strong resemblance between Figs. 4 (b) and 8 regarding the final
porous medium structure and distribution of different minerals.

Clearly, the LBM can be used to simulate a variety of reacting flow problems when
combined with appropriate methods to update the solid phase that account for the un-
derlying physical properties/processes. Knutson et al. [30] simulated biofilm growth
in porous media using the combined LBM, a final volume method and a cellular au-
tomata algorithm. Schulenburg et al. [50] presented the first numerical 3D pore-scale
model of biofilm growth in porous media, based on an LB simulation platform com-
plemented with an individual-based biofilm model (IbM). Pintelon et al. [40] also sim-
ulated biofilm growth using an LB simulation platform complemented with the IbM.
In addition, in their method, a biomass detachment technique was included using a
fast marching level set (FMLS) method that modeled the propagation of the biofilm-
liquid interface with a speed proportional to the adjacent velocity shear field.

6 Future applications

We envision that continuous progress in the area of reacting flows in complex media
can be made in the near future, which will enable the LBM to be applied to more
challenging problems.

Seafloor hydrothermal system vents are a good example. As highly dynamic
systems involving transfer of high temperature solutions from the crust across the
seafloor interface, they offer a complex environment where chemical reactions, fluid
flow and detailed physical structures must be modeled. They are also potential
”gold mines” of metals and unique biological materials such as metal-tolerant and
chemosynthetic bacteria that are of major economic importance [18]. These systems
have coupled physical, chemical and biological processes, to which the LBM is well
suited. In addition to flow and chemical reactions in complex geometries, to simu-
late the processes and growth of chimney structures at seafloor hydrothermal vents,
the moving particle capability [1, 7, 31, 32] should be incorporated into the multi-
component reactive LBM.

The chemical reactions presented so far are all non-electrochemical reactions. An-
other important development of the LBM is to enable it to account for electrochemical
reactions. Electrochemical processes occur in natural systems as well as in industrial
processes, including treatment of acid mine drainage, oxidation of organic pollutants,
nuclear waste disposal and many others. He and Li [15] proposed a multiple LBM
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procedure for the electrochemical systems, but they used a local neutrality law to con-
strain the electric potential distribution, which could be inaccurate for charged mineral
surfaces. Recently, Wang and Kang [51] developed a numerical framework to solve the
dynamic model for electrokinetic flow using coupled LBM. Work on incorporating this
numerical framework with the multi-component reactive LBM is ongoing.

One particular interesting electrochemical process is localized corrosion. Localized
corrosion and prediction of scale structure and properties are at the cutting-edge of re-
search in corrosion science [57]. Applications range from nuclear power and waste
to beryllium alloys to weapons to oil pipelines. Modeling a galvanic mechanism that
facilitates the localized corrosion requires charge separation between the anode and
cathode that cannot be represented in continuum reactive transport models but is well
suited to LBM. Again, the current LBM models for reactive transport need to be aug-
mented to calculate local chemical and electrochemical potentials [51] to predict rates
of reactions and the development/deterioration of scales.

7 Conclusions

We have reviewed recent progress on the lattice Boltzmann simulation of reacting
flows in porous media. We want to emphasize the flexibility and ease of this method
in handling coupled flow and multiple physicochemical processes in complex media.
We are fully aware that this is an interdisciplinary area undergoing rapid develop-
ment and hence it is not possible to include all interesting applications or new de-
velopments. We are hoping that this article can provide some useful information for
those who are interested in this topic.
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