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Abstract. Direct numerical simulation (DNS) of incompressible flows in a zero-
pressure gradient turbulent boundary layer (TBL) is conducted by a finite differ-
ence method in which a fourth order upwind scheme is applied to discretize the
convective terms while a re-scaling approach is used to set inlet flow conditions.
The Reynolds numbers based on free flow velocity and momentum thickness at the
recycle section are respectively 687, 1074, and 1430. The DNS has obtained favor-
able results indicating that the turbulence statistics is quite satisfactory as compared
with the existing numerical and experimental results. The three dimensional turbu-
lent structures at the momentum thickness Reynolds number of 1430 in several dif-
ferent instants are illustrated by the iso-surface of swirl strength square (the square
of imaginary part of the complex eigenvalue of velocity gradient tensor) together
with velocity vectors in three different cross sections. It is found that there are three
kinds of vortical structures: quasi-symmetrical and asymmetrical hairpin vortices,
and worm-like vortices. The DNS based on the numerical method can certainly
reveal the main characteristics of the TBL flows at the given Reynolds numbers.

PACS (2006): 47.11.Bc, 47.27.Cn, 47.27.ek, 47.27.nd

Key words: Direct numerical simulation, incompressible boundary layer flows, hairpin vor-
tex, worm-like vortex.

1 Introduction

Zero-pressure gradient turbulent boundary layer (TBL) is a fundamental problem in
the study of wall turbulence. Since turbulence plays a very important role in nature,
civil and industrial engineering processes, the study of TBL is of great significance
in the development of fluid mechanics. To date, much work has been done for the
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wall turbulence mechanism. The earlier experiments studied the mechanism of tur-
bulence [1], the law of wake in a TBL [2], and the transition from laminar to turbu-
lence [3, 4]. Significantly, a structural model named hairpin vortex was proposed [1]
to explain the turbulent production and dissipation in a TBL. Low speed streaks [3]
were found in the near wall region by flow visualization.

There were the TBL investigations in the period from 1960 to 1999 in the 20th cen-
tury. They include the experiments [7–29] and numerical simulations [30–34]. Based
on these studies, a consistent view was formed: There are coherent vortex structures
in the TBL, leading to the ejection and sweeping of fluid motions that result in the ir-
regular velocity and vorticity fluctuations with broad spatial and temporal scales. The
findings of Bandyopadhyay and Head [11, 13] are noteworthy. In the range of mo-
mentum thickness Reynolds number from 500 to 1.75× 104, hairpin vortex is a crucial
feature of a zero-pressure gradient TBL with its shape depending on the Reynolds
number. The hairpin vortex has a curve type at low Reynolds numbers, Ω type at
moderate Reynolds numbers, and stretched hairpin type at higher Reynolds numbers.

Acarlar and Smith [19, 20] investigated the key role played by hairpin vortices in
developing and sustaining the turbulence process in the near-wall region of TBL for
the cases of hemisphere pro-turbulence- and fluid ejection-generated hairpin vortices
in a developing boundary layer. Using flow visualization and hot film anemometry,
they found the primary hairpin vortex can generate a downstream hairpin with a ter-
tiary hairpin vortex occurring between the primary and downstream vortices. The
scale of this kind of coherent structure in the main flow direction is several times that
of a single hairpin. Strong inflectional profiles were found just downstream of the
hairpin-vortex generation region, which evolved into fuller profiles with increasing
downstream distance, eventually developing a remarkable similarity to a turbulent
boundary layer velocity profile. While high sensitivity to external forcing is noted
together with a tendency toward the organized development of larger, and more com-
plex structures through a pairing-type process in the case of fluid ejection generation.

Recent experiments of TBL flows have emphasized the vortex properties [35–37],
with DNS works involved with either heat convection [38] or supersonic flow charac-
teristics [39, 40]. To improve the understanding of coherent structures and the scaling
of the energy spectra, recent numerical studies have also dedicated turbulent channel
flows [41–45]. Adrian [46] and Wallace [47] gave a broad view of the development of
near-wall turbulence in their separate review articles.

This paper presents the DNS results of incompressible TBL flows with zero-pressure
gradient. A re-scaling approach was used to set inlet flow conditions, and a relatively
coarse grid (241 × 61 × 81) was used in the DNS. The grids in the streamwise and
spanwise directions are uniform while in the vertical direction there are 61 grids dis-
tributed non-uniformly, with a larger grid density near-wall. The grid resolution is
chosen on the basis of the comparison of friction and shape factors with existing results
as shown in Fig. 1(a) and (b). In the DNS, the momentum thickness Reynolds num-
bers at the recycle section are respectively 687, 1074, and 1430. The primary objective
of this work is to numerically explore the characteristics of velocity fluctuations and
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vortical structures in the TBL. It is revealed that the turbulence statistics is in a good
agreement with the existing computational and experimental results. At the Reynolds
number of 1430, there are three kinds of vortical structures: quasi-symmetrical and
asymmetrical hairpin vortices, and worm-like vortices. The TBL flow contains more
asymmetrical hairpin vortices. This is consistent with the previous finding reported
by Robinson [32].

2 Governing equations

The governing equations are described in a cartesian coordinate system, where x(x1),
y(x2) and z(x3) represent the coordinates in the streamwise, vertical and spanwise
directions. The length and velocity scales are assumed to be the momentum thickness
at the inlet section δ2,in and the free flow velocity of boundary layer U∞. The time scale
is given by δ2,in/U∞. The pressure scale is ρU2

∞, where ρ is the fluid density. Hence,
the normalized governing equations can be written as

∇ · u = 0, (2.1)

ut + u · ∇u = −∇p +
∇2u
Re

, (2.2)

here the Reynolds number Re is defined by the inlet momentum thickness, free flow
velocity, and kinematic viscosity of fluid ν, Re=U∞δ2,in/ν. The initial flow field is
assumed to be laminar. The spanwise periodic condition is used with the non-slip
conditions on the solid wall. The inlet conditions are set by the re-scaling approach
developed by Lund et al. [48]. On the top boundary, we assume

∂u
∂y

= 0, (2.3)

while for the boundary conditions at the outlet, similar to the treatment utilized pre-
viously [49, 50] we use the Orlanski [51] type( ∂

∂t
+ Uout

∂

∂x

)
u = 0, (2.4)

where Uout is the outlet-sectionally averaged velocity in the streamwise direction.

3 Numerical method

The normalized size of computational domain is described by Lx=80, Ly=30, and
Lz=15. The value of spanwise width Lz is assigned so that at least one low-speed
streak can be included in the domain. The non-uniform grids in the y−direction were
set according to

yj

Ly
= 1 −

tanh
[
α(1 − j/Ny)

]
tanh(α)

, (3.1)
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where Ny is the total number of vertical grids, and the grid number j = 0, 1, 2, · · · , Ny.
α=3.157, it is used as a parameter to adjust the grid distance to the wall.

The governing equations (2.1) and (2.2) are numerically solved by the accurate pro-
jection algorithm PmIII [52] in a non-uniform staggered grid system. Their discretiza-
tion is accomplished by a finite difference method. Similar to the previous work [53],
the non-linear cross-convection terms, such as vuy, and wuz in the momentum equa-
tion for the velocity in the streamwise direction are treated carefully so that the scheme
has a higher accuracy in discretizing the non-linear terms.

As an example, we give the finite difference of term vuy. In the staggered grid
system, since the velocity components [uijk, vijk] are respectively located at grid points
(xi−1/2, yj, zk), and (xi, yj−1/2, zk), in the case of v̂ijk(xi−1/2, yj, zk) ≥ 0, the improved
higher-order upwind scheme can be written in the following form

(vuy)ijk = v̂ijk
(
− (A + B + C)uijk + Aui,j−1,k

+ Bui,j−2,k + Cui,j+1,k − D(u(4)
y )ijk

)
. (3.2)

Here u(4)
y denotes the forth order partial derivative with respect to y. If

δyj = yj − yj−1, s2 =
δyj−1 + δyj

δyj
and s3 =

δyj+1

δyj
,

then the coefficients of the finite difference can be expressed as

B =
s3

3 + s2
3

δyj · ∆
, C = − s2

2 − s3
2

δyj · ∆
, A = −Bs2

2 − Cs2
3, (3.3)

and

D =
1

24

{
A(δyj)

4 + B(δyj + δyj−1)
4 + C(δyj+1)

4
}

, (3.4)

where
∆ = s2s3(s2 − 1)(s3 + 1)(s2 + s3).

With the application of the Taylor expansion, it is easy to express the cross-convection
velocity by an interpolation with operator Iβ

ijk and a corresponding grid-dependent
remainder as follows

v̂ijk = Iβ
ijk(v)− Rijk + o(ϵ4), (3.5a)

Rijk =
1
8

{
(δxi)

2 Iβ
ijk(vxx) + (δyjδyj+1)Iβ

ijk

[
vyy +

1
6
(δyj+1 − δyj)v

(3)
y

]}
, (3.5b)

Iβ
ijk(v) =

1
2

[
β(vijk + vi−1,j,k) + (1 − β)(vi,j+1,k + vi−1,j+1,k)

]
, (3.5c)

where

δxi = xi − xi−1, β =
δyj+1

(δyj + δyj+1)
.
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o(ϵ4) denotes a fourth order cut-off error, Rijk represents the remainder resulted from

linear interpolation in terms of operator (Iβ
ijk). The difference from the previous scheme

given in [54] lies in the deduction of this interpolation remainder, which obviously en-
hances the accuracy of finite difference for the cross-convection term vuy. Clearly, sim-
ilar expressions can be derived for the finite difference of other cross convection terms,
i.e., wuz in the streamwise momentum equation, [uvx, wvz] in the vertical momentum
equation and [uwx, vwy] in spanwise momentum equation.

Let the intermediate velocity vector, the pressure potential and the time level be
denoted by ū, ϕ and n, respectively. Assuming

H = (u · ∇)u,

we have

un+1 = ū − ∆t∇ϕ, (3.6)

ū can be calculated by

ū − un

∆t
+ Hn+ 1

2 =
1

Re
∇2

[
un +

1
2
(ū − un)

]
, (3.7)

and pressure p by

pn+ 1
2 =

(
1 − ∆t

2Re
∇2

)
ϕ, (3.8)

where the pressure potential ϕ must satisfy the Poisson’s equation

∇2ϕ = ∇ · ū
∆t

. (3.9)

In addition, for the calculation of intermediate velocity ū, the convection terms were
treated explicitly by the second order Adams-Bashforth scheme, and calculated by a
blocked tri-diagonal matrix acceleration (TDMA) in the spanwise direction due to the
periodic boundary condition. The pressure potential Poisson’s equation was at first
solved by the approximate factorization one (AF1) method [55], and a pressure poten-
tial field with improved accuracy was then obtained using the stabilized bi-conjugate
gradient method (Bi-CGSTAB) proposed by Van der Vorst [56].

4 Results and discussion

The incompressible TBL flows at three Reynolds numbers based on the momentum
thickness (687, 1074, and 1430) were numerically studied. The calculation was carried
out in a staggered grid system, with the non-uniform grids in the normal direction
generated by a tangent function. The parameters of calculation are given in Table 1.
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Table 1: The parameters of calculation.

Re∗ Re2 ∆L+
in,re

† ∆x+ ∆y+min ∆y+max ∆z+

625 687 1519 10.1 0.37 48.1 5.7
1000 1074 2285 15.2 0.55 72.2 8.6
1320 1430 2864 19.1 0.69 90.7 10.7

∗Defined by free velocity and momentum thickness at the inlet section.
†Here the superscript shows that the length is normalized by ν/uτ at the recycle section.

The inlet Reynolds number and the Reynolds number at the re-cycled section are de-
fined by Re and Re2, respectively, while the distance from the recycled section to the
inlet section is defined by ∆L+

in,re. The turbulence states at the recycled section were
extracted for the statistical analysis, in which the mean values were taken by an aver-
age in the z−direction and time. The data were saved in a time interval of 0.4 in the
totally sampling time period of 1000. The numerical work focuses on

1. Exploring turbulence characteristics by statistical analysis, and determining the Reynolds num-
ber effect on the numerical results;

2. Finding instantaneous turbulent flow structures by observing the iso-surface of swirl strength
square and the velocity vectors in the TBL.

4.1 Turbulence statistics

Based on the average in the spanwise direction and time, statistical values of turbulent
variables at the recycle section were evaluated. The recycle section was chosen down-
stream of the inlet section with a distance large enough as compared to the maximum
streamwise scale of velocity streaks, which is usually over 1000 wall unit(ν/uτ). The
distance values were listed in the third column of Table 1. The initial field was ob-
tained by perturbing a smooth laminar boundary layer. The statistical analysis of the
simulation data has indicated the friction and shape factors, the turbulence intensities
in the near wall region (y+ ≤ 60), the mean velocity profile and Reynolds shear stress
in the TBL.

The friction factor defined by

C f =
2τw

ρU2
∞

=
2ν(∂u/∂y)w

U2
∞

,

and the shape factor defined by the ratio of displacement thickness (δ1) to the mo-
mentum thickness (δ2), H=δ1/δ2, are plotted as functions of the momentum thickness
Reynolds number Re2 (based on the thickness δ2), as shown in Fig. 1 (a) and (b). The
presently obtained values are shown by filled circles, together with the existing results
of Coles [2], Spalart [31], and other researchers [15, 16]. The results of current calcula-
tion agree well with the published data. As compared to the calculation of Spalart [31],



C. T. Lin and Z. Zhu / Adv. Appl. Math. Mech., 4 (2010), pp. 503-517 509

Figure 1: The friction factor (a) and shape factor (b) plotted as functions of the momentum thickness
Reynolds number.

the C f values are slightly smaller, and the H values are slightly large, indicating that
the ratio of friction velocity to free velocity at the recycle section in the present cal-
culation is relatively low. The reason causing these slight differences can be traced in
numerical aspect. Spalart [31] obtained his results using a spectral method with up to
about 107 grid points, in which a multiple-scale procedure is applied to approximate
the slow streamwise growth of the boundary layer.

The mean velocity profile in the TBL is shown in Fig. 2. A comparison of the cal-
culated velocity profile with the existing profiles indicates that they are a good agree-
ment. It is seen that the profile collapses the numerical result of Spalart [31] and the
experimental result of Adrian [35]. The calculated results are also consistent with the
DNS result of Kim et al. [41] for turbulent channel flow, and the profile along the wall
bisector of a square duct given by Yang et al. [53]. In the sublayer of y+ ≤ 5, the
calculated profile fits in with the law of wall given by U+=y+; while in the logarith-
mic region of y+ ≥ 30, it fits in with the log law given by U+=2.44ln(y+) + 5.2. In
the outer region of the TBL, y > 0.2δ1, the velocity profile satisfies a defective law,
(U − U∞)/uτ= f (η), here η = y/δ1.
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Figure 2: The mean velocity profile in the turbulent boundary layer. Note that the log-law is given by
U+ = 2.44ln(y+) + 5.2.
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Figure 3: The turbulent intensities in the inner layer of turbulent boundary layer.

The turbulence intensities in the near wall region of the TBL (y+ ≤ 60) are plotted
as functions of wall coordinate y+, as shown in Fig. 3. It is seen that the turbulence
intensity curves accord well with the results reported by Spalart [31] for TBL calcula-
tion, by Kim et al. [41] for turbulent channel flow, and by Yang et al. [53] for turbulent
square duct flow. For TBL flow at the three Reynolds numbers, Re2=687, 1074, and
1430, the peak value of urms occurs in the buffer given by 5<y+<30, it is larger than
wrms with a factor of about 2∼3; relative to vrms, the factor is about 3∼6. This suggests
that the velocity fluctuation in buffer should be highly anisotropic due to the interac-
tion of vortices and the solid wall. The wall effect makes the constrained fluid motion
in the normal to wall direction, leading to a smaller velocity fluctuation. Beyond the
buffer, with the increase of the distance to wall, the wall effect becomes weaker and
the flow anisotropy decreases.

A comparison of turbulent Reynolds shear stress in the TBL is shown in Fig. 4,
where the measured results of Adrian et al. [35] and Balint et al. [23] are labeled by
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Figure 4: The Reynolds stress − < u′v′ > /u2
τ plotted as a function of y/δ2.
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A.930, A.2370 and B.2685, respectively. The calculation results of Spalart [31] are la-
beled by S.670 and S.1410. The capital in labeling string represents the first letter of
the researcher name, with the followed number denoting the value of Reynolds num-
ber based on momentum thickness. From Fig. 4, it is seen that the present calculation
generates satisfactory Reynolds stress, which is close to zero at the wall and the outer
marginal region of the TBL, and arrives at its peak value close to unity in the unit of
(−u2

τ). The peak occurs at a normal distance to wall of about δ2.

4.2 Reynolds number effects

The Reynolds number effect can be clearly seen in Fig. 1. The friction and shape factors
decrease monotonically with the Reynolds number Re2 based on momentum thick-
ness. Previous studies [29, 31] have also shown that the turbulent intensity in stream-
wise direction has a distinct values at y+≈15, and that the y+ locations of the peaks of
the turbulent intensities in other directions and the Reynolds shear stress − < u′v′ >+

increase with Re2. As reported by Antonia and Kim [42], the low-Reynolds-number
effect could be explained by an intensification of the vortices in the wall region, even
though the average, location and diameter of the vortices were approximately un-
changed when expressed in the wall units. The present calculation reveals that the
near wall vortex motion is closely related to the coherent motion of hairpin vortices,
which travel downward together with worm-like vortices. For the TBL at Re2=1430,
the vortices at several different instants will be shown in the next subsection by the
iso-surface of swirl intensity square at a value of 4, together with the nearby flow
fields illustrated by velocity vectors.

4.3 Vortices

The DNS has revealed that the typical vortices in a TBL at Re2=1430 are quasi sym-
metrical and asymmetrical hairpin vortices, and worm-like vortices, as illustrated in
Figs. 5-9. The hairpins form in the near wall layer, and develop in the log region. The
scale of hairpin in the near wall layer is smaller.

Based on previously published experiments [35,37], it is clear to date that the num-
ber of hairpins in a packet increases with the increase of Reynolds number. The sig-
nature pattern of hairpin consists of a spanwise vortex core located above a region of
strong ejection events that occur on a locus inclined at 30-60o to the wall. The trav-
eling and coherent motions of these hairpin vortices have substantial impacts on the
turbulence fluctuations in the log region and beyond. A review on hairpin vortex
organization in wall turbulence is reported recently by Adrian [46].

Because of vortex interaction by mutual stretching, there are a fat lot of fully sym-
metrical hairpin vortices. The two shoulders usually distribute quasi symmetrically or
asymmetrically to the head of a hairpin. A quasi-symmetrical hairpin vortex is illus-
trated by the iso-surface of the swirl strength square labeled by 4, as seen in Fig. 5(a).
This hairpin is of traditional type, which has head, shoulders, and legs. It is consistent
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Figure 5: (a) Traditional hairpin vortex; and velocity vector diagrams in (b) xy−cross-section z+ = 84; (c)
zy−cross-section x+ = 147; (d) xz−cross-section y+ = 30. Note that the flood-type contours of λ2

ci are
also shown in parts (b-d), where the contours are labeled by 0, 4, and 8.

with the vortical structure proposed by Theodorsen [1]. Its head is in the log region,
with legs in the buffer. In Fig. 5(b), the contours of the swirl strength square are shown
in a flood form, together with the velocity vectors in the xy−cross section of z+=84. A
shear layer occurs upstream the hairpin head, under which the ejection or Q2 events
are observable due to the vortex rolling up effect while sweep or Q4 events appear up-
stream of the shear layer. Estimated from the shear layer shape layer shown by dashed
line in Fig. 5(b), the inclination of near wall hairpin legs is about 12o. The hairpin vor-
tex shown in Fig. 5(a) is in its early developing stage, since compared with developed

Figure 6: (a) Leg-crossed vortex; and velocity vector diagrams in (b) xy−cross-section z+ = 64; (c)

zy−cross-section x+ = 82; (d) xz−cross-section y+ = 60. The flood-type contours of λ2
ci in parts (b-d)

are labeled by the same values as in Fig. 5, and are those given in Figs. 7-9.
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Figure 7: (a) Asymmetrical hairpin vortex; and velocity vector diagrams in (b) xy−cross-section z+ = 69;
(c) zy−cross-section x+ = 73; (d) xz−cross-section y+ = 85.

Figure 8: (a) Distorted hairpin vortex; and velocity vector diagrams in (b) xy−cross-section z+ = 118; (c)
zy−cross-section x+ = 159; (d) xz−cross-section y+ = 77.

Figure 9: (a) Worm-like vortices; and velocity vector diagrams in (b) xy−cross-section z+ = 180.
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Ω type hairpins [Fig. 6(a)], the length and width scales are smaller, respectively, 150
and 100 in the wall unit(ν/uτ).

The flow patterns around the hairpin can be seen in the slices of x+=147, and
y+=30, as shown in Fig. 5 (b) and (c). The flow pattern in the slice of x+=147 is similar
to a mushroom, implying that the left leg of the hairpin occurring at a comparatively
large z+ value contains anticlockwise rotating secondary vortices, while the right leg
contains clockwise rotating secondary vortices. In Fig. 5(d), in addition to the vortex
near the frontal side of z+=0, there is a counter rotating vortex pair upstream of the
vortex pair corresponding to the hairpin shoulders. This indicates that the hairpin legs
have connected up two vortex tubes with negative inclination angles to the wall. The
upstream vortex pair transports fluids between the two vortices to outer sides, while
the vortex pair relevant to the hairpin shoulders plays the reverse role, transporting
outer side fluids to the inside region.

Another quasi-symmetrical hairpin can be found in Fig. 6(a). This hairpin results
from the further development of near wall hairpins, occurs in the log region of TBL,
and has a longer length scale in comparison with the hairpin shown in Fig. 5(a). The
leg-crossed hairpin head inclines to the wall at an angle of about 60o; the Q4 and Q2
events are active in a larger nearby region, as seen in Fig. 6(b). The cause of leg-
crossing can be traced to the evolution of hairpin under the conditions of vortical
interaction, stretching and distorting. The hairpin leg-crossing leads to the secondary
flow in the slice of x+=82 has a core-closed vortex pair [Fig. 6(c)]. The right shoulder
of the hairpin tends towards break, since the flow pattern in the slice of y+=62 shows
that the relevant vertical vortex has double-core[Fig. 6(d)].

As shown in Fig. 7(a), the hairpin is evidently asymmetrical, its head occurs in the
log region of the TBL, its right leg is longer and crassitude, its left leg is exiguous and
short. The flow patterns around the asymmetrical hairpin can be seen in Fig. 7 (b) and
(d).

Another asymmetrical hairpin can be seen in Fig. 8(a). This hairpin is apparently
rotated, almost facing to the z direction. Therefore, the Q2, Q4, and shear layer should
be labeled in a slice of constant y+, as shown in Fig. 8(d). The flow patterns in the
slices of z+=118 and x+=159 illustrated in Fig. 8(b) and (c) indicates the hairpin is
really asymmetrical in shape.

As shown in Fig. 9(a) and (b), in the outer region of TBL, there are worm-like
vortices that are likely generated by the break of hairpins. They look like vortex tubes
with the spatial scale varying with the distance from the solid wall. The inner side
worms are in general smaller in size.

5 Conclusions

Incompressible flows in a zero-pressure gradient TBL have been studied by DNS with
a finite difference method using a comparatively coarse grid. Turbulence statistics has
been analysed with the data acquired in recycle section. It was shown that the veloc-



C. T. Lin and Z. Zhu / Adv. Appl. Math. Mech., 4 (2010), pp. 503-517 515

ity profile, turbulence intensities and turbulent shear stress are in a good agreement
with the existing numerical and experimental results. Worm-like vortices are found in
the outer region, but their sizes are smaller in the inner side. Quasi-symmetrical and
asymmetrical hairpins are found in buffer and log region of the TBL. Because of the
vortex interaction, stretching and distortion, the hairpins appear in deformed shapes,
suggesting that the turbulence structures in the TBL are certainly rather complicated.
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