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Abstract. A lattice Boltzmann method is developed for modeling viscous elemen-
tary flows. An adjustable source term is added to the lattice Boltzmann equation,
which can be tuned to model different elementary flow features like a doublet or a
point source of any strength, including a negative source (sink). The added source
term is dimensionally consistent with the lattice Boltzmann equation. The proposed
model has many practical applications, as it can be used in the framework of the
potential flow theory of viscous and viscoelastic fluids. The model can be easily
extended to the three dimensional case. The model is verified by comparing its re-
sults with the analytical solution for some benchmark problems. The results are in
good agreement with the analytical solution of the potential flow theory.
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1 Introduction

The development of the lattice Boltzmann method (LBM) has rapidly grown in the last
two decades. The reason for this; is the easiness of use of the technique in addition to
its ability to solve a variety of problems that are impractical or even impossible to be
solved by traditional computational fluid dynamics (CFD) techniques.

Since its appearance, many researchers have tried to make the method more pow-
erful by modifying its equations to incorporate more physical phenomena. Examples
of this include the lattice Boltzmann method for axisymmetric fluid flow [3], axisym-
metric thermal flows [22], multiphase flow [14] and viscous fingering phenomenon [1].

The potential flow theory has always been thought of as a theory for irrational
inviscid flow problems. However, a lot of recent literature investigated the potential
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use of the potential flow theory for viscous and viscoelastic fluids at low Reynolds
numbers [5, 17–19].

Thus, modeling of the elementary flow features using the lattice Boltzmann method
adds new capabilities to the technique and opens new frontiers for its potential use.

Several researchers have tried to solve fluid flow problems involving different
types of singularities. In the case of geometrical singularities, [9] has introduced a
series solution for the steady flow of a viscous fluid in the neighbourhood of a sharp
corner. [4] have proposed a method to incorporate this series solution into a finite dif-
ference scheme for the solution of the stream function/vorticity formulation of the
Navier-Stokes equations in the case of a rectangular re-entrant corner. The scheme is
successful in overcoming the singularity problem of the velocity gradient near a sharp
corner. They have used their proposed scheme to solve the flow field in a channel with
a sudden contraction.

For cases where stress singularities arise from abrupt changes in boundary condi-
tions in viscous flow problem, [2] proposed a singular finite element scheme for stokes
flow and used it to solve for the flow field of the stick-slip problem. They have used
special elements surrounding the singular point without a pressure node at the sin-
gular point. They showed that ordinary finite element schemes are less accurate in
the neighbourhood of the singular point. The scheme is also useful for high Reynolds
number flows and for Non-Newtonian fluids provided that the stresses are integrable.

The reference [7] proposed a moving mesh finite element algorithm for problems
in two and three space dimensions. Their scheme is successful in solving various
problems (including fluid dynamics problems) with regions of high gradients.

In this paper, an easy-to-implement and efficient way of modeling elementary
flows through the incorporation of a point source, sink and a doublet using the lat-
tice Boltzmann method is proposed for the first time. The results of the numerical
simulations are compared to the analytical solution of the potential flow theory and
are in excellent agreement.

Modeling elementary flow features has always been a challenge for numerical
modeling. The reason is the associated mathematical singularity at the point of inter-
est. To the best of the authors’ knowledge, numerical methods based on the solution
of the continuum conservation equations like finite difference and finite element have
never been used to model a point source, sink or doublet using a single point in the
computational domain.

Due to the continuum approach considerations, only one value for each variable
can be assigned at a certain point at a specific time instant. For example, at any point
only one value for the macroscopic flow velocity can be specified or calculated. How-
ever, due to the nature of the lattice Boltzmann method formulation and the fact that
it does not deal directly with the macroscopic variables, the local distribution func-
tion can be formulated in such a way to allow for different proportions of particles to
move along different directions, see Fig. 1. Then, these microscopic velocities stream
to neighbour lattices’ nodes during the streaming step. This allows for the modeling
of a point source through a single lattice node.
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From a practical point of view, modeling a point source is a necessity when dealing
with physical problems in which the dimension of the source is much less than that of
the domain. In this case the best practice is to model this source as a point source.

Figure 1: The lattice velocities of the D2Q9 lattice (Adopted from [20]).

Modeling a doublet with the lattice Boltzmann method has many potential appli-
cations, the most important of which is the modeling of flow around circular cylinders
by adding a uniform velocity field to the doublet. The doublet strength can be tuned
to produce a circular cylinder of a certain diameter. This approach has the advantage
of modeling the flow around the exact circular geometry which overcomes the disad-
vantages of using approximate Cartesian geometries generated by square lattices or
the need for a special treatment for curved boundaries [8] which greatly complicates
the computations.

2 The Lattice Boltzmann equation

The proposed model is based on the standard lattice Boltzmann equation which can
be written as [23]

fi(X + ei∆t, t + ∆t)− fi(X, t) = Ω, (2.1)

where fi is the particles distribution function, X = (x, y) is the position vector, ei is the
lattice speed along the ith direction, ∆t is the time step and Ω is the collision operator.

In the present study, the two dimensional nine-speed D2Q9 lattice configuration is
adopted, see Fig. 1. For which ei is defined as [21]

ei =





(0, 0)e, i = 0,
(±1, 0)e, (0,±1)e, i = 1, 2, 3, 4,
(±1,±1)e, i = 5, 6, 7, 8,

(2.2)

where e = ∆x/∆t and ∆x is the lattice size.
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The collision operator Ω can be approximated by the BGK (Bhatnagar, Gross and
Krook) model as in [15]:

Ω = ω( f eq
i − fi) =

1
τ
( f eq

i − fi), (2.3)

where ω = 1/τ is the relaxation frequency, τ is a single relaxation time and f eq is the
local equilibrium distribution function.

Substituting the collision operator Ω defined by (2.3) into (2.1) yields the lattice
Boltzmann equation for the BGK collision model as

fi(X + ei∆t, t + ∆t)− fi(X, t) =
1
τ
( f eq

i − fi). (2.4)

The local equilibrium distribution function f eq for the D2Q9 lattice configuration is
given by [16]

f eq
i (X) = ωiρ(X)

(
1 +

3ei ·U
e2 +

9
2

(ei ·U)2

e4 − 3
2

U2

e2

)
, (2.5)

where

e = 1, i.e., ∆x = ∆t, (2.6a)

ωi =





4/9, i = 0,
1/9, i = 1, 2, 3, 4,
1/36, i = 5, 6, 7, 8.

(2.6b)

ρ is the macroscopic fluid density defined as

ρ =
8

∑
i=0

fi =
8

∑
i=0

f eq
i , (2.7)

U is the macroscopic fluid velocity defined as

Uj =
1
ρ

8

∑
i=0

fieij =
1
ρ

8

∑
i=0

f eq
i eij, (2.8)

where eij is the j component of the lattice speed along the i direction. The pressure p
is defined as

p = c2
s ρ, (2.9)

where cs is the speed of sound for the LB scheme. For the D2Q9 model, cs = 1/
√

3.
The kinematic ν viscosity is given by [21]

ν =
(

τ − 1
2

)
c2

s ∆t. (2.10)
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3 The Lattice Boltzmann equation for elementary flows

From a physical point of view, in order to model a point source or sink a pressure dif-
ference has to be generated between the point of interest and the surrounding points
in all directions. This pressure difference will drive the flow outward or inward to
mimic a point source or sink respectively. The added source term mainly consists of a
reference density ρs weighted by a weighting factor Φi. Since the pressure and density
in the lattice Boltzmann method are related by the equation of state, this term is analo-
gous to a pressure term. The generated pressure difference is determined by the value
of the reference density ρs; while the weighting factor Φi ensures that this pressure
difference is the same in all directions.

The proposed lattice Boltzmann equation for modeling a point source, sink or dou-
blet can be written as

fi(X + ei∆t, t + ∆t)− fi(X, t) =
1
τ
( f eq

i − fi) + ∆tΓΦiρs, (3.1)

where the added source term is ∆tΓΦiρs, in which ρs is a reference density; Φi is a
weighting factor for ρs; Γ is the source, sink or doublet strength.

The meaning and values of these parameters are given in details in the following
sections.

3.1 The source term reference density ρs

The reference density ρs is the density upon which the source, sink or doublet strength
will be based.

There are three ways to specify the reference density ρs. The best way is deter-
mined by the application at hand. It is important to mention here that having more
than one way to specify the reference density ρs, gives more flexibility to model dif-
ferent physical situations.

3.1.1 Case I

The first way is to set ρs equal to the local density ρ at the point of interest. In this case
the strength will be a function of the fluid local density and may change during the
course of unsteady flow simulations. This way the reference density ρs is given by

ρs = ρ. (3.2)

Specifying the reference density ρs this way ensures the generation of a point source
or sink at the point of interest regardless of the local flow conditions at this point.
However, the pressure difference and the resulting pressure at the point of interest
will not be known ahead. This case is suitable for physical situations in which the
source or/and sink strength is/are only dependent on the local flow conditions.
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3.1.2 Case II

The second way is to set ρs equal to a constant value ρo which is pre-specified. In this
case the strength will be constant regardless of the flow conditions. However; the flow
conditions will affect the effective fluid density at the point of interest through f eq. In
this case the reference density ρs is given by

ρs = ρo. (3.3)

In this case, the source or/and sink strength is/are constant. In other words, the pres-
sure difference between the point of interest and the surrounding points is constant.
This is suitable for situations in which a constant pressure difference is required dur-
ing the course of simulation regardless of the local flow conditions. However, the
pressure at the point of interest will not be constant and will depend in-part on the
fluid local density.

3.1.3 Case III

The third way is to set ρs in such a way that ensures a constant reference density ρc
regardless of the fluid local density. This is done by eliminating the effect of the fluid
local density introduced by f eq.

The reference density ρs is given by

ρs = ρc − ρ

τ ∆tΓ
, for a point source, (3.4a)

ρs = −ρc +
ρ

τ ∆tΓ
, for a point sink. (3.4b)

In this case, the (ρ/τ∆tΓ) cancels the effect of the first term of f eq (Eq. (2.5)), which
represents the fluid local density and results in a constant density of ρc at the point of
interest.

Case III is suitable for situations in which a constant value of the pressure at the
point of interest is required. In this case this value will be constant during the simu-
lation regardless of the flow conditions. But the resulting pressure difference between
the point of interest and the surrounding points will depend on the flow conditions.
A good example of this is in oil wells simulations, which maintains a constant suction
pressure at the production well that does not depend on the oil pressure inside the
reservoir.

The value of ρc should be selected very carefully if the nature of the point of inter-
est is required to stay the same. The selection of the reference density ρs in this way

Table 1: Pressure and pressure difference at the point of interest for different cases of specifying the reference
density ρs.

Case I Case II Case III
Pressure Varies Varies Constant

Pressure Difference Varies Constant Varies
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completely cancels the effect of the flow conditions on the pressure at the point of in-
terest. For example, in the case of a point source, ρc should have a value that is always
greater than the fluid density of the surrounding points. If during the simulation, es-
pecially for unsteady cases, the density of the surrounding points drops below ρc, the
point of interest will act as a sink instead of acting as a source. The same is true in case
of a point sink. Table 1 summarizes the features of each case regarding the pressure.

The formulation of the source term in this way has the advantage of using the
point source/sink or doublet at any point inside the domain or on a symmetry plane
without any adjustments to the strength Γ or the reference density ρs.

3.2 The reference density weighting factor Φi

Φi is the weighting factor for the reference density ρs. Its value depends on the nature
of the point of interest. For example, the value of Φi, in case of a point source, ensures
that the increase in the pressure at the source point is the same with respect to all
neighbour points.

The values of Φi for a normal point and for a point with a source or sink are given
by

Φi =





0, any point,
wi, source,
−wi, sink.

(3.5)

It is clear that the weighting factor for the point source or sink posses point symmetry.
This allows the point source to be located on any symmetry plane passing through the
lattice center (i = 0) without the need for a special treatment. The source term has
zero net momentum so it conserves the lattice momentum.

For a doublet, the value of Φi is given by

Φi =





0, i = 0, 2, 4,
wi, i = 3, 6, 7,
−wi, i = 1, 5, 8.

(3.6)

The weighting factor for the doublet posses line symmetry around the line passing
through the lattice center (i = 0) and parallel to the lattice directions (i = 1 or 3).

3.3 The strength parameter Γ

The strength Γ is a positive number that determines how far the source, sink or doublet
strength will depend on the reference density ρs. The strength can be a multiple (or a
fraction) of the reference density ρs.

The value of Γ should be chosen according to the physics of the problem. Γ is the
only parameter that controls the strength in Case I. For Cases II and III, ρo and ρc also
contribute to the strength respectively.

Very small values for Γ will not cause any stability problems (as in the case of a
doublet and flow around a circular cylinder that will be shown in the results section).
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However, large unphysical values for Γ (and ρo or ρc) will affect the solution stability.
From Eq. (3.1), it can be shown that large values for Γ in case of a point source can
cause flow reversal at some points in the domain (i.e., inflow boundary) and in case of
a point sink can cause negative values for the particle distribution function.

3.4 Derivation of the continuum equivalent of the proposed LB equation

In order to recover the macroscopic continuum equivalent of the proposed LB equa-
tion, the Chapman-Enskog expansion [6] is performed.

The proposed LB equation is given by Eq. (3.1). Assuming ∆t is small and is equal
to ε, i.e.,

∆t = ε, (3.7)

then Eq. (3.1) can be written as

fi (X + eiε, t + ε)− fi(X, t) =
1
τ
( f eq

i − fi) + εΓΦiρs, (3.8)

taking the Taylor series expansion of the left-hand side of this equation for a small
change ε in time leads to

ε
( ∂

∂t
+ eij

∂

∂xj

)
fi +

1
2

ε2
( ∂

∂t
+ eij

∂

∂xj

)2
fi +O(ε3) =

1
τ
( f eq

i − fi) + εΓΦiρs, (3.9)

the particle distribution function fi can be expanded as following [24]

fi = f (0)
i + ε f (1)

i + ε2 f (2)
i +O(ε3), (3.10)

with the following constraints [12]

∑
i

f (0)
i = ρ, ∑

i
f (0)
i eij = ρUj, (3.11a)

∑
i

f (n)
i = 0, ∑

i
f (n)
i eij = 0, n > 0. (3.11b)

Eq. (3.9) to the order ε0 is given by

f (0)
i = f eq

i , (3.12)

and to the order ε1 is given by

ε
( ∂

∂t
+ eij

∂

∂xj

)
f (0)
i =

1
τ

(
f eq
i − f (0)

i − ε f (1)
i

)
+ εΓΦiρs. (3.13)

Substitution of Eq. (3.12) into Eq. (3.13) yields

ε
( ∂

∂t
+ eij

∂

∂xj

)
f (0)
i =

1
τ

(
f (0)
i − f (0)

i − ε f (1)
i

)
+ εΓΦiρs, (3.14a)

( ∂

∂t
+ eij

∂

∂xj

)
f (0)
i =

1
τ

f (1)
i + ΓΦiρs, (3.14b)
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summation of Eq. (3.14b) over i yields

∂

∂t

(
∑

i
f (0)
i

)
+

∂

∂xj

(
∑

i
eij f (0)

i

)
= ∑

i
ΓΦiρs, (3.15)

substitution of Eqs. (2.8), (2.9) and (3.12) into Eq. (3.15) yields

∂ρ

∂t
+

∂(ρuj)
∂xj

= αΓρs. (3.16)

This is the mass conservation equation with the source term αΓρs. α is calculated from
Eqs. (3.5) and (3.6) and is given by

α = ∑
i

Φi =





1, source,
−1, sink,
0, doublet.

(3.17)

This derivation of the conservation of mass equation from the proposed LB equation
ensures that the proposed equation can accurately model various elementary flow
features and is capable of recovering the macroscopic equivalent of them.

4 Numerical results

Results of numerical simulations for several cases using the proposed lattice Boltz-
mann equation are presented and compared to the results from the potential flow
theory. Although the use of the proposed equation is general and not limited to these
cases, they were selected as they represent benchmark problems for modeling elemen-
tary flows and the analytical solutions for them are available [11, 13].

It is important to mention that in some cases there is a small difference between the
LBM solution and the analytical solution of the potential flow theory. This difference
is due to two facts. The first one is that the LBM models a real fluid with a finite
viscosity while the potential flow theory deals with a hypothetical inviscid flow. The
second is due to the effect of the boundary conditions which are necessary for the
LBM simulation (and for any numerical method) while it does not exist in the case of
the potential flow solution. Several boundary conditions were examined in order to
minimize their effect on the solution.

Table 2 shows various boundary conditions used during simulations. In the table,
open boundary condition refers to Zero gradient of the distribution function normal
to the boundary [23]. Velocity boundary condition refers to velocity inlet boundary
conditions as proposed by [25].

Symmetry boundary conditions [10] are used in some cases for the top and bot-
tom boundaries. They tend to make the streamlines parallel to the boundary. Open
boundary condition was found to be the best choice to minimize the boundary effects.
In some cases like the Rankine Oval and the Circular cylinder, the results for the sym-
metry and open boundary conditions for the top and bottom boundaries are almost
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Table 2: Boundary conditions for different simulation cases.

Left boundary Top and bottom Right boundary
(Inflow) boundaries (outflow)

Source, Sink Open Open Open
Doublet Symmetry Symmetry Symmetry

Rankine-Half body Velocity Open Open
Rankine Oval Velocity Symmetry/Open Open

Circular cylinder Velocity Symmetry/Open Open

identical. It is only in the case of a doublet that the symmetry boundary condition
gives the best result.

To minimize the effect of the boundary conditions on the simulation results, the
domain size in each direction in the simulation is two-times that of the corresponding
potential flow. Results are presented for the central part of the domain away from the
boundaries to be consistent with the potential flow simulations.

The number of grid points for the potential flow calculations is 200× 200, while
it is 400 × 400 for the lattice Boltzmann simulations. For all simulations, the initial
conditions are a zero velocity field with a density of unity. The relaxation time τ and
the time step ∆t were set to unity for all simulations.

All the results are plotted in terms of the normalized stream function, so that the
results of LBM and the analytical solution may be compared directly.

4.1 Point source or sink

A point source/sink is a point inside the domain from which the flow is flowing radi-
ally outward/inward in all directions. A point source and sink are modeled with the
proposed equation (Eq. (3.1)) and the results are compared to the analytical solution of
the potential flow theory. For both cases the strength Γ was set to 0.3 based on ρs = ρ
(Case I).

Fig. 2 shows the normalized radial velocity profile for both cases compared to the
analytical solution. As shown in the figure results are in good agreement. It is worth

Figure 2: Normalized radial velocity profile: Point source (left), Point Sink (right).
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mentioning that the velocity at the point source or sink, for the LBM simulation is
finite which overcomes the disadvantage of infinite value in the case of the potential
flow solution.

4.2 Rankine-Half body

The Rankine-Half body is formed, when a uniform velocity flow field is combined
with a point source. In this case the free stream velocity ulattice is set to 0.001 and the
source strength Γ is 0.2 based on ρs = ρ (Case I).

Figure 3: Normalized stream function contours for the Rankine-Half Body: LBM (left), Analytical (right).

Fig. 3 shows the normalized stream function contours for the Rankine-half body
from the LBM simulation (left) and the analytical solution of the potential flow theory
(right).

In order to demonstrate the ability of the proposed equation to handle different
physical situations, the Rankine-Half body is reproduced for Case II and III.

4.2.1 Case I

From the simulation results of the Rankine-Half Body for Case I, ρ was found to be
1.08 which is a reasonable value for a flow starting from an initial condition of zero
velocity, density equal to one and inlet velocity of 0.001.

In order to reproduce the same solution for Cases II and III, we need to achieve the
same fluid local density ρ at the point of interest.

4.2.2 Case II

Writing Eq. (3.1) for Cases I and II results in the following value of the reference den-
sity for Case II

ρs = ρo = 1.08. (4.1)



478 M. A. Boraey and M. Epstein / Adv. Appl. Math. Mech., 4 (2010), pp. 467-482

Figure 4: Normalized stream function contours for the Rankine-Half Body by LBM: Case II (left), Case III
(right).

Fig. 4 (left) shows the normalized stream function contours for the Rankine-Half body.
In this case the free stream velocity ulattice is set to 0.001 and the source strength Γ is
0.2 based on ρs = 1.08 (Case II).

4.2.3 Case III

Writing Eq. (3.1) for Cases I and III results in the following value of the reference
density for Case III

ρc =
( 1

∆tτ Γ
+ 1

)
ρ. (4.2)

If we use the same value of Γ for both Cases (Γ = 0.2), we get ρc as

ρc =
( 1

0.2
+ 1

)
1.08 = 6.48, (4.3)

so the reference density ρs is given by

ρs = 6.48− ρ

Γ
. (4.4)

Fig. 4 (right) shows the normalized stream function contours for the Rankine-Half
body. In this case the free stream velocity ulattice is set to 0.001 and the source strength
Γ is 0.2 based on ρs = 6.48− ρ/Γ (Case III).

Through an analysis similar to the one given above, the equivalent reference den-
sity ρs can be calculated for different cases.

4.3 Rankine oval

Rankine Oval is formed by combining a uniform velocity field of ulattice = 0.001 with
a point source and point sink of strength Γ = 0.1 based on ρs = ρ (Case I) placed 40
lattice units apart along the x-direction.
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Figure 5: Normalized stream function contours for the Rankine Oval: LBM (left), Analytical (right).

The comparison of the normalized stream function contours in Fig. 5 shows a very
good agreement with the results obtained from the potential flow theory.

4.4 Doublet

A doublet is modeled using the proposed equation (Eq. (3.1)). The doublet strength
Γ is 0.005 based on ρs = ρ (Case I). Fig. 6 shows the normalized stream function
contours for the doublet using LBM and the analytical solution of the potential flow
theory. As can be seen from the figure there are two main differences between the
LBM simulation and the analytical solution.

The normalized stream function contours in the case of the LBM solution are not
circular as in the case of the potential flow. Also, contours of different values do not

Figure 6: Normalized stream function contours for the Doublet: LBM (left), Analytical (right).
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Figure 7: Normalized stream function contours for the flow around a circular cylinder: LBM (left), Analytical
(right).

pass through the same point (the doublet center). As mentioned earlier this is due to
the fact that the fluid in the LBM is a real fluid with finite viscosity. This viscosity cre-
ates a velocity gradient so it prevents the coexistence of different values of the stream
function at the same point like in the case of the potential flow. This also causes the
stream function contours to take non-circular shapes.

4.5 Flow around a circular cylinder

The flow around a circular cylinder is modeled by placing a doublet of a given strength
in a uniform velocity flow field. The flow around a circular cylinder of 78 Lattice Units
diameter is shown in Fig. 7 for a doublet of strength Γ = 0.02 based on ρs = ρ (Case I)
combined with a uniform velocity of ulattice = 0.002.

5 Discussion and Conclusions

From the results of the numerical simulations, it is clear that the proposed lattice Boltz-
mann equation is efficient in modeling a point source, sink and doublet of any strength
either alone or combined with other flow features like the uniform velocity flow field.
This demonstrates the technique’s ability to model different elementary flow features.

A lattice Boltzmann method for modeling elementary flows is proposed. The
added source term has point symmetry for a point source or sink, while it has line
symmetry for the doublet. This allows it to be used along symmetry planes which
can result in the reduction of the computational effort. The source or doublet strength
can be thought of as a pressure term. Its value can be adjusted to achieve a certain
pressure or a pressure difference at a specific point in the domain. It can be used at
any place inside the domain with no restrictions, and it does not cause any singularity
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problems in the accuracy or the convergence rate of the numerical scheme.
The method has many advantages and can be easily incorporated into any prob-

lem. The model can be easily incorporated in the framework of the recent advances in
the field of potential flows for viscous fluids. The extension to the three dimensional
case is straight forward. The results for some benchmark problems are compared to
the analytical solution and excellent agreement between results is found.
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