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Abstract. This paper investigates construction and approximation properties

of the locally divergence-free (LDF) finite elements. Numerical stability of the

natural and normalized bases for the LDF elements is analyzed. Error estimates

about the jumps and the total divergence of the localized L2-projection are

proved and validated through numerical examples.
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1. Introduction

“Divergence-free” is an important physical property that appears in many appli-
cations, for example, incompressible fluid flows and solenoidal magnetic fields. The
divergence-free property should be preserved by numerical methods, globally or lo-
cally, in the classical or weak sense [7]. An early study on magnetohydrodynamics
(MHD) [4] has shown that numerical errors in the divergence of a magnetic field may
build up in time and bring up nonphysical phenomena in numerical simulations,
for instance, loss of momentum and energy conservation.

The locally divergence-free finite elements [1] have regained researchers’ inter-
ests in recent years. The LDF elements are devised to preserve the divergence-free
property locally or pointwise inside each element. These elements typically have
polynomial shape functions. When the LDF elements are glued together to form
an approximation subspace, continuity across element interfaces is usually lost.
Continuity can be enforced in the normal directions of element interfaces to con-
struct nonconforming LDF finite element approximation subspace. This approach
is adopted in [5] for solving the reduced time-harmonic Maxwell equations. Another
approach is to place the LDF finite elements in the framework of the discontinuous
Galerkin methods and weak discontinuity is then enforced by penalty factors. Ap-
plications along this line can be found in [1, 10, 11] for solving stationary Stokes and
Navier-Stokes problems, [8] for solving the Maxwell equations, and [13] for solving
the ideal MHD problem.

For implementations of the LDF finite elements, the natural basis functions
[1] are conceptually simple and appealing, but their divergence-free property is
not preserved by affine mappings. In this paper, we will show that the natural
basis functions are actually numerically unstable, so normalization on shape func-
tions should be adopted. When the LDF elements are used in the discontinuous
Galerkin framework, there are jumps across the element interfaces. In other words,
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the “total divergence” of a numerical solution might not be zero. The jumps or the
total divergence in LDF finite element approximations need to be measured. Espe-
cially, when the LDF elements are used with the characteristic methods [14], the
foot/head of a characteristic might fall right on the interface of two elements. The
localized L2-projection [3] could be used to approximate the initial solenoidal vec-
tor fields for time-dependent problems. How good could the localized L2-projection
be (regarding the jumps or the total divergence)? This paper addresses the above
issues. In Section 2, we show that the natural bases for the LDF elements are
numerically unstable and propose some normalized bases for the LDF elements.
Section 3 discusses the approximation properties of the LDF elements with a focus
on the localized L2-projection. The theoretical error estimates are illustrated and
validated in Section 4 through a very smooth vector field and a nonsmooth field.

Throughout the paper, we shall use A . B to represent an inequality A ≤ CB,
where C is a generic positive constant independent of the mesh size.

2. Natural and Normalized Bases for the LDF Elements

“Locally divergence-free” is actually a pointwise property, unrelated to the geo-
metric shapes of finite elements. It can be proved that for a two-dimensional vector
field v, it is divergence-free (divv = 0) if and only if there exists a scalar potential
function A(x, y) such that

v(x, y) = curlA =
(

∂A

∂y
,−∂A

∂x

)
.

Therefore, one can take the curl of the natural basis polynomials

1, x, y, x2, xy, y2, x3, x2y, xy2, y3, . . .

to get a natural basis for the LDF finite elements. Clearly, there are 2 zeroth-order
and 3 first-order basis functions:

(1)
(

1
0

)
,

(
0
1

)
,

(
y
0

)
,

(
0
x

)
,

(
x
−y

)
.

There are 4 second-order and 5 third-order basis functions:

(2)
(

y2

0

)
,

(
0
x2

)
,

(
x2

−2xy

)
,

( −2xy
y2

)
,

(3)
(

y3

0

)
,

(
0
x3

)
,

(
x3

−3x2y

)
,

( −3xy2

y3

)
,

(
x2y
−xy2

)
.

Three-dimensional natural bases for the LDF finite elements can be constructed
similarly [1].

Although theoretically these basis functions can be used for any elements, they
are numerically unstable. The mass/Gram matrix of these basis functions could
be very ill-conditioned. For example, suppose we have a uniform rectangular mesh
on the unit square [0, 1] × [0, 1] with a mesh size 0.01 in each direction. If we use
all these natural basis functions up to order 3 on the rectangle element [0, 0.01] ×
[0, 0.01], then the condition number of the mass matrix measured in 2-norm is as
high as 2.800 × 1015. This could result in unpredictable round-off errors that fail
the Cholesky factorization process in the localized L2-projection, to be discussed
later in Section 3.

Therefore, some sort of local basis functions are needed for different elements.
However, we may not use the affine mappings from generic elements to the reference
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rectangle/triangle element that are commonly used in most finite element methods,
since the divergence-free property will be lost by the affine mappings [11].

A remedy could be the following normalization transform

(4) X =
x− xc√

A
, Y =

y − yc√
A

,

where (xc, yc) is the center of the rectangle/triangle element and A is its area. We
then obtain a new set of basis functions in almost identical forms, with the variables
x, y in formulas (1,2,3) being replaced by X, Y :

(5)
(

1
0

)
,

(
0
1

)
,

(
Y
0

)
,

(
0
X

)
,

(
X
−Y

)
,

(6)
(

Y 2

0

)
,

(
0

−X2

)
,

(
X2

−2XY

)
,

( −2XY
Y 2

)
,

(7)
(

Y 3

0

)
,

(
0

X3

)
,

(
X3

−3X2Y

)
,

( −3XY 2

Y 3

)
,

(
X2Y
−XY 2

)
.

These normalized basis functions are still divergence-free, since they are linear
combinations of the natural basis functions. For example,

(
X
−Y

)
=

1√
A

(
x
−y

)
− xc√

A

(
1
0

)
+

yc√
A

(
0
1

)
.

But these normalized basis functions enjoy better numerical stability than the nat-
ural basis functions do. For example, the condition number of the mass matrix for
the normalized basis functions up to order 3 on the rectangle element [0, 0.01]2 is
now reduced to 2.904× 103.

The normalization transform (4) is good for triangle, rectangular, quadrilateral,
or any other type of elements, and can be easily extended to three-dimensional LDF
elements. It is also very convenient for implementation in object-oriented program-
ming language. A C++ implementation for the two-dimensional LDF elements on
unstructured meshes has been provided by the authors.

A set of L2-orthogonal basis functions up to order 3 are constructed in [8] for a
generic rectangular element with center (xc, yc) and width ∆x, ∆y:

(
1
0

)
,

(
0
1

)
,

(
Y
0

)
,

(
0
X

)
,

(
∆xX
−∆yY

)
,

(
12Y 2 − 1

0

)
,

(
0

12X2 − 1

)
,

(
∆x(12X2 − 1)
−24∆yXY

)
,

( −24∆xXY
∆y(12Y 2 − 1)

)
,

(
Y (20Y 2 − 3)

0

)
,

(
0

X(20X2 − 3)

)
,

( −∆xX(12Y 2 − 1)
∆yY (4Y 2 − 1)

)
,

(
∆xX(4X2 − 1)
−∆yY (12X2 − 1)

)
,

(
∆xY (12X2 − 1)
−∆yX(12Y 2 − 1)

)
,

where
X =

x− xc

∆x
, Y =

y − yc

∆y
.

However, these basis functions are good only for rectangle elements and the 5th,
8th, 9th, 12th, 13th, 14th functions in the above basis still exhibit scale disparity,
due to the small values of ∆x, ∆y.
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3. Approximation Properties of the LDF Finite Elements

Let d = 2 or 3 be the space dimension, Ω ⊂ Rd be a domain with a Lipschitz
boundary, and D ⊆ Ω a subdomain. For a nonnegative integer m, Hm(D) denotes
the usual Sobolev space with the inner product

(u, v)m,D =
∑

|α|≤m

∫

D

∂αu ∂αv dx, u, v ∈ Hm(D),

and the semi-norm

|u| =

 ∑

|α|=m

∫

D

|∂αu|2



1/2

,

where α = (α1, . . . , αd) is a d-index. Then we define the Sobolev space of vector
fields

Hm(D) = (Hm(D))d with (u,v) =
d∑

i=1

(ui, vi)m,D

and the Sobolev space of solenoidal vector fields

Sm(D) = {v ∈ Hm(D) : ∇ · v = 0 on D}.
For a nonnegative integer k ≥ 0, P k(D) denotes the space of polynomials of degree
at most k on D and Pk(D) = (P k(D))d. We then define

Qm(D) = {q ∈ Pm(D) : ∇ · q = 0 on D}.
The following approximation properties are very useful.

Theorem 1 (Optimal approximation property) Let m ≥ 0 be an integer
and D ⊂ Rd a domain.

(i) If u ∈ Hm+1(D), then there exists p ∈ Pm(D) such that for any integer
0 ≤ k ≤ m + 1,

(8) ‖u− p‖Hk(D) . h
(m+1)−k
D |u|Hm+1(D),

where hD = diam(D) is the diameter of domain D.
(ii) Moreover, if v ∈ Sm+1(D), then there exists q ∈ Qm(D) such that for any

integer 0 ≤ k ≤ m + 1,

(9) ‖v − q‖Hk(D) . h
(m+1)−k
D |v|Hm+1(D).

Proof: A proof based on a density argument and the Taylor expansion can
be found in [1]. It is not surprising to see that the proof requires D has a subset
of positive measure, with respect to which domain D is star-shaped. The proof
also utilizes the fact that the Taylor polynomial of a divergence-free vector field is
divergence-free. ¤
Theorem 2 (Inverse estimates) Let D be a bounded domain with a Lipschitz
boundary. For any q ∈ Qm(D) and integers 0 ≤ k < l, we have the following
inverse estimates

(10) ‖q‖Hl(D) . hk−l
D ‖q‖Hk(D),

especially

(11) ‖q‖H1(D) . h−1
D ‖q‖L2(D),

and

(12) ‖q‖L2(∂D) . h
−1/2
D ‖q‖L2(D).
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Proof: The first inequality can be derived from the standard componentwise
inverse estimates [6]. For the third inequality, we apply the trace theorem to q and
the second inequality:

‖q‖L2(∂D) . ‖q‖
1
2
L2(D)‖q‖

1
2
H1(D) . h

− 1
2

D ‖q‖L2(D).

¤
Remark The two inequalities in Theorem 1 are of Jackson type, while the

inequalities in Theorem 2 are of Bernstein type [9]. These two (direct and inverse)
types of estimates are frequently seen and essentially needed for most approximation
problems.

Let Eh be a quasi-uniform partition of Ω with mesh size h and Γh be the set of
all interior interfaces. We define

(13) Vm
h (Ω) = {w : w|E ∈ Qm(E), ∀E ∈ Eh}.

1

2n

n

2

1

E

E

γ

Figure 1. An edge shared by two elements

Piecewise vector fields: jumps and total divergence Let u be a piece-
wise vector field defined on Eh that might be discontinuous across the internal
element interfaces. Let E1 and E2 be two elements sharing edge/face γ. The jump
of the vector field u on γ at point P is defined as

(14) [u]γ(P ) = u|E1(P ) · n1 + u|E2(P ) · n2,

where n1 and n2 are the unit outward normal vectors. The maximal and total
jumps of u over Γh are respectively defined as

(15) max
γ∈Γh

max
P∈γ

|[u]γ(P )| ,
∑

γ∈Γh

∫

γ

|[u]γ | dγ.

In addition, we adopt the definition of total divergence in [8] for a piecewise vector
field u:

(16)
∑

γ∈Γh

∫

γ

|[u]γ |dγ +
∑

E∈Eh

∫

E

|∇ · u|dE.

When a piecewise vector field is locally divergence-free inside each element, the
total jump is the same as the total divergence.

Localized L2-Projection We shall also need the localized L2-projection Πh

from Sm+1(Ω) to Vm
h (Ω) (m ≥ 0) that was introduced in [3]. Let v ∈ Sm+1(Ω)

and E ∈ Eh. First πEv ∈ Qm(E) is defined by

(17) (πEv,q) = (v,q) , ∀q ∈ Qm(E).
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Then Πhv ∈ Vm
h (Ω) is defined by

(18) Πh =
∑

E∈Eh

πE1E ,

where 1E is the indicator function of element E.
Theorem 3 Let Eh be a quasi-uniform partition of Ω and E be any element in
Eh. Let Πh be the localized L2-projection defined above and m ≥ 0 an integer. If
v ∈ Sm+1(Ω), then

(i) For any q ∈ Qm(E), πEq = q,
(ii) ‖πEv‖L2(E) ≤ ‖v‖L2(E),
(iii) ‖v − πEv‖L2(E) . hm+1|v|Hm+1(E),
(iv) ‖v −Πhv‖L2(Ω) . hm+1|v|Hm+1(Ω).

Proof: (i) and (ii) are straightforward and will be used in the proof of (iii).
To prove (iii), we apply Theorem 1(ii). There exists a solenoidal polynomial

vector field qE of degree m such that

‖v − qE‖L2(E) . hm+1|v|Hm+1(E).

From (i), we have
v − πEv = v − qE + πEqE − πEv.

Applying (ii) and Theorem 1(ii) to element E, we obtain

‖v − πEv‖L2(E) ≤ ‖v − qE‖L2(E) + ‖πE(v − qE)‖L2(E)

. ‖v − qE‖L2(E) . hm+1|v|Hm+1(E).

Summing the above estimate over all elements, we have

‖v −Πhv‖2L2(Ω) =
∑

E∈Eh

‖v − πEv‖2L2(E)

.
∑

E∈Eh

(hm+1)2|v|2Hm+1(E) = h2(m+1)|v|2Hm+1(Ω),

which completes the proof of (iv). ¤
Corollary 1 Let v ∈ Sm+1(Ω) and E ∈ Eh. For any real number s in the range
0 ≤ s ≤ m + 1, we have

(19) ‖v − πEv‖Hs(E) . h(m+1)−s|v|Hm+1(E).

Proof: We first prove the claim for any nonnegative integer 0 ≤ k ≤ m + 1.
This is similar to the proof of Theorem 3(iii). From Theorem 1(ii), there exists a
solenoidal polynomial vector field qE of degree m such that

‖v − qE‖Hk(E) . h(m+1)−k|v|Hm+1(E).

Again we have
v − πEv = (v − qE) + (qE − πEv),

and we only need to estimate the Hk(E)-norm of the second term. Applying the
inverse estimate to (qE − πEv), we obtain

‖qE − πEv‖Hk(E) . h−k‖qE − πEv‖L2(E)

= h−k‖πEqE − πEv‖L2(E) ≤ h−k‖qE − v‖L2(E)

. h(m+1)−k|v|Hm+1(E).
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Applying the operator interpolation theory [2], we extend this result to any real
exponent s ∈ (0,m + 1). ¤

Similar discussions can be found in [3], but we have further estimates about
jumps on element interfaces stated in Theorem 4. To prove Theorem 4, we need
Lemma 1(i).

Lemma 1 Let v ∈ Sm+1(Ω) and E ∈ Eh. Then the following holds

(i) ‖v − πEv‖L1(∂E) . hm+ d
2 |v|Hm+1(E),

(ii) ‖v − πEv‖L2(∂E) . hm+ 1
2 |v|Hm+1(E),

where d = 2 or 3 is the space dimension.

Proof: One can derive (i) from (ii), the Cauchy-Schwarz inequality, and the
fact (based on the quasi-uniformity of Eh) that

∫

∂E

1 = O(hd−1),

for d = 2 or 3. So we only need to prove (ii). From Corollary 1, we have

‖v − πEv‖L2(E) . hm+1|v|Hm+1(E), ‖v − πEv‖H1(E) . hm|v|Hm+1(E).

Applying the trace theorem [6] to (v−πEv) and the above two estimates, we obtain

‖v − πEv‖L2(∂E) . ‖v − πEv‖
1
2
L2(E)‖v − πEv‖

1
2
H1(E)

. (hm+1)
1
2 |v|

1
2
Hm+1(E)(h

m)
1
2 |v|

1
2
Hm+1(E)

= hm+ 1
2 |v|Hm+1(E).

¤
Theorem 4 (The total divergence of the localized L2-projection) Let Eh,
Γh, and Πh be defined as above. For any v ∈ Sm+1(Ω), the following estimate
regarding the total divergence or the total jump of Πhv over Γh holds:

(20)
∑

γ∈Γh

∫

γ

|[Πhv]γ |dγ . hm|v|Hm+1(Ω).

Proof: Let γ be an edge (for d = 2) or a face (for d = 3) shared by two elements

E1 and E2, as shown in Figure 1. On γ, we have v ·n1 + v ·n2 = 0. From (14), we
have

[Πhv]γ = πE1v · n1 + πE2v · n2

= (πE1v − v) · n1 + (πE2v − v) · n2.

By the Cauchy-Schwarz inequality, we have

|[Πhv]γ | ≤ |(πE1v − v) · n1|+ |(πE2v − v) · n2|
≤ |πE1v − v|+ |πE2v − v|,

and hence ∫

γ

|[Πhv]γ |dγ ≤
∫

γ

|v − πE1v|dγ +
∫

γ

|v − πE2v|dγ.
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Summing over all edges/faces and applying Lemma 1(i) and the Cauchy-Schwarz
inequality again, we obtain

∑

γ∈Γh

∫

γ

|[Πhv]γ |dγ .
∑

E∈Eh

‖v − πEv‖L1(∂E)

. hm+ d
2

∑

E∈Eh

|v|Hm+1(E) ≤ hm+ d
2

( ∑

E∈Eh

|v|2Hm+1(E)

) 1
2

( ∑

E∈Eh

1

) 1
2

= hm+ d
2 |v|Hm+1(Ω)

( ∑

E∈Eh

1

) 1
2

.

The quasi-uniformity of the partition Eh implies that
∑

E∈Eh
1, i.e., the number of

elements in Eh is O(h−d), which yields the desired result in the theorem. ¤

0 0.5 1
0

0.5

1

Figure 2. The swirling velocity field in Example 1

4. Numerical Results

In this section, we present some numerical results to illustrate and validate the
theoretical error estimates proved in the last section. The normalized basis func-
tions discussed in Section 2 are used to carry out these numerical experiments. The
four quasi-uniform triangular meshes in both examples are produced using the PDE
toolbox in Matlab.

Example 1: the swirling vector field This example can be found in [12].
The domain Ω is the unit square [0, 1]× [0, 1] and the velocity field v(x, y) = (v1, v2)
is given by

v1(x, y) = sin2(πx) sin(2πy), v2(x, y) = − sin(2πx) sin2(πy).

This incompressible (divv = 0) velocity field vanishes (v = 0) on the four sides and
at the center of the square, see Figure 2. Notice that this vector field is actually
infinitely smooth, so v ∈ Sm+1(Ω) for any integer m ≥ 0. Therefore, approximation
accuracy is actually determined by the degree of polynomials we use in the LDF
elements. This fact is clearly reflected by the numerical results in Tables 2-5.

Example 2: a nonsmooth vector field The domain Ω is also the unit
square and the nonsmooth velocity field is given by v(x, y) = (|y − 0.5|, |x− 0.5|),
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Table 1. Example 1 and 2: statistics of the meshes on the unit square

Triangular mesh Rectangular
meshes #elements #edges size meshes #elements #edges

TrigMesh1 328 512 h ≈ 0.11
TrigMesh2 1312 2008 h/2 RectMesh2 50x50 2x50x51
TrigMesh3 5248 7952 h/4 RectMesh3 100x100 2x100x101
TrigMesg4 20992 31648 h/8 RectMesh4 200x200 2x200x201

Table 2. Example 1: the localized L2-projection of the swirling
field on triangular meshes

deg. 1 deg. 2 deg. 3

Approx. error L∞ L2 L∞ L2 L∞ L2

TrigMesh2 6.895E-3 1.527E-3 1.692E-4 4.406E-5 2.442E-6 5.592E-7
TrigMesh3 1.742E-3 3.821E-4 2.130E-5 5.514E-6 1.537E-7 3.496E-8
TrigMesh4 4.367E-4 9.557E-5 2.670E-6 6.895E-7 9.626E-9 2.185E-9

Error order 2 2 3 3 4 4

Table 3. Example 1: the localized L2-projection of the swirling
field on rectangular meshes

deg. 1 deg. 2 deg. 3

Approx. error L∞ L2 L∞ L2 L∞ L2

RectMesh2 2.320E-3 6.238E-4 5.043E-5 1.154E-5 7.219E-7 1.727E-7
RectMesh3 5.809E-4 1.560E-4 6.309E-6 1.443E-6 4.550E-8 1.080E-8
RectMesh4 1.452E-4 3.901E-5 7.887E-7 1.805E-7 3.191E-9 6.826E-10

Error order 2 2 3 3 4 4

Table 4. Example 1: jumps of the localized L2-projection on
triangular meshes

deg. 1 deg. 2 deg. 3

Jumps max total max total max total

TrigMesh2 7.330E-3 8.830E-2 3.864E-4 2.658E-3 8.879E-6 4.493E-5
TrigMesh3 1.945E-3 4.520E-2 4.816E-5 6.772E-4 5.726E-7 5.654E-6
TrigMesh4 4.915E-4 2.286E-2 6.032E-6 1.707E-4 3.622E-8 7.093E-7

Error order 2 1 3 2 4 3

Table 5. Example 1: jumps of the localized L2-projection on
rectangular meshes

deg. 1 deg. 2 deg. 3

Jumps max total max total max total

RectMesh2 3.664E-3 8.140E-2 8.273E-5 1.341E-3 1.526E-6 1.777E-5
RectMesh3 9.197E-4 4.077E-2 1.037E-5 3.357E-4 9.582E-8 2.221E-6
RectMesh4 2.300E-4 2.039E-2 1.297E-6 8.394E-5 6.223E-9 2.838E-7

Error order 2 1 3 2 4 3

which is divergence-free. It can be proved that for any 0 < ε < 1, v ∈ H
3
2−ε(Ω).

It is also clear that v ∈ W1
∞(Ω), but v /∈ Wm

∞(Ω) for any integer m > 1. The
low order regularity of the vector field limits the approximation accuracy of the
localized L2-projection, even though higher order LDF elements are used. It can
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be observed from Table 6 that for the errors in L∞-norm, the convergence rate can
only be the first order, since v is only in W1

∞(Ω). Increasing the polynomial degree
of the LDF elements does reduce the approximation errors, but it does not increase
the convergence order. For the errors in L2-norm, since v is almost in H

3
2 , one

can get a 1.5 order convergence rate if the LDF elements have degree 1 or higher,
but only the first order convergence if degree 0 LDF elements are used. All these
conform with the general fact that the convergence rate is min(α, m + 1), where α
is the smoothness order of the function being approximated and m is the degree of
the polynomials being used for approximation.

Table 6. Example 2: the localized L2-projection of the non-
smooth field on triangular meshes

deg. 0 deg. 1 deg. 2

Approx. error L∞ L2 L∞ L2 L∞ L2

TrigMesh1 5.368E-2 2.522E-2 2.825E-2 2.757E-3 7.833E-3 9.421E-4
TrigMesh2 2.684E-2 1.272E-2 1.556E-2 9.500E-4 4.865E-3 3.917E-4
TrigMesh3 1.342E-2 6.388E-3 7.833E-3 3.339E-4 2.573E-3 1.371E-4
TrigMesh4 6.710E-3 3.200E-3 3.804E-3 1.198E-4 1.255E-3 5.036E-5

Error order 1 1 ≈ 1 ≈ 1.5 ≈ 1 ≈ 1.5

Table 7. Example 2: jumps of the localized L2-projection on
triangular meshes

deg. 0 deg. 1 deg. 2

Jumps max total max total max total

TrigMesh2 2.949E-2 7.367E-1 1.313E-2 1.185E-2 7.243E-3 4.467E-3
TrigMesh3 1.474E-2 7.729E-1 8.028E-3 6.029E-3 3.768E-3 2.467E-3
TrigMesh4 7.372E-3 7.907E-1 4.012E-3 3.421E-3 1.782E-3 1.286E-3

Error order 1 0 ≈ 1 ≈1 ≈ 1 ≈1

5. Concluding Remarks

In this paper, we present a complete account of the approximation properties
of the locally divergence-free finite elements. Both direct and inverse estimates
(Jackson- and Bernstein- type inequalities) are discussed. We have also estab-
lished and validated (through numerical experiments) the error estimates about
the jumps and the total divergence of the localized L2-projection, which can be
used for approximations to initial solenoidal vector fields in time-dependent prob-
lems. Normalized bases for the LDF finite elements that have better numerical
stability are proposed and used in our numerical experiments.
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