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THE HOLE-FILLING METHOD AND THE UNIFORM
MULTISCALE COMPUTATION OF THE ELASTIC
EQUATIONS IN PERFORATED DOMAINS

XIN WANG AND LI-QUN CAO

Abstract. In this paper, we discuss the boundary value problem for the linear
elastic equations in a perforated domain 2¢. We fill all holes with a very com-
pliant material, then we study the homogenization method and the multiscale
analysis for the associated multiphase problem in a domain Q without holes.
We are interested in the asymptotic behavior of the solution for the multiphase
problem as the material properties of one weak phase go to zero, which has a
wide range of applications in shape optimization and in 3-D mesh generation.
The main contribution obtained in this paper is to give a full mathematical
justification for this limiting process in general senses. Finally, some numeri-
cal results are presented, which support strongly the theoretical results of this

paper.

Key Words. homogenization, multiscale analysis, elastic equations, perfo-

rated domain, hole-filling method.

1. Introduction

In this paper, we consider the following boundary value problems of elastic equa-
tions in a perforated domain:

i(aijkh(%)%(x)) = fi(z), i=1,2--,n, in QF

- Oz oxp,
(1) oe(u®) =0, on S,
u®(xz) = go(x), on I

oe(uf) =gi(x), on Ty

Following Oleinik’s notation (see [22]), let @ ={¢£:0< & < 1,7=1,---,n}, and
w be an unbounded domain of R™ which satisfies the following conditions:

(B1) w is a smooth unbounded domain of R™ with a 1-periodic structure.

(B2) The cell of periodicity w N @ is a domain with a Lipschitz boundary.

(Bs) The set Q\@ and the intersection of Q\@ with the dp—neighborhood (dp <
%) of 9Q consist of a finite number of Lipschitz domains separated from each other
and from the edges of the cube @ by a positive distance.

Suppose that ¢ is a domain which has the form: Qf = Q§U(Q\Qp), where (2 is
a bounded Lipschitz convex domain of R™ without holes, Qg = U,er.e(2+ Q) C €,
Q5 = Qo N ew is shown in Fig.1(a), T. is the subset of Z™ consisting of all z such
that e(z + Q) C Q. The domain Q; = Q\Q denotes the boundary layer as shown
in Fig.1(b). The boundary 9§2¢ of a perforated domain Q¢ is composed of 9 and
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FIGURE 1. : (a) interior domain Qf; (b) boundary layer.

the surfaces S. of cavities, where 9Q =T'; UT5,T'; NT'y = 0. Such a domain QFf is
called as a type-II domain (see, [22]).

In equations (1), u®(z) = (u5(x),--- ,us(x))T denotes a displacement function,
f(@) = (fi(z), -, fu(z))T is a body force, go(x) is a given displacement function on

the Dirichlet boundary I'1, g1 () is a given surface stress on the Neumann boundary
€

Ty, 0.(uf) = (0e1(u®), -+, 0cn(u®)), 0ci(uf) = Vjafjhkg—z:, t=1,---,n, where
i = (v1,- -, V) is the unit outer normal vector to 9Q° = 9N U S..

Suppose that

(A1) Let ¢ = e 'z, and the elements of a matrix (a;jxn(§)) are l-periodic
functions in &.

(A2)  aijen(€) = ajikn(§) = arni; (€)-

(A3) Y0miiMi5 < aijien(E)NiiMen < MMijNij, € € w, Y0,71 > 0, where (1;;) is any
real symmetric matrix.

(As) agen € L®(W), f € L2(QF), go € H2(T'1), g1 € L2(Ty).

Remark 1.1. Ezistence and uniqueness of the solution to problem (1) can be
established on the basis of the assumptions (B1) — (Bs), and (A1) — (A4) ( see, e.g.
[22]).

The numerous studies of homogenization and its applications for problem (1) in
perforated domains containing many small holes have been developed by so many
contributions that it is impossible to quote them all. We refer the interested reader
to these books and articles (see, e.g. [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 14, 16, 17, 18, 19,
20, 21, 22]).

When we solve the elastic equations with homogeneous Neumann boundary con-
ditions on the surfaces of holes in a perforated domain, we usually fill these holes
with an almost degenerated phase, which is also called the hole-filling method.
Actually, engineers often use the method to predict the effective properties of per-
forated materials. From a physical point of view, when the material properties of
the weak phase go to zero, this limit procedure is clear. But a full mathematical
justification has not been seen in all the available literature. In this paper, we try
to give a full mathematical justification for this limiting process in general cases.
Furthermore, in order to compute the displacement and the stress field in a do-
main, we present a uniform multiscale method for solving the elastic equations (1)
regardless of whether there are holes or not. The crucial step of the method is to
define the cell functions which are different from those of classical homogenization
method. On the other hand, from the viewpoint of numerical computation, the
mesh generation in a 3-D perforated domain is somehow more difficult than that
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in a 3-D nonperforated domain. By means of the method of the paper, we only do
the mesh generation in a 3-D nonperforated domain where all holes have been filled
with an almost degenerated phase. It has a wide range applications in mechanical
and engineering problems, in particular, in the shape optimal design of composite
materials.

The remainder of this paper is organized as follows. In Section 2, we introduce
the hole-filling method, and derive the rigorous proof of a convergence result for this
method. In Section 3, we discuss the homogenization method and the multiscale
asymptotic expansions for the original problem in a perforated domain and the
associated multiphase problem in a domain without holes, respectively. We try to
give the full mathematical justification for the hole-filling method. Finally, we show
some numerical examples, which validate the theoretical results presented in the
previous sections.

Denote uniformly by C the positive constant independent of ¢, § without dis-
tinction. For convenience, we use the Einstein summation convention on repeated
indices.

2. The Hole-Filling Method and the Convergence Theorem

In this section, we first give the definition of the hole-filling method in a perfo-
rated domain, and then we present a full mathematical justification for this limiting
process ,i.e. the weak material properties go to zero in the multiphase material.

Definition 2.1. Let Q° be a type II perforated domain given in (1). If we
fill all holes of ¢ with a very compliant material such that ¢ is changed into a
nonperforated domain €2, then it is called as the hole-filling method.

We now introduce some notation: Q ={§,0<¢&; <1,j=1,---,n}, the peri-
odic cell QNw, & > 0 is a sufficiently small constant, V5 = {£ € (Q\w), dist(£,0w) <
5, Vo = {€ € (Q \ w), dist(§,0w) > §}, where dist(A, B) denotes a distance be-
tween A and B(see Fig.2).

Vo

— Vé

L .QNw

FIGURE 2. V, and Vs

Let £ = ¢!z, and define @}, (£) = aj;,,(€) in the following form:

aijkn(§), £eQnNuw
(2) aiin(§) = ?jkh(f), §EVs
0203101, §E€W
where a;;n(€), £ € QNw is as given in (1), d)fjkh(ﬁ) € C>=(Vs), 6'/2 < ||¢fjkh||Loo(V5) <
M, 0;; is the Kronecker symbol.
If we assume that a tensor ( fjkh(f)), ¢ € (Q \ w) satisfies Conditions (A;) and
(Az2), then a tensor (aj;;,(£)), § € Q has the similar properties. In this situation,
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we define u®*(x) is the solution of the following boundary value problems of elastic
equations in a domain €2 without holes:
. ouy™ (z ) .
o @) = n @ i), =120 m w0
®) us*(x) = go(x), on I}
ol(u®") = gi(x), on Iy

T 1 reQ
0 z e\ Qe

Since QF is a type-II perforated domain, i.e. Q= ﬁ; U 21, we thus have
o (u®*) = o.(u®*), where o.(u) is as given in (1).

Our goal of this section is to give the estimate for ||u® — u®*
end, we first introduce Lemma 2.1 given by:
Lemma 2.1. Suppose that Q° is a type-II perforated domain as given in (1) and
the boundary S. € C*, then there exists an extension operator such that

P Whe(0Q°) — Wheo(Q)
and for any v € WH(QF),

‘Hl(Qe). To this

Pv=v a.e in Q°,
(5) ||P5’U||W1,oo(Q) < C||U||W1,oo(Qs).
where C' is a constant independent of €.
Proof. In order to build an extension operator P. on 2, it is sufficient to know

how to build it on an arbitrary cell e(k + Q), k € Z™.
Each x € Q¢ can be written as

x=¢c(k+¢), where £ € QNuw,k € Z™.
Set
(6) Ve,k(§) = v(e(k +§)) = v(x).

This function is defined on Q Nw, and moreover, v, € WH>*(QNw). Following the
lines of the proof of Theorem 1 of ([12],p.254), we can extend v, j to the whole of Q
by Pve x. Due to definition (6), this clearly defines an extension on the cell e(k+Q).
As the holes do not intersect the boundary of the cells, there is no trace problem
when passing form a cell to any adjacent one, and we can define an extension to
the whole of Q by setting

—ck
(Pv)(z) = (Poeg)(Z 65 ), VoeQ, zee(k+Q), kezm™
Moreover,
||P6v||W1v°°(s(k+Q)) = ||PU6,kHW1~°°(Q)
(7) < = Cllvllwros (e (k+Qnw))-

Since Q° is of type II, due to (7), whether the essential supremum of v is take in
the boundary layer or not, we can get
HPEU”WI'OC(Q) S CH’UHWLoo(Qa).

Next we give the convergence result involved in the hole-filling method.
Theorem 2.1. Suppose that Q° C R™ is a type-1I perforated domain, the boundary
S. € C and Q C R" is the associated Lipschitz convex domain without holes. Let
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u® be the weak solution of problem (1) in QF, and u=* be the weak solution of the
corresponding multiphase problem (3) in Q. If u € W1>°(QF), then there holds

(8) [u® —u™

Furthermore, we can choose a sufficiently small § > 0 such that

|H1(QE) < C’(ﬁs_’”% HusHWl,oo(Qs).

* 1
(9) ||’U/‘S —u® ||H1(QE) < Ce2

where C' is a constant independent of €, 6 > 0. In particular, we are interested in
the asymptotic behaviour of the solution u®*(x), as § — 0.
Proof. Thanks to Lemma 2.1, there exists an extension operator

P W) — W (@)
such that
P.u® =u® a.e. in QF,
[ Peuslwro @) < Clluf[wr.e @)
Let @° = P.u®, and 9;(z) = (u]"(x) —u5(z)) € HY(Q,T'1) , where H'(Q,T;) =

(3

{v € HY(QF), v|r, = 0}. If we take ¥; = (uj"" — uf) as test functions, then we

obtain the variational forms for (1) and (3) given by:

. ,m Ouy” Oy, B . N
(10) /Q“ijkh()axhaxjdx_/an(x)flwdx+/91”(x)”’dr’

g
Ta

x . Jus, Ov; - .
(11) /5 a”kh(g)aixzal’] dl‘ = 0 fz’UldlL' + /glyi(:r)vidf,
s

where g1(z) = (91.1(2), -+ ,g1.n(x))T is as given in (1).
Subtracting (10) from (11) gives

O(UE™ — ) D(uS™ — e
0 < / aijkh(g) (uk uk) a(uz uz)dx

- Oxp, Oz
x, Ouy” O(us™ —us)
12 =— I (. i d
(12) ) G T
. x Ouyt —ug) Ous " —us
= _/ _ aijkh(i) k@ . ( o1 )d:E
O\Q* 3 Th X 5

x, Oug O(u™ — us

* )
— F o (INZZRZATE i) g
/Q\Qs a”kh( e ) al'h (%:j v

=I4+1°+1°
where
b % ~¢ ) g% _ ~e
(13) I= _/ a;'kjkh(f) (i~ ) O uz)dx <0,
Q\Qe £ afﬂh (9933'

x, 0us, O(us™ —uf)
14 PP =— | ajn(=) 52 ———"d
(14) ] a5 M

x, 0us O(us™ — )
15 0= [ afp,(5) =iy
(15) ] i) g g

and Vs = U (z+Vs), Vo= U (2+ W), Vs, Vo are as given in (2).
zeT, z€T:
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Using Lemma 2.1, we obtain
=1 [ a2 T
(2+Vs) Lh Lj
< OV L2 v IV (0™ = 0%) [ 222 4v5)
< C(e0)2 |V v (24 | V(15" = ) | 2 ()
< C(£0)? [|u [ wr (40 IV (5" = T) | L2 (v,
and consequently

Otig, (™ — i
1) = |/ a;jkh(f)ﬂudﬂ
ZeTg (Z+V5) 9 (91' 8xj

<D < Ce8)? Y [ llwr oo (o |V (65" = )| L2 avy)

z€T. z€T,
< C(e8) T |0 |lwr.oo (o) ||V (0% = @) || L2 (v
where Vs = (J (24 V).

z€T,
Similarly, we have

g, O(u;™ —us)
70 — 33 Ouy
R R

< COF ||V 12 (v IV (1" = )| 2 vt
< €02 |[u [lwroe o) |V (™ = T 22(vs)
where Vo = U (2 +W).

z€T:
It follows from the Korn’s inequality and (12) that

02|V (u™" — ~E)||%2(Q)

_ v~
S/Q :}kh(x)a( [“)x; ) a(uiaxj %) 4y <119 4+ 19
< CO2 e Ul e ey || V(15 — ) | L2,

1.e.

(16) [V(u®* =) L2y < CE_M%HUEHWLOO(QE)-

We thus obtain

1] < C8% e [ |31 e (0

(17) 1% < C6% ™5 |1 (o),
and
P
(18) 1] < 111+ 11°) < 085> [y e

Thanks to the Korn’s inequalities (see, e.g. [22]) and (12), we obtain

2 z, O(uy” — uf) O(uy™ — ;)
Yollu™™ — U |71 (e < /Q aijkn(2) 8xh oz, dx

<O e w13 e

ie.

£,% ~g 1 _paly e
(19) 6 — @ s ey < C8E ™ [0 s ).



618 X. WANG AND L. CAO

Therefore we complete the proof of Theorem 2.1.

3. The Uniform Multiscale Method and the Associated Properties

In this section, we first introduce some known results of the homogenization
method and the multiscale asymptotic expansions of the solution for problem (1)
in a perforated domain Q¢ without any justification( see, e.g [22]). Second, we give
similarly some results of homogenization and the multiscale asymptotic expansions
of the solution for the multiphase problem (3) in a Lipschitz convex domain €.
Third, we discuss the relationship between two types of asymptotic methods, and
obtain some convergence theorems when one material properties go to zero, i.e, as
0 — 0. They are the main results obtained in this paper, and form the basis of the
uniform multiscale numerical method presented in the next section.

Set formally:

U (2) = u® (&) + £ Npp 0y (€) Laml2)

(20) 0 aiga(lz) 2 3%l (x)
Us () = u0(2) + &Ny (6) 242 4 €2N7 00, (6) 2205000

where the vector-valued functions
(21)
Us(z) = (Us(x), - Usp(@)", s =120 u’(x) = (ui(z),- - ,up (@)
Nm,al (f) - (Nlm,al (5)7 e 7Nnm,a1 (5))Ta
Nm,a1a2 (5) = (Nlm,a1a2 (g)a e 7Nnm,a1a2 (5))T7 m,o; = 1a 27 e, N
The cell functions Ny, o, (§) and Ny, 0,0, (§) on @ Nw are defined in turn
ONkm. oy .
ok (ain (© 28 = 8 (00, ©) Qo
ONkm.ay
(22) Gijkn(§) =g V) = —ijma, (v on QN ow
Nim.a, (§) is 1-periodic in &, mew N,y (£)dE =0

_a%j (aijkh(g)%w> - % (aijkoez (6)Nem.on (g))

(f) 8Nk7n,al (5)

(23) +aia2kh agh + Qiovomony (5) - aiogmog in Q Nw

az‘jkh(f)aig’h%‘ = —@ijkas (§)Nkm,o,vj on QN 0w
Nkm,oqaz (g) is 1-peri0dic in ga fQﬂw Nkm,alaz (E)df =0

where @ = (11, -+ ,v,) denotes the unit outer normal to @ N dw, and the homoge-
nized coefficients are the following:
—~ 1 aNmk h(g)
24 ik = ——— i iim It AS/ d
(24) ijkh Qo Qm(agkh(f)+a] 1(§) 9, )d€

where |Q Nw| is the Lebesgue measure of Q Nw.
Let u°(x) be the unique weak solution of the following homogenized equations:

0
78%;‘(61'%}18?)];(;)) = fi(z), i=12,---,n, in Q
uo(.%') — go(x), on Iy
QN w|gu’) =gi(x), on Ty

(25)

=00\ _ (5. (s,0 AOAO_Aau%(x).
where 7 (u®) = (G1(u°),--- ,5,(u’)), 7;(u’) = Vilijkh g, 0= 1, n.
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Remark 3.1. It is emphasized that second-order correctors Ny, a,a,(§) are very
important to computing the displacement and the stress fields of composite struc-
tures. We refer the interested reader to Section 4.

Lemma 3.1.[22] Suppose that QF is a type-1I perforated domain. Let u®(x) be the
unique weak solution of problem(1), and U§(x), US(x) be as given in (20). Under
the assumptions (B1)—(Bs), (A1) —(Ay4), one obtains the following error estimates:

(26) ||UE — U;EHHl(QE) S C{:‘%’ s = 172

where C' is a constant independent of €.
For the extended problem (3), we set formally:

* * * Oul* (x

UP™ (@) = u% (2) + Ny o, (6) 2
(27) 0 o . ol (2) | o nre 90" (z)
U2 (I) =u” (:E) + ‘C:Nm,al (f) al‘al +e€ Nm,oelozg (5) 8$a151‘a2

where the vector-valued functions
(28)
Us*(w) = (U7 (2), - Usi(@)T, s =1,2; u®(2) = (u}™(2), - ,ufy*(2))";
N’:;L,Ozl (g) = (me,al (5)7 e ’N;Zm,al (5))Ta
N:;’L,ozlag (5) = (Nikm,alag (6)7 T 7N;m,o¢1a2 (5))T
Similarly, we obtain the homogenized equations associated with problem (3) given
by:

0,x
0 (G2, 2 @) _(1@0elyp 0y =19 n om0

"~ Oxj Oxp, QI
B0 @) =goa), o T
*(u”*) = g1(x), on Ty
where 6% (u®*) = (63 (u®*),--- , 5% (u"*)), 67 (u>*) = v;a; M = (v, ,Vn)
- 1 ) »Yn sy Ui = Yi%ijkh 3xh ) - 1 yUn
is the unit outer normal vector to 0f2, and
~ 1 ON; g n (E)
30 = . Fal, (&) e
(30) i = T L (5 (€) iy 52 e
The cell functions Ny, ,, (€), Ny, 0,0, (§) in unit cell @ are given by:
O ( ONgma )Y _ 0 (. .
(31) _a?j<aijkh(€)T) = a?j(aijmal(§>) n @
Ngm’al(g) is 1-periodic in &, fQ Ngm,al(f)df =0
* aN*m [e5KeP) (5) * *
_%(aijkh(f) . éfh ) = %(aijkarz (f)Nkm,al(f))

ON} ~ .
R T LA R B T N N

Nimaray(§) 18 1-periodic in &, fQ N v (6)dE =0

where & = 'z, n(€) = n(£) is as given in (4).

Remark 3.2. The crucial idea of the hole-filling method presented in Section 2 is
to consider the boundary value problems in a nonperforated domain ) regardless of
whether there are holes or not in an original problem. If QF is a type-1I perforated
domain containing many small holes, then we fill these holes with a very compliant
material, see problem (3). Now we discuss the relationship between the homogenized
coefficients of problem (1) and those of problem (3), and give a full mathematical
justification.
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Theorem 3.1. Suppose that w is an unbounded domain of R"™ which satisfies
Conditions (B1) — (Bs) , the boundaries of holes dw € C*, and a matriz (a3,
satisfies Conditions (A1) — (As), agjy;, € Whoo(w). Let Gijin and ajjyy, denote the
associated coefficients (24) and (30) for the homogenized equations, respectively. If
the cell functions Ny, o, € WH®(QNw), ay =1, ,n, n > 3, then there holds

A~k ~ 1
(33) @7 kn — |Q Nwl@ijrn| < CO7.

where C is a constant independent of § > 0, § > 0 is a sufficiently small number
given by (2) and |Q Nw| is the Lebesgue measure of Q Nw.

Proof. Thanks to Theorem 4.3 of ([2],p.44), under the assumptions of (A4;) —
(A3) and agy,, € Whee(w), if n = 2, then we can deduce that the cell functions
Nioy € WH(QNw), a1 = 1,--- ,n. But we need to add the assumption N, o, €
whe@nuw), ay =1,---,n forn > 3.

Under the assumptions of Conditions (B;) — (Bs) and dw € C*, it follows from
Lemma 2.1 that there exists an extension operator

P:Wh(QNw) — WH=(Q)
such that
PNpoy = Npmoy, ae in QNuw,
|PNoma lwioe (@) < CllNm,aq lwto (@nw)-

We now introduce some notation:

My (4) = ﬁ /Y B(E)d,

1 _ 1 ol R —
Wier V) = {1 € H(Y) : ¢ is 1-periodic and /Yw(g)dg =0}.
In fact, here we take Y = Q or ¥ = Q Nw.
Let Npp.oy = PNpy o, , and

v1(€) = N = Nontoohs — MQ(Nyiyie = Nonien) € Wiker (Q),

02(€) = Ny = Nonkeoh = M (N — Ninkeon) € Wper (Q Nw).

We take v1(§) and v2(&) as test functions for (22) and (31), respectively, then we
obtain

AN}, o DN, o — Nim.ay)
34 a’ m,o im,aq Q1 d
( ) /Q ijkh agh 853 f
/ * a(N;;n,al - Nim,al)dg
= - Aijman
Q" 9¢;
and
aﬁkma 6(N1*7no¢ _Nimal)
35 / ;i et 2 —~d
(3%) a8, %, ¢

6(1'i*ma Ni"”al)
= - Aijma = —d¢.
/Q Nw wme 0 gj
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Subtracting (34) from (35), we have

dg

QNw Y agh (96]

/ 8‘]\/vkm ;a1 a(N;;n a1 Nim7al)

zgk:h agj df

*
zm ,o1 sz,al)

dg

€l

o e T
/ l:m et Nkm,al) a(Nz*m ay ﬁim,m)
\@ ”kh 9én 9
/ o 8Nkm o 8(N7,*rn o Nim,m)
o Aijkh ¢,

. 6(N;*m a1~ Nim,ar)
=L+ B+ 10+ 15+ 13,

Q

dg

(36)

@

dg

@

w

where

dg,

/ aZ\]k:m R a(Nz*nL a1 Nim,al)
v z_]lch agj

/ 6Nkm Rt a(Nz*m o Nim,al)
l]kh 85]

/ a* zm ap Nim,al)dé.
ijmay ag] )

/ a* 7.m ,ap j\v]im@l)dé.
) zgmal ag] Y

I — / o a(Nkm,oq - l~k’m7041) a(N;;n o1 Nim@él)
3= = 37
Qe &, 0¢;

)

dg,

<

0

<
o

~

Note that Q \ w = Vs UV, and V5 = {£ € (Q \ w), dist(§,0w) < 6}, Vo = {£ €
(Q\w), dist(§,0w) = 6}

Using the properties of an extension operator P , we get

8Nkmoc a(N;ma _Nimal)
I — 1 Y1 ? d
=1/ i e

< Clle( mm)HLz%)H( Nivor = Moo 22 0y)

< CIVNmay 2200 IV (N ) = N l22(vs)

< C02 | VN, [l (o) IV (Vi ar = N 220v3)
< C0% [N [ (@) V(N ar = Nowan )l 22(v)
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and

8Nkm,a1 a(Nigim,al
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- Nim,al)

111 [ ai
Vo

1 ~ *
< 8% [|e(Nman )l 2w eV a,
< O8% ||V N oy 22w IV (N o,
< OO || Ny [t (@) IV (N

where e(u) = (ei;(u)), e5;(u) = 5(

13| = |/
Vs

g C |6(N1:’L,041

Similarly, we have

Vs

< 083 ||e(N,
< O8%||V(N}, o,

18] = |/
Vo

and

<062

Vo
< 57 |le(N,
< 062 V(N .,

23} 3

6UJ'

ox;

8’[14
Ox;

*
Nim,al

)7i7j:17"‘

- Nimval)

dg|

- Nm7a1)||L2(VO)
- Nm,al)”LZ(Vo)

- Nm,a1>HL2(V0)~

, 1.

dg|

o
aijmal

0§
- Nm,a1>|d‘£

;1,041 - Nm,al)”L?(Vs)

*
Nim,oel

- Nm,a1)||L2(V5)

- Nim,al)

O
a’ijnuxl

0§
- Nm,m”df

- Nm,a1)||L2(Vo)

|e(Ny;

m,o1

*
m,oy

dg|

- Nm,al)”LQ(Vo)'

It follows from (36), and the Korn’s inequality (see e.g. [22], pp.21) that

1 *
62|V (Ny o,

- Nm,al)”QL?(Q)

< |/ ot a(N;:m,ocl - Nkmual) 8(N;;n,a1 - Nimyal)d€|
> Q ijkh agh ag]
<R+ |1+ 1] + 13
1 " ~
S céz Hv(Nm,oq - Nm,al)HLz(Q\@)
1 . ~
< céz Hv(Nm,ocl - Nm,al)”Lz(Q%
and consequently
(37) V(N0 = Nman)ll22@) < C.
In particular, it yields
(38) IV(Noar = Nm,a)llL2@uw) < C.
From (38), we derive
IP<csz, 10<06:, I0<Cs2,19<Cs2, Iy <Cé2.
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From (36) , using the Korn’s inequality again, we obtain

’YOHV( m,ay Nm 041)”%,2(Qﬁw)

a(Nl:(m ;a1 Nk:m,al) a(Nz*m R Nimﬂl)
< Qijkh 8§ 65
QNw h J
< [Is| + 1) + |1 + | 13| + 13| < Co2

dg

i.e.

(39) V(N — Nim.ay)llL2(@ne) < CO7.

m,o1
‘We recall that
@k — 1Q Nw|@ijkn

* * aN;L 6Nm
= | /Q(aijk:h + Qiimi 8€Ik7h )df - o (al_]kh + Qj5ml 3; h )dgl
Nw

B(N:’Lk h mk h 7nk N
= alindé —|—/ @i jmi : d€ + / aiim d¢
| /Q\w Jjkh onw J a& ] l |

\ ON e = Nk,
= |/ aijkhd€+/ Gijmi : d¢
Q\w QNw

o0&

a(N*kh_j\vfmk h) 8Nmk;
+/ a’;m = —d +/ a’;{‘m Ld
Q\@ J l a&-l £ J l €|

= |Fy + Ey + IS + I + Es|,

Q\w

where

* * * 1
|En| = /Q\ azjppd] < ‘/v ajjendé| + |/v agjpndé| < €62,
w ) 0

I(Npin = Nnk,n) . .
|Ea| = | @ijml 3 d¢] < CIIV(Ny , = Niw)ll L2 (@nw) < €01,
QNw g

. 8Nm 8Nm aNm 1
‘E3| = |/Q\ aijml i hd£| ‘/ zgml i hd€| + |/ zyml i hd£| < C(Séa

and we thus obtain
—~ ~ 1
@7k — 1Q Nwl@ijkn| < C6%.

Recalling (22) and (31),(23) and (32), we observe that their constraint conditions
are inconsistent. Since [ (N}, o (&) = Nim,ay (§))dE # 0, f (Nimaran () —

QNw Nw
Nim e (£))d¢ # 0, it is difficult to give the error estimates for || mon —Nm.on | H1(Qrw)
and || Ny, o 0s = Nm.aras |51 (Qnw) 5 although we have obtained the semi-norm es-
timate (39) To this end, we need to define the cell functions in the unit cell Q) in
the following forms:

o (.. Nima O\ B
(40) _876. (aijkh(g)kaT) - W( zgmal )
N,:m al(g) is 1-periodic in &, fQﬂw iy al(f)df =0
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- (o0 D) = 2 (i, @, 0)

Wi | e _m@lQs. o

(41) ]
+a iagkh(g) afh Taomao |Q ﬁw| wzzmal

Nkm orag (&) s 1-periodic in &, mew Nkm,a1a2 (&)dE =0
where 7(¢§) = n(£) is as given in (4), and
ON*, (€
(42) Ukh |Q| / ljk’h 1jml (E)akélh())df

where N;,‘lkh(f), m,k,h=1,--- ,n are as given in (40).
Following along the lines of the proof of Theorem 3.1, we can prove

(43) ||V( m,ay Nm,ozl)HLz(Qmw) < 05%
Furthermore
(44) |éfjkh — Q@ Nwlaikn| < Csi.

Therefore we obtain the following homogenized equations associated with problem
(3), which is equivalent to (29):

< 0,%
0 (a1, 2 @)y _ (19nal) p (o

1=1,2,---,n, in

BTJ @ijkh 6wh QI
(45) i*(z) = go(a), on T
o ( O*) 791(17)7 on I’
Xk (0% ok (M0,% X (0, % Sk (0% A* 6u0*( )
where 67 (%) = (61 (4%), -, 05,(a")), 67 (@) = w35, —h == = (Vi va)

is the unit outer normal vector to 9, and 5fjkh = @ fQ ai i (§)+asm (5)%&“(5))%“.

Similarly to (27), we define formally :

Y] * « 120,*

o VD@ =@ @) NG, (6%

(6) ek _ aul* (x) 2 AT* 32712;’*@)
U5 (z) = i (z) + eNy, al(f)T +&2Ny, 102 (8) oz by

Remark 3.3. Observing (33) and (44), we know that the corresponding homog-
enized coefficients are the same regardless of whether we use (81) or (40). It is
very important to the homogenization method in shape optimization. Because ho-
mogenization method provides an effective way of optimizing the domain topology
without having to keep track of complex hole boundaries, we use (31) to compute
the homogenized coefficients ?i;“]kh in the most cases.

It remains to give the error estimates for | N* s~ Nm .o |1 (@nw) and | N s
N,y |51 (Qrw)- To do so, we next introduce the lemma given by:
Lemma 3.2.([13], Lemma B.63, p.490) Let 1 < p < 400, and Y be a bounded
connected open set having the (1,p)— extension property. Let f be a linear form
on WYP(Y) whose restriction on constant functions is not zero. Then, there is
Cp,y > 0 such that

4 lollwisey < Gy {lolwy +1F@I}, Yo e WHE(Y).
Define a space in such a way:
—1

W e (Q) ={v € HY(Q) : v(€) is 1-periodic in ¢ and v(§)d¢ = 0}
QNw
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which can be equipped with the norm
ol g = IVolz2y

because of the following lemma
Lemma 3.3. There exists a constant C' such that

(49) ol @) < OOVl +1 [ o(e)ae])

Proof. Let QNw be a subset of @ of non-zero measure and set f(v) = m mew
It is clear that f is continuous, and if ¢ is a constant function, f(c) is zero if and

only if ¢ is zero. It follows from Lemma 3.2 (Also see, [7] p.115) that
Il < OOVl +1 | o(€)ael)

Theorem 3.2. Let Ny o, (€), Nm,aras e the weak solutions associated with prob-
lems (22) and (23), respectively, and let N* &), N* be respectively the weak

m,oey m,op o2

solutions of problems (40) and (41). Under the assumptions of Theorem 8.1,
(B1) — (B3) and (A1) — (A4), we obtain the following error estimates:

. 1
(49) ”Nm,Oq - Nm,al ”Hl(Qﬁw) < Cé1,
(50) “Nm,alaz - N;:z,alag HHl(Qﬁw) < 068,

where C' is a constant independent of §; 0 > 0 is a sufficiently small number, and
the vector-valued functions

Nm,a; (f) = (Nlmyal ('5)7 ©y Nam,ag (E))T Nim,aiaz (5) = (Nlm»a1062 (5)7 “+y Nom,agag (5))T7

] v ] ]

N:n,al (6) = (Nl*m,al (5)7 e aN:Lm,al (5)) Nm , a1 (é) = (me,alag (5)7 e aN:Lm,alaz (5))T

Proof. In Lemma 3.2, if we set Y = QNw and f(v) = [ v(£)d¢, using (39),

QNw
(22) and (40), then we deduce (49).
Due to Lemma 3.3 and (37), we have
(51) 1N 00 = Nonsao 1) < C-
Let ¢;(¢) = (N7, oo Nim.ayas)- If we take ¢;(€) as the test functions, and

then the variational forms of (41) and (23) are the following:

al I:m ajo a¢z / N7 a(bz
52 oo STHhaALAs dé = — N —~d.
( ) /Qa”kh 8§h aé-] g Q z]kag km,aq afj 5

N} o
+Aa:a2kh u 1¢1d£+/( Qiaoman — 77(6) za2ma1)¢ld£7

233 1Q Nwl|
8Nkm g 8¢1 / 6¢Z
53 ij Li’id = - i ong m,aq . d
9) /Qm,‘”’“ 06, 061" T Jon, Mo Nimen g 6

ONim,a; .
+/ Qi kh k ¢id§ +/ (aiagmal - aiazma1)¢id§-
QNw ag QNw

v(£)dE.
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Subtracting (52) from (53), and using Lemma 3.3 and the Korn’s inequality , we
obtain

C”N:@,alaz - Nm;OClOQ”%-Il(Qﬁw) < C”V(N;Lalag - Nm7a1a2)||2L2(Qmw)

\T* \T*
a(Nkm,alag - Nkm,alag) a(Nim,alaz - Nim,alaz)
< Qijkh
QNw

& 0&; d

- / azjkh a(N;:m’m% _ Nkm’mM) a(N;;nxalaz B Nim7a1a2)
Q\» 23 dE;
ar. aﬁkm,alaz a(Ni*malaz - ]\Nfim,alaz) d£
\ I agh afj
8(]\771%,(11042 - Nim,alaz)
0¢;

o ~
*
a(Nim,ozlag - Nim7a1a2)

a‘;ﬁjkazNI:m,Oél 85‘7 dg

dg

€l

dg

N
ijkas (Ngm,ay — Nkm,ar)
N

€

\&@

a N* _N m,o N
( km, o km, 1)(Nitn,oz10£2 *Nim,allm)dg

+ Qiaykh

Nw afh
ON -

km,a ]
a’;‘arzkh P} : (Ni*rn,ala2 - Nim7a1a2)d€
\@ Eh

o ~

* *
aiazmal( im,agon Nim,alag)dg

+

|
S~ g~ g~ o~

_|_

S—

Q\w

1 A~k ~ N
+/Qmw(|Qmw|a'ia2ma1 - aiazmal)(Nim,alaz - Nim,alocz)d§
=g+ L+ 1+ I3+ 14+ 15+ Ig+ I7

a(N;WL,OqOéQ - Nkm,alaz) a(N* - Nim,alO@)

m,o e

’ /Q\w kR 293 9, ¢

Following the lines of the proof of Theorem 3.1, we can obtain

* aN m,o1 o a(]\u[z*rnoz a _Nim,a e} )
|11|:|*/ 0 — o122 == = de|

3 3

1 N
< CO2|V(N aray — Nmjaras)llL2(@\@)»

8(]\7* - Nim,alaz)

im,oy g

&

* N > a(Ni*ma @ _Nim,awz)
= /\aa”ijkaz(N , *Nkmal) 1 285] df

I = |- / ks Vo |
Q\w

1 \NT*
< (6= ”v(Nm,alag - Nm,alog)”L?(Q\@),
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i .
I = | / mal(N;Mm;Nim,mw)df\

* km «@ km70¢1 %
= 4\ a‘iagkh lafh (sz Rt Nim,aloq)dg

* aﬁkm,a r sk 7
+/\_ aiagkhT(Nim,alag - Nim7a1a2)d5|

Q\w

< 002 ||V}, 0 — Nmaoallz2(@\0)
sl = | / s Vi ey — N
< 06 H m,aiae Nm7a1a2||L2(Q\<D),
and
., (N ~ Nim,aras)
|]2| _ | _/ i (Nkm,al . Nkm,al) zm,alag im,o an d§|
an &
< C” myo N o1 HLZ(Qﬁw)”V( m,aiag Nm,alaz)”Lz(Qﬁw)
< C(S ||V( m,apae Nm7a10¢2)||L2(Qﬁw)5
Ny = Nemon) |, o
‘I4| = |/ Qiaskh m7ala€h Uk (Nim,alag - Nim7alaz)d§|
< CHV( m,a1 N, oq)”L2 (QNw) || m,a1ae Nm,alazHH(Qﬂw)
< C(S ” m,aiag Nm,a1a2”L2(Qﬁw)a
1 X % ~ * \T
|I7‘ = | Qmw<waia2m(x1 - a’iazmal)(sz ,a1on Nim7a1a2)d£|
< C‘ Qioamay ‘Q N w|awz2ma1| ” m,aiae Nm7a1a2 ||L2(Qﬂw)
< CO1||N,

m,aqag Nm,alagHLQ(Qmw)-

Using the above inequalities, (54) , Lemma 3.3 and the Korn’s inequality, we
have

5 || 7rLa1a2_Nm041062||§-11 <C§ ||V( malag_N'ﬂhOthlz)”QL?(Q)

Nkma1a2)a(N* _Nim.a «@ )
< C km NegRe D) s im,ay Qg NeosReD) d
/ Uk:h aé-h (95] g

< c(w |l + | Is| + 1] + T + [T + | 171
< C5%||N,

m,oayas Nm’aﬂlz ||H1(Q)

i.e.

~ 1
||N’:‘:L,Ot10t2 - Nm,awzHHl(Q) <Cor.
‘We thus obtain

IL| < Co%, || < Co%,  |I5] < Co%,  |Ig] < C67.
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On the other hand, using the inequality ab < va? + %bQ, a,b,v > 0 and (43),
we obtain

|12‘ < CHN;I,a] - Nmﬂl||L2(Qﬂw)|‘v(N;L,a1a2 - Nm,a1a2)|‘L2(Qﬁw)

C ., - N

< BHN:n,m = Nm,ay ||2L2(Qﬂw) + ’YHV(N:;LMM B Nm’a1a2)||%2(Qmw)
(G <

<50 FlVnase: Non.oras 711 (@)

|I4‘ < CHV(N:;’L,al - vaal)||L2(Qﬂw)||Nﬂ*’L,a1042 - Nm,alochLQ(Qﬂw)

C - o
< HHV(N;@,al - Nm,al)”ZL?(Qﬁw) + ’Y”N:;L,Oqaz - Nm70é10¢2 ||%2(Qﬁw)

C 1 .
< 552 + ’y”Nm,Oélotz o Nm,ozloczH?—Il(Qﬁw)’

|I7| < C|dfa2ma1 - |Q ﬁC"|aia2ma1| ) HN;’L,alag - Nm,alazHLQ(Qﬂw)

C . ~ .
< H|a:a2ma1 - |Q N w|a‘ia2ma1|2 + ’YHN::Lalaz - Nm’Othz H%?(Qﬁw)

IN

C .1 ok
552 +’YHNm,a1o¢2 - vaala?H%{l(Qﬁw)'

From (54), choosing a sufficiently small number v > 0 such that (1 —3v) > 1, then
we get

\7 1
HN;kn,a1o¢2 - vaa1a2HHl(Qﬂ(.u) < C6s.

Finally, we can obtain the following theorem:
Theorem 3.3. Suppose that Q° is a type-II perforated domain. Let u®(x) be the
unique weak solution of problem (1), and U (x), Us(z) be as given in (46). Under
the assumptions of Theorems 2.1, 3.1 and 3.2, (B1)—(Bs), (A1) —(A4) and suppose
u®, 1% € WLo(Q) N H3(Q), we have

(55) ||U6*17§HH1(QE) SC’{€%+§i}, s=1,2

where C' is a constant independent of €, 6.
Proof. Recalling Lemma 3.1, we have

(56) luf = Ut |lgr0e) < Ce2,  s=1,2.
Using the expansions (20) and (46), by the triangle inequality, we have

1UF = Uf |11 (aey < [u® — % g2

oul o oul:*
57 Ny o _ e Ol .
(57) +e[| Nom, Y. 4 D | 1. (022)
(58) 1US = US| 110y < IIUF = U [l i1 (e
9*ul, ‘e o*uly
2 N o T,

[e5Ke}%
Y2 026, 0T 0y T2 9T 0 OT
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We first give the error estimate of [|u® — °
from (25), and obtain

To do so, we subtract (45)

A(ud — iy NG
62‘ (aijkh(kafhk)) = %((awkh \Cﬁldl ”kh) 81{2 )a in Q
(59) ug—ﬁg*—Q on Iy, i=1,---,n
. <, . avo *
(UO —u” ) = v;( |¢£2L|aijkh - aijkh)Txh , on I'a.

The variational form is given by

o) — ") s N Q -, 0" Dy
(60)/Q Qijkh o, 9z, de = — /Q(a”kh — 0 mwlaijkh) D Oz, dz,

where ¢; € HY(Q,T).
If we take ¢; = ul — ﬁ?’* as a test function and use the Korn’s inequality, then

we obtain

(61) [u® — 1% g1y < CO1.
On the other hand, we know
oul, . oudx
HNm,ogWal — Vm,on 81'&1 HHl(QE)
6’(,&0 (‘T) \T* 6u9r*(x)
(62) < HNm,al(ﬁ)#al - Nm,al(f)#mnﬂ(ﬂs)

i Z | 10Ny (€) D, () _ 10N, () Dy (0)
3 8fj axal £ ag] 8$a1 L2(Qe=)

x o 0?0 (z
+z [Ny () L@ e (2@

833&18% 0%y, 0T

We observe that

ol (x) o0ud* (x)
N o m - N} . —m 7 .
[ Nim,ay (€) T o (6) T |l L2(e)
(63) < | Nonsan |2 (@ray 1e° a2 ) + 1N 0l 2oe () 120

1o (€ 0] _ I, (6) Oy (),
85] 8gjal 36] 6%1 L2(Qe)

ONmay (€)  ONp 0, (€) 0Ul, (2)

7”( 85; 85_7 ) 0z, ”Lz(QE)
}”51\’% a (§) (3U9n(ff) B Qg (x)
29}

ON} .,
(64) < CeT 0t o) + C= 7164 |52 e,
J

oy | Bra, NEE)

o

and
Pul (@) oo P ()

| Nomar (€) D2a, 0z, - m,al(f)mnm(m)

(65) < [ Nm.ar o @ 16l m20) + 1N 0 2 @) 18 ([ 120,
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If we suppose that Ny, ., € WH®(Q Nw), J\uf;%al € Wh>(Q), and u°, u** €
Whee(Q) N H2(£), we then obtain

0 . ~0,%
66)  elNma @2 Ny (%)

Similarly, we can get
0%u? v 0%udx 1

oy ——  N* _Y Pm o < Ceds < Cel/?,

Y2 0, 0% 0 T2 9T 0y OT oy i ae) < Ceo¥ < Ce
Combining (56)-(58), (61), (66) and (67) yields (55). Therefore we complete the
proof of Theorem 3.3.
Remark 3.4. Because of Theorem 3.3, contrary to the homogenization method
(see, Remark 3.3), we use usually the multiscale asymptotic expansions (46) to com-
pute the displacement and the stress fields instead of using the multiscale asymptotic
expansions (27).

. < C6.
833(11 ||H1(Q )=

(67) €| Num,

4. Numerical Examples

In order to support the theoretical results presented in previous sections, we
do some numerical experiments for problem (1) in a 3-D perforated domain ¢ as
shown in Fig.3 (a). Let ¢ contain many small spheroid holes satisfying Conditions
(B1) — (Bs3), and we assume that the solid material is homogeneous and isotropic.
In Section 2, we introduce the hole-filling method, see Definition 2.1, which its basic
idea is to fill all holes with a very compliant material such that Q¢ is changed into
a nonperforated domain 2, i.e. problem (3). We are interested in the asymptotic
behaviour of the solution for problem (3) as the properties of one weak phase go to
zero. In the previous sections, we have given the full mathematical justification of
this limiting process.

In this section, we will give two numerical examples. In Example 4.1, we use
the multiscale expansions (20) of the solution for problem (1) and the multiscale
expansions (46) of the solution for the multiphase problem (3), respectively. We
compare these numerical results, which support Theorem 3.3. In Example 4.2,
we use the formulas (24) and (42) to calculate the corresponding homogenized
coeflicients , and observe the relationship between them, which validates Theorem
3.1 and (44).

Example 4.1. We consider the following relaxed problem associated with problem

(1):

(65) 5 @ 25 D) =m0

u*(z) =g(x) on 90, i=1,2,---,n
where a whole domain © and the unit cell Q are as shown in Fig. 2 (a)-(b),

f(x) = (0,0,-11050), g(z) = (0,0,0), and let ¢ = e~ tw, ¢ = %,

: _ B v (E)E"(€) S GG
(6995, (8) = 21+ V*(f))éwékh + 0T ()1 - 20(8) (0indjk + 0irdjn),
" 241000 in@Nw " 0.25 in@QNuw
E7(€) :{ 1 nQw 7 (€) :{ 030 inQ\w,

Some numerical results for Example 4.1 are shown in Fig.4, the comparison of
numerical errors is as given in Tables 1 and 2.

For simplicity, without confusion let u°(x), u§(x) and u§(z) be respectively fi-
nite element solution of the homogenized equations, first-order multiscale finite
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FIGURE 3. In Example 4.1: (a) a whole domain €; (b) the unit cell @

TABLE 1. Comparison of numerical errors

[[u”—u""lo.0

llui—ui"[lo,0c

llus—u5"[lo,0¢

llo® =" lo.=

l[v°]lo.0

[[u$llo.0c

[lu5llo.0c

lloclo.0e

1.844824e-06

1.876889e-06

1.966307e-06

2.090513e-06

TABLE 2. Comparison of numerical errors

llui—ui "1 0c

llus—u5"[l1,0¢

llof = ]l1.0¢

[[uill.0e

llusl1.0c

lloc 1.0

3.582470e-06

3.199034e-06

2.480323e-06

element solution , and second-order multiscale finite element solution for prob-
lem (1) in a perforated domain Qf on the basis of (20) and (25). u%*(z), u7"(z)
and u3 ™ (z) denote respectively finite element solution of the homogenized equa-
tions, first-order multiscale finite element solution , and second-order multiscale
finite element solution for the hole-filling problem (3) in a domain € based on (45)
and (46). o°(x), o=*(z) denote respectively the stresses for problems (1) and (3)
based on the second-order multiscale expansions. Set |[v]jo,0 = ||v][z2(q), |v]o,.0c =
[ollz2(0e)s vllne = lollar @) vlhes = [vlla@:)-
Remark 4.1. The numerical results presented in Tables 1 and 2( also see, Fig.4)
clearly show that the hole-filling method is true.
Example 4.2. In this example, we are going to compare the homogenized coeffi-
cients defined in (24) to the ones defined in (30). The periodic cell @Nw is as shown
in Fig.5 containing many small spheroid holes satisfying Conditions (B;1) — (Bs).
We assume that the coefficients of multiphase problem (3) are given by:

E*() V(€ E"(§)

ajien(§) = m%ékh + T+ (©)(1 = 207 (&) (Gindjk + Girdjn),
where
crov [ 241000 mQNw .. [ 02 inQnNuw
v (O_{ 1 nQw " (5)_{ 030 inQ\w -

We use the formulas (24) and (30) to calculate the homogenized coefficients
@jjkn and @jjy,, respectively. The computational results for these homogenized
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FIGURE 4. In Example 4.1: (al), (a2) z components of the homog-
enized solutions; (bl), (b2) z components of first-order multiscale
solutions; (c1), (¢2) z components of second-order multiscale solu-
tions; (d1), (d2) z components of the stress for the original problem
(1) and the hole-filling problem (3), respectively.

coefficients are following

246229.77
78971.68
78227.98
—497.45
—375.59
—438.31

|Q Nwl{aijkn} =

78971.68
242934.80
78061.08
—512.65
—1079.87
15.09

78227.98
78061.08
243650.44
—77.63
—875.87
—323.27

—497.45
—512.65
—77.63
82701.43
3.39
—415.68

—375.59
—1079.87
—875.87
3.39
81628.89
—109.78

—438.31
15.09
—323.27
—415.68
—109.78
81945.18
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FI1GURE 5. In Example 4.2: cell Q Nw

246230.20  78971.92  78228.24  —497.44 —375.58 —438.30
78971.92  242935.28 78061.34 —512.64 —1079.84 15.09
78228.24  78061.34 243650.92 —77.62  —875.85 —323.27

{aijun} = —497.44  —512.64 —77.62  82701.54 3.39 —415.67
—375.58 —1079.84 —875.85 3.39 81629.03 —109.78
—438.30 15.09 —323.27 —415.67 —109.78 81945.30

Remark 4.2. Observing these numerical results, we can conclude that the homog-
enized coefficients for the hole-filling problem (3) with the coefficient aiin defined in
(2) provide a accurate approzimation to the homogenized coefficient for the original
perforated problem (1). The numerical results validate Theorem 3.1.

5. Conclusions

This paper discusses the homogenization method and the multiscale analysis
of linear elastic equations in a type-II perforated domain 2°¢. We introduce the
hole-filling method in a perforated domain, i.e. we replace all holes by a very
compliant material, then we study the homogenization method and the multiscale
analysis for the associated multiphase problem in a domain 2 without holes. We
are interested in the asymptotic behavior of the solution for the multiphase problem
as the material properties of one weak phase go to zero. The main contribution
obtained in this paper is to give the full mathematical justification for this limiting
process in general cases. Finally, some numerical results are reported, which support
strongly the theoretical results of this paper.

Acknowledgements. The authors express their thanks to the referee, whose
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results.
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