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AN A PRIORI ERROR ANALYSIS OF OPERATOR UPSCALING
FOR THE ACOUSTIC WAVE EQUATION

TETYANA VDOVINA AND SUSAN E. MINKOFF

Abstract. In many earth science problems, the scales of interest range from

centimeters to kilometers. Computer power and time limitations prevent in-

clusion of all the fine-scale features in most models. However, upscaling meth-

ods allow creation of physically realistic and computationally feasible models.

Instead of solving the problem completely on the fine scale, upscaling meth-

ods produce a coarse-scale solution that includes some of the fine-scale detail.

Operator-based upscaling applied to the pressure/acceleration formulation of

the acoustic wave equation solves the problem via decomposition of the solution

into coarse and subgrid pieces. To capture local fine-scale information, small

subgrid problems are solved independently in each coarse block. Then these

local subgrid solutions are included in the definition of the coarse problem.

In this paper, accuracy of the upscaled solution is determined via a detailed

finite element analysis of the continuous-in-time and fully-discrete two-scale

numerical schemes. We use lowest-order Raviart-Thomas mixed finite element

approximation spaces on both the coarse and fine scales. Energy techniques

show that in the L2 norm the upscaled acceleration converges linearly on the

coarse scale, and pressure (which is not upscaled in this implementation) con-

verges linearly on the fine scale. The fully discrete scheme is also shown to

be second-order in time. Three numerical experiments confirm the theoretical

rate of convergence results.

Key Words. upscaling, convergence analysis, acoustic wave propagation,

multiscale methods, error estimates.

1. Introduction

Data required for deep crustal seismic studies, time-lapse seismology, detailed
near-surface environmental cleanup applications, and other modern-day earth-science
problems can easily run into the terabyte range or beyond. Further, depending on
the questions which need to be addressed in a particular study, the data may
span a range of scales from centimeters to kilometers. Over the past few decades
computational scientists and geoscientists have contributed to the development of
various methods aimed at obtaining accurate and cost-effective solutions to these
modeling problems. Finite-difference methods have long been accepted as an easy-
to-implement and relatively accurate way to solve the discrete wave equation [14],
[27], [28], [33]. While finite element methods for solving the wave equation have
been proposed, they have not been as widely embraced in the geoscience modeling

Received by the editors May 9, 2007.

2000 Mathematics Subject Classification. 35L05, 86-08, 65M12, 65M15, 86A15.

543



544 T. VDOVINA AND S. MINKOFF

community. These methods are better able to handle complex domain geometries,
but they are more difficult to implement than finite-difference methods [28]. (For
examples of finite element approaches to solving the wave equation, see [6], [7], [15],
[16], [21], [22], [24], [25].)

Large-scale acoustic and elastic wave propagation in two and three dimensions
has become computationally feasible in large part due to the successful implemen-
tation of data parallel algorithms (see [29] and works cited therein). In spatial (or
data) parallelism, each processor has ownership of a subset of the total domain.
The processor is responsible for allocating ghost cells at the boundaries of its sub-
domain, for updating the finite-difference solution over its portion of the domain
(including along the ghost cells), and for communicating the boundary solution
data to its immediate neighbors.

As an alternative to data parallelism (which includes all the collected data in
the modeling but parcels the data out to different processors to reduce the com-
putational load), techniques have emerged which attempt to either (1) determine
the most important bits of data to incorporate in the model [34], (2) determine
effective or homogenized input parameters for solving a coarser-scale problem [8],
[11], [13], [23], or (3) approximate the solution via a subgrid upscaling procedure
[1], [4], [12], [19].

In an earlier paper by Vdovina et al. [32], the authors presented the first ex-
tension of operator-based upscaling (originally developed for elliptic flow problems)
to the acoustic wave equation. The key idea in operator upscaling is to solve the
problem via a two-scale decomposition of the solution [4]. At the first stage, the
problem is solved for the fine-scale (subgrid) unknowns defined locally within each
coarse block. The method makes use of homogeneous Neumann boundary condi-
tions between coarse blocks (in the first step) which allow for localization of the
subgrid problems. At the second stage, we use the subgrid solutions to determine
a new coarse-grid operator defined on the global domain. While the method was
originally developed in the context of mixed finite elements, in practice the compu-
tationally intensive part of the algorithm (subgrid solve) is accomplished via finite
differences. (We exploit the connection between lowest-order mixed finite elements
and cell-centered finite differences [30], [32].) The method does not involve explicit
averaging of the input parameters nor does it require scale separation or periodicity.
We parallelize only the first stage of the algorithm (solving the much smaller coarse
problem in serial). The main advantage of this upscaling approach over standard
data parallelism is that there is no communication between processors since the
subgrid problems decouple due to the boundary conditions used in the first stage
of the process. We tested the numerical accuracy of the method on large domains
with geophysically realistic input data typical of subsurface environments. Numer-
ical experiments show that sub-wavelength scale heterogeneities were captured by
the upscaled solution.

In a related paper, Korostyshevskaya and Minkoff [26] analyze the physical prob-
lem solved by the upscaling technique. What this analysis highlights is that the
numerical upscaling process solves a constitutive equation similar in form to the
original equation. The constitutive equation relates acceleration to the gradient of
pressure. For the coarse (upscaled) problem, however, the parameter field (density)
reduces to an averaged density along coarse block edges. Similarly, when analyzing
the pressure equation, we find that the upscaled solution solves the original wave
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equation at nodes internal to the coarse blocks but a modified equation at coarse
block edges. Specifically, a cross-derivative (involving differentiation with respect
to both x and y in 2D) enters the standard wave equation. This analysis not only
simplifies the coding of the algorithm (for example by showing that the mass matrix
in the upscaled equation is diagonal) but also illuminates the physical meaning of
the upscaled solution.

Arbogast presents convergence theory for operator-based upscaling of elliptic
problems in [2]. In Vdovina et al. [32], we outline a stability analysis based on
the principle of energy conservation. In the current work, we use energy arguments
together with this stability result to establish the first rigorous a priori error esti-
mates for the continuous-in-time and fully-discrete solutions of the two-dimensional
wave equation solved via operator upscaling. A number of standard finite element
techniques for solving the acoustic wave equation have been shown to be conver-
gent, including Galerkin [5], [17] and mixed finite element methods [16], [21]. Our
work builds upon the literature (in particular, we apply the energy method to the
acoustic wave equation as outlined in [16] and [21]). However, it differs from these
works for the following reasons. First, we consider the pressure/acceleration for-
mulation of the acoustic wave equation as opposed to the displacement formulation
discussed in [21]. Secondly and more importantly, our discrete problem comes from
the upscaling procedure. Thus the solution has a complicated two-scale structure.
To account for the multiscale nature of the problem, we make use of operators (in-
troduced in [2] by Arbogast) that map variational spaces onto the two-scale finite
element subspaces. Using the approximation properties of these operators and con-
fining our discussion of the method to lowest-order Raviart-Thomas mixed finite
element spaces (RT0) for both coarse and subgrid problems, we show that pres-
sure is approximated on the subgrid scale to order h (fine-grid space step) in L2

norm and acceleration is approximated on the coarse scale to order H (coarse-grid
space step). We have chosen to confine the theoretical discussion to the finite ele-
ment spaces used in the implementation given in Vdovina et al. [32]. The results
presented in this paper are the first rigorous estimates of operator upscaling for
the wave equation, and they confirm the formal (local) order of accuracy results
suggested by Korostyshevskaya and Minkoff [26].

In Sections 2 and 3, we introduce the model problem and summarize the up-
scaling algorithm mathematically. Section 4 explains our notation and contains
background theory needed for the analysis which follows. In Section 5, we derive
a priori error estimates for the continuous-in-time problem. Error estimates for
the fully-discrete problem are given in Section 6. Finally, Section 7 contains three
numerical tests that validate our theoretical results.

2. Model Problem and Weak Formulation

The following equation provides a classical formulation of the acoustic wave
propagation problem:

(1)
1

k(x, y)
∂2p(t, x, y)

∂t2
−∇ ·

(
1

ρ(x, y)
∇p(t, x, y)

)
= f(t, x, y),

where p is pressure, k(x, y) is bulk modulus, ρ(x, y) is density, and f is the source
of acoustic energy.
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In this work, we consider the pressure-acceleration formulation of the acoustic
wave equation derived from the continuity equation and Newton’s law. We assume
that density ρ is constant and denote velocity by v. Then Newton’s law becomes:

∂v(t, x, y)
∂t

= F = −∇p(t, x, y),(2)

where the force F is due to variations in pressure. The continuity equation relates
the pressure drop to the divergence of velocity [9]:

−∂p(t, x, y)
∂t

= k(x, y)∇ · v(t, x, y).(3)

If we differentiate this equation with respect to time and use the fact that in a
constant-density medium k(x, y) = c2(x, y), then

−∂2p(t, x, y)
∂t2

= c2(x, y)∇ ·
(

∂v(t, x, y)
∂t

)
,(4)

where c(x, y) is the sound velocity. Introducing acceleration u as the time-derivative
of velocity, we arrive at the pressure-acceleration formulation of the wave equation:

u(t, x, y) = −∇p(t, x, y),(5)
1

c2(x, y)
∂2p(t, x, y)

∂t2
+∇ · u(t, x, y) = f(t, x, y).(6)

Notice that equation (1) can be interpreted as an equation for potential φ defined
by the time integral of pressure:

φ(t, x, y) =
∫ t

−∞
p(τ, x, y) dτ.(7)

The velocity field is then determined from Newton’s law:
∂v(t, x, y)

∂t
= −∇p(t, x, y) = −∇

(
∂φ(t, x, y)

∂t

)
= − ∂

∂t
∇φ(t, x, y).(8)

Integration with respect to time gives velocity as the negative gradient of the pres-
sure potential. Using the same continuity equation (3) to relate the pressure po-
tential and velocity field, we obtain the potential-velocity formulation:

v(t, x, y) = −∇φ(t, x, y),(9)
1

c2(x, y)
∂2φ(t, x, y)

∂t2
+∇ · v(t, x, y) = f(t, x, y).(10)

Mathematically formulations (5)–(6) and (9)–(10) are equivalent. While the
formulation involving the pressure potential leads to a clear physical interpretation
of the results given later in this paper into potential and kinetic energy, we were
motivated to examine the pressure-acceleration formulation instead because the
latter involves measurable quantities which would be recorded by seismometers in
real fields.

In general, the upscaling algorithm can accommodate any set of boundary and
initial conditions. To simplify the presentation of the method, we consider the
following conditions:

u · ν = 0 on Γ,(11)

p(0, x, y) = p0,
∂p(0, x, y)

∂t
= p1,(12)

where ν is the unit outward normal to the boundary Γ.
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Let V = H0(div; Ω) be the set of vector functions in (L2(Ω))2 such that ∇ · v ∈
L2(Ω) and u·ν = 0 on Γ. If we multiply equations (5)–(6) by v ∈ V and w ∈ L2(Ω),
respectively, and integrate over Ω, we obtain the variational formulation of our
problem:

For t ≥ 0 find u(t) ∈ V and p(t) ∈ L2(Ω) such that

(u(0),v) = (u0,v) ,(13)

(p(0), w) = (p0, w) ,(14)

(pt(0), w) = (p1, w) ,(15)

(u(t),v)− (p(t),∇ · v) = 0 for t > 0,(16) (
1
c2

∂2p(t)
∂t2

, w

)
+ (∇ · u(t), w) = (f(t), w) for t > 0(17)

for all v ∈ V and w ∈ L2(Ω). Equation (13) is an auxiliary condition which is
derived from (5) and the initial conditions for pressure.

3. Operator-based Upscaling

The objective in operator-based upscaling is to construct a coarse-grid solu-
tion that incorporates some of the local fine-scale information without requiring
solution of the full fine-scale problem. The method is based on decomposing the
unknowns into coarse and subgrid pieces. To define this decomposition, we intro-
duce a two-scale computational grid and construct the coarse acceleration space
VH ⊂ H0(div; Ω) over the coarse mesh. The subgrid space δVh ⊂ H0(div;Ec)
is defined for each coarse element Ec. We localize the subgrid spaces by imposing
homogeneous Neumann boundary conditions on each coarse block (see [32] for a
discussion of the local boundary conditions). The two-scale acceleration space is
given by a direct sum of the coarse and subgrid spaces:

VH,h = VH ⊕ δVh.(18)

Both spaces consist of linear functions of the form (α1x + β1, α2y + β2) with nodes
on the edges of the cells (see Figure 1).

Although we are able to upscale both pressure and acceleration, in prior related
work [26] and [32] we chose not to upscale pressure. Upscaling pressure requires
cumbersome basis functions and a more complicated algorithm (see [32] for a dis-
cussion of pressure upscaling). If required, a projection of pressure onto the coarse
grid can be computed. Our analysis here applies to the implementation described
in [32]. We use the full fine-scale pressure space that consists of piecewise discon-
tinuous functions with nodes at the centers of the fine cells (see Figure 1). With
this definition, computation of the pressure unknowns on the fine grid is performed
locally inside each coarse element.

Using decomposition (18), we separate the acceleration unknowns into coarse
and subgrid components U = UH + δU and solve the problem in two stages. At
the first stage, we solve a series of subgrid problems localized in each coarse element
Ec. To obtain the variational form of these problems, we restrict to the subgrid
test functions δv ∈ δVh and w ∈ Wh in equations (16)–(17):

(δU + UH , δv)Ec
− (P,∇ · δv)Ec

= 0,(19) (
1
c2

∂2P

∂t2
, w

)
Ec

+ (∇ · (δU + UH), w)Ec = (f, w)Ec .(20)
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(a) (b)

Figure 1. (a) Coarse grid with 2 × 2 grid blocks. The large
crosses represent the nodes in the coarse acceleration space VH .
(b) Coarse grid with 2× 2 coarse blocks and 3× 3 subgrid blocks
in each coarse block. The small crosses represent the nodes in the
subgrid acceleration space δVh(Ec). The dots represent the nodes
in the pressure space Wh.

We use second-order finite differences to approximate the derivative with respect
to time in equation (20). Subgrid acceleration δU is computed as a function of the
(unknown) coarse solution UH . Since we do not upscale pressure, its computation
is completed at the first stage. At the second stage, we use the subgrid solutions
(P, δU) and coarse test functions to define the problem on the coarse grid:

(UH + δU,v)Ω − (P,∇ · v)Ω = 0(21)

for v ∈ VH . The subgrid acceleration and pressure solutions allow local fine-scale
information to be incorporated into the coarse problem. At this stage, the original
global boundary conditions are used to solve the coarse problem. The algorithm
repeats for the next time step.

At each time step of the upscaling algorithm we solve equations (19)–(20) and
feed this subgrid solution into equation (21) which is then solved for the upscaled
solution. One notes that UH is unknown in equations (19)–(20). To circumvent this
difficulty the traditional tack is to use numerical Green’s functions (see [20, 3, 32])
which consists of breaking the subgrid problem into a set of simple subproblems
using a superposition of solutions. The disadvantage of the numerical Green’s
functions approach is that it is computationally expensive (involving several matrix-
vector products).

Korostyshevskaya and Minkoff [26] showed that the coarse-grid linear system
reduces to an explicit difference equation in terms of pressure only, provided that
fine-grid quadrature rules are used to approximate the inner products in equa-
tion (21). (Note that to make use of measured sound velocity and density in the
acoustic wave equation, the implementation of the algorithm had always used fine
grid quadrature to approximate the inner products so no added expense is incurred
here.) Since the coarse problem is independent of subgrid acceleration, we were
able to futher simplify the implementation of the method by eliminating subgrid
acceleration altogether from the pressure equation. We solve the subgrid problems
by replacing acceleration with the augmented solution. In the thesis by Vdovina
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[31] she shows that the augmented acceleration solution (given by the sum of the
coarse and subgrid components) reduces to the subgrid solution from the influence
of the physical source at nodes internal to coarse blocks. At nodes located on
coarse block edges, the augmented solution depends on the coarse component of
acceleration only. Therefore, the complete subgrid acceleration solution is no longer
required by the algorithm. The only component that is needed to solve the pressure
equation or compute the augmented solution is the component of the solution that
represents the influence of the physical source.

The modified algorithm can be summarized as follows:

(1) For each time level:
i: Loop over all the coarse blocks to obtain the subgrid solutions from

the physical source f using a staggered finite-difference scheme.
ii: Solve the coarse-grid problem for the coefficients in the finite element

representation of coarse acceleration using an explicit difference equa-
tion.

iii: Assemble the augmented solution using the component of the subgrid
solutions from the physical source and coarse coefficients.

number of Finite-difference Original Modified upscaling code

processors code code number of fine blocks per coarse block

100× 100 100× 100 100× 100 60× 60 50× 50

1 29.43 67.01 29.69 29.92 30.31

2 – 34.20 15.46 15.35 15.61

4 – 17.19 7.63 7.97 8.59

6 – 11.57 5.23 5.62 5.88

8 – 10.69 4.37 5.12 7.52

12 – 7.39 3.07 3.82 3.97

Table 1. Observed time (in seconds) taken by the full finite-
difference code (column 2), the original upscaling code described
in [32] (column 3), and the modified upscaling code (columns 4–6)
(time-step loop) for different numbers of processors and different
groupings of fine grid blocks. Twenty time steps were taken in
these experiments. The fine numerical grid contains 3600 × 3600
grid blocks.

Table 1 gives timing results for different sizes of coarse blocks and different
numbers of processors for a domain discretized into 3600 × 3600 fine grid blocks.
Columns 2, 3, and 4–6 of the table compare timings for a standard (non-upscaled)
finite-difference solution of the wave equation, the original upscaling algorithm de-
scribed in [32], and the modified upscaling algorithm described here respectively.
We can see from columns 3 and 4 of Table 1 that the modified upscaling algorithm
is more than two times faster than the algorithm described in [32]. In fact, even
when run on a single processor, the modified upscaling code is quite comparable
to a standard finite difference solution of the wave equation. When the problem is
solved on 12 processors and upscaled to 100× 100 coarse grid blocks, the upscaling
algorithm is 10 times faster than straight finite-differences. (See [31] for the detailed
discussion of the parallel performance of the modified algorithm.)
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4. Notation and background theory

The L2 inner product

(u, v) =
∫

Ω

uv dΩ(22)

induces a norm which we denote by || · ||L2 . In addition to the L2 space norm, we
introduce the following time-space norms:

‖u‖L2(0,T ;L2(Ω)) = ‖u‖L2(L2) =

(∫ T

0

‖u‖2L2(Ω) dt

) 1
2

,(23)

‖u‖L∞(0,T ;L2(Ω)) = ‖u‖L∞(L2) = max
0≤t≤T

‖u‖L2(Ω) .(24)

We derive the error estimates by showing that the numerical solution (P,U) is
close to a projection of the true solution (p,u) onto the two-scale finite element
spaces. Let Ph be the L2 projection onto the pressure space Wh such that

(Phφ,w) = (φ,w) for all φ ∈ L2, w ∈ Wh.(25)

In addition, if φ ∈ L2 ∩H l(Ω), we have [10]

‖Phφ− φ‖s ≤ Chj−s ‖φ‖j for 0 ≤ s ≤ l, 0 ≤ j ≤ l,(26)

where l is associated with the degree of the approximating polynomial. Arbogast
in [2] constructed an operator πH,h from V ∩ H1 onto the two-scale acceleration
space VH,h such that

∇ · πH,hv = Ph∇ · v for any v ∈ V ∩H1(27)

and

‖v − πH,hv‖0 ≤ ‖v‖m Hm, 0 ≤ m ≤ M,(28)

where M is the approximation order of the coarse acceleration space VH . To ob-
tain an error estimate for the continuous-in-time problem, we use the following
formulation of Gronwall’s lemma [21]:

Lemma 1. If y(t) ≥ 0 satisfies yt ≤ ky(t) + h(t) for 0 ≤ t ≤ τ , where k ≥ 0 is a
constant and h(t) ≥ 0, h ∈ L1(0, τ), then

y(t) ≤ ekτ

[
y(0) +

∫ τ

0

h(s)ds

]
(29)

for all t ∈ [0, τ ].

As in [16], [21], we use the “inverse inequality” to analyze the approximation
properties of the fully-discrete problem:

Lemma 2. Let ρ(T ) be the radius of a circle inscribed into element T of the
partition of the grid, and let h denote the maximum diameter. If there exists a
constant ν > 0 such that ρ(T ) ≥ νh for any element T in the partition of the grid,
then

‖∇ · φ‖L2 ≤ Kh−1 ‖φ‖L2 ,(30)

where K is independent of h and φ ∈ H(div; T ).

We refer the reader to [10], [18] for the proof of this result.
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5. Continuous-in-time estimates

Our goal in this paper is to investigate the convergence properties of the operator-
based upscaling algorithm. The algorithm produces a solution on the coarse grid.
Therefore, coarse equation (21) is the most obvious candidate for analysis. However,
in order to take into account subgrid acceleration and pressure defined on the fine
grid, we use the approach followed by Arbogast [2] for elliptic problems. We will
study the augmented two-scale problem:

Find U(t) ∈ VH,h = VH ⊕ δV and P (t) ∈ Wh such that

(U(0),v) = (πH,hu0,v) ,(31)

(P (0), w) = (p0, w) ,(32)

(Pt(0), w) = (p1, w) ,(33)

(U,v)− (P,∇ · v) = 0 for t > 0,(34) (
1
c2

∂2P

∂t2
, w

)
+ (∇ ·U, w) = (f(t), w) for t > 0(35)

for all v ∈ VH,h, w ∈ Wh. Although we do not solve this problem directly, we can
easily construct the augmented acceleration solution from the coarse and subgrid
solutions

U = UH + δUh.

This post-processing step requires very little computational effort since it would be
performed after completion of the time step loop, and at that point both the coarse
and subgrid solutions are available from the upscaling process. In the theorem
below, we derive an a priori error estimate for the continuous-in-time two-scale
finite element scheme given in (31)–(35). We show that pressure and acceleration
converge linearly on the fine and coarse scales, respectively, provided that RT0
mixed finite element spaces are used on both scales.

Theorem 1. For 0 ≤ t ≤ T let (p(t), u(t)) be the solution of problem (13)–(17)
and (P (t), U(t)) be the solution of problem (31)–(35). If u ∈ L∞(0, T ;L2(Ω)),
ut ∈ L2(0, T ;H1(Ω)), u(0) ∈ H1(Ω), pt ∈ L∞(0, T ;L2(Ω)), ptt ∈ L2(0, T ;H1(Ω)),
and pt(0) ∈ H1(Ω), then there exists a constant K independent of h and H such
that ∥∥∥∥1

c
(pt − Pt)

∥∥∥∥
L∞(L2)

+ ‖u−U‖L∞(L2)(36)

≤ K
(
h ‖ptt‖L2(H1) + H ‖ut‖L2(H1)

)
.

Proof. We consider the difference between the approximate solutions from the up-
scaling algorithm and solutions of equations (13)–(17). We add and subtract Phpt

and πH,hu and use the triangle inequality:∥∥∥∥1
c

(pt − Pt)
∥∥∥∥

L∞(L2)

+ ‖u−U‖L∞(L2)

≤
∥∥∥∥1

c
(pt − Phpt)

∥∥∥∥
L∞(L2)

+ ‖u− πH,hu‖L∞(L2)(37)

+
∥∥∥∥1

c
(Pt − Phpt)

∥∥∥∥
L∞(L2)

+ ‖U− πH,hu‖L∞(L2) .
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First, we bound the difference between the true acceleration solution and its pro-
jection onto the finite element subspace:

‖u− πH,hu‖L2 = ‖u(0)− πH,hu(0)‖L2 +
∫ t

0

‖ut − πH,hut‖L2 dτ(38)

≤ ‖u(0)− πH,hu(0)‖L2 +
∫ T

0

‖ut − πH,hut‖L2 dτ.

Using the Cauchy-Schwarz inequality on the integral term, we obtain:

‖u− πH,hu‖L2 ≤ ‖u(0)− πH,hu(0)‖L2(39)

+
√

T

(∫ T

0

‖ut − πH,hut‖2L2 dτ

)1/2

.

Then, taking the supremum over t yields:

‖u− πH,hu‖L∞(L2) ≤ ‖u(0)− πH,hu(0)‖L2 + K ‖ut − πH,hut‖L2(L2)

≤ KH ‖ut‖L2(H1) ,(40)

where the last inequality follows from approximation property (28) of operator πH,h

and the fact that acceleration at time t = 0 is a bounded function. Similarly, we
can bound pressure by:∥∥∥∥1

c
(pt − Phpt)

∥∥∥∥
L∞(L2)

≤ Kh ‖ptt‖L2(H1) .(41)

In the rest of the proof, we obtain a bound on the last two terms in (37) corre-
sponding to the numerical approximation of pressure and acceleration. We begin
with equations (16)–(17) and (34)–(35) and rewrite them in a form suitable for ap-
plication of Gronwall’s lemma. For notational convenience we let σ = U− πH,hu,
ξ = P −Php, η = u− πH,hu, and ζ = p−Php. If we subtract equations (16)–(17)
from equations (34)–(35) and add and subtract Phptt and πH,hu, we obtain:

(σ,v)− (ξ,∇ · v) = (η,v)− (ζ,∇ · v),(42) (
1
c2

ξtt, w

)
+ (∇ · σ, w) =

(
1
c2

ζtt, w

)
+ (∇ · η, w).(43)

We now differentiate (42) with respect to time:

(σt,v)− (ξt,∇ · v) = (ηt,v)− (ζt,∇ · v).(44)

Since σ belongs to VH,h for each t, we can use v = σ in equation (44). Also, since
ξt ∈ Wh, we set w = ξt in equation (43):

(σt,σ)− (ξt,∇ · σ) = (ηt,σ)− (ζt,∇ · σ),(45) (
1
c2

ξtt, ξt

)
+ (∇ · σ, ξt) =

(
1
c2

ζtt, ξt

)
+ (∇ · η, ξt).(46)

Adding these equations, we obtain:

1
2

d

dt

∥∥∥∥1
c
ξt

∥∥∥∥2

L2

+
1
2

d

dt
‖σ‖2L2(47)

=
(

1
c2

ζtt, ξt

)
+ (ηt,σ) + (∇ · η, ξt)− (ζt,∇ · σ).
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Using definition (25) of the operator Ph and the fact that ∇ ·σ = ∇ · (U− πH,hu)
is in Wh, we show that the last term in equation (47) is equal to zero:

(ζt,∇ · σ) = (pt − Phpt,∇ · σ) = 0.(48)

Similarly, definitions (25) and (27) imply that

(∇ · η, ξt) = (∇ · u, ξt)− (∇ · πH,hu, ξt)(49)

= (∇ · u, ξt)− (Ph∇ · u, ξt) = 0,

since Ph∇ · u, ξt ∈ Wh and ∇ · u ∈ L2. Using (48), (49), and the Cauchy-Schwarz
inequality on the right-hand side of (47), we obtain:

1
2

d

dt

∥∥∥∥1
c
ξt

∥∥∥∥2

L2

+
1
2

d

dt
‖σ‖2L2 ≤

∥∥∥∥1
c
ξt

∥∥∥∥
L2

∥∥∥∥1
c
ζtt

∥∥∥∥
L2

+ ‖σ‖L2 ‖ηt‖L2 .(50)

The algebraic inequality 2ab ≤ a2 + b2 can then be applied to the right-hand side
of (50) to yield:

d

dt

(∥∥∥∥1
c
ξt

∥∥∥∥2

L2

+ ‖σ‖2L2

)
≤

∥∥∥∥1
c
ξt

∥∥∥∥2

L2

+ ‖σ‖2L2(51)

+
∥∥∥∥1

c
ζtt

∥∥∥∥2

L2

+ ‖ηt‖
2
L2 .

Applying Gronwall’s lemma to the last inequality, we see that:∥∥∥∥1
c
ξt

∥∥∥∥2

L2

+ ‖σ‖2L2 ≤ et

(∥∥∥∥1
c
ξt(0)

∥∥∥∥2

L2

+ ‖σ(0)‖2L2

)
(52)

+ et

∫ t

0

(∥∥∥∥1
c
ζtt

∥∥∥∥2

L2

+ ‖ηt‖
2
L2

)
dτ.

Initial conditions (13), (15), (31), and (33) imply that∥∥∥∥1
c
ξt(0)

∥∥∥∥2

L2

+ ‖σ(0)‖2L2 = 0.(53)

Taking the supremum over all t in (52) gives:∥∥∥∥1
c
ξt

∥∥∥∥2

L∞(L2)

+ ‖σ‖2L∞(L2) ≤ K

(∥∥∥∥1
c
ζtt

∥∥∥∥2

L2(L2)

+ ‖ηt‖
2
L2(L2)

)

≤ K

(
h2

∥∥∥∥1
c
ptt

∥∥∥∥2

L2(H1)

+ H2 ‖ut‖2L2(H1)

)
,(54)

where the last inequality follows from the approximation properties (26) and (28)
and the constant K includes an upper bound for et. Taking the square root of
both sides of equation (54) and using it in the right-hand side of (37) together with
bounds (40) and (41), we obtain the estimate of the theorem. �

6. Fully-discrete estimates

In this section, our goal is to analyze the approximation properties of the fully-
discrete two-scale finite element problem. First, we discretize the derivative with
respect to time using explicit second-order finite differences and introduce the fully-
discrete problem. Then, we state the stability condition and use it to obtain a priori
error estimates for the fully-discrete problem.
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We begin by introducing the following notation for the discrete time derivatives:

D2
t φn =

φn+1 − 2φn + φn−1

(∆t)2
,(55)

Dtφ
n+ 1

2 =
φn+1 − φn

∆t
,(56)

where ∆t is the time step, φn denotes φ(tn) for tn = n∆t, and tN = T. Setting
φn+ 1

2 = (φn + φn+1)/2, we obtain the following relation between the discrete time
derivatives:

D2
t φn =

Dtφ
n+ 1

2 −Dtφ
n− 1

2

∆t
.(57)

We use this notation to formulate the fully-discrete two-scale finite element scheme:
Find (Pn,Un) in Wh ×VH,h such that:(

U0,v
)

= (πH,hu0,v) ,(58) (
P 0, w

)
= (p0, w) ,(59) (

2
∆tc2

P 1 − P 0

∆t
, w

)
+
(
∇ ·U0, w

)
=

(
f0 +

2
∆tc2

p1, w

)
,(60)

(Un,v)− (Pn,∇ · v) = 0,(61) (
1
c2

D2
t Pn, w

)
+ (∇ ·Un, w) = (fn, w)(62)

for n from 1 to N and all w ∈ Wh and v ∈ VH,h. In order to derive initial
condition (60), we consider equation (62) at time level n = 0 :(

1
c2

P 1 − 2P 0 + P−1

(∆t)2
, w

)
+ (∇ ·U0, w) = (f0, w).(63)

For this equation to be well-defined, we have to specify quantity P−1. The ap-
propriate value for P−1 arises naturally in the proof of the theorem below (see
Appendix A for details) and is defined in such a way that

P 1 − P−1

(∆t)2
=

2
∆t

p1.(64)

Using relation (64) in (63), we obtain initial condition (60). In [32], we discuss
the stability of problem (58)–(62) and derive the following condition using energy
conservation:

Lemma 3. The discrete problem (58)–(62) is stable if ∆t <
2h

Kc0
for some constant

K independent of h, H, and ∆t. That is, the temporal iterates(
1− K2(∆t)2c2

0

4h2

)
‖DtP

n‖2L2 + ‖Un‖2L2(65)

are bounded above by the initial data for all n.

In the theorem below, we show that if the stability condition is satisfied, then the
two-scale fully-discrete scheme (58)–(62) approximates pressure and acceleration to
first order on the fine and coarse scales, respectively. The scheme is second-order
in time, and the error estimates are obtained in the l∞(L2) norm.
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Theorem 2. For 0 ≤ t ≤ T let (p(t), u(t)) be the solution of problem (13)–(17)

and (Pn, Un) be the solution of problem (58)–(62). If u ∈ L∞(H1(Ω)), p,
∂p

∂t
,

∂3p

∂t3
,

∂4p

∂t4
∈ L∞(H1(Ω)), then there exists a constant K independent of h, H, and

∆t such that if ∆t < 2h/Kc0, then∥∥∥∥1
c

(p− P )
∥∥∥∥

l∞(L2)

+ ‖u−U‖l∞(L2) ≤ K
(
h ‖p‖L∞(H1) + H ‖u‖L∞(H1)

+ h

∥∥∥∥∂p

∂t

∥∥∥∥
L∞(H1)

+ (∆t)2
∥∥∥∥∂3p

∂t3

∥∥∥∥
L∞(H1)

+ (∆t)2
∥∥∥∥∂4p

∂t4

∥∥∥∥
L∞(H1)

)
.(66)

Proof. As before, we begin by considering the difference between the solutions of
approximate equations (58)–(62) and solutions of equations (13)–(17). We then
add and subtract Php and πH,hu and use the triangle inequality:∥∥∥∥1

c
(p− P )

∥∥∥∥
l∞(L2)

+ ‖u−U‖l∞(L2)

≤
∥∥∥∥1

c
(p− Php)

∥∥∥∥
l∞(L2)

+ ‖u− πH,hu‖l∞(L2)(67)

+
∥∥∥∥1

c
(P − Php)

∥∥∥∥
l∞(L2)

+ ‖U− πH,hu‖l∞(L2) .

The proof consists of two parts. In Part I, we bound the first two terms on the
right-hand side of (67). These terms correspond to the difference between the true
pressure and acceleration solutions and their projections onto the finite element
subspaces. Therefore, we can directly apply approximation properties (26) and
(28) of operators Ph and πH,h to obtain the bound. In Part II, our goal is to
estimate the last two terms of (67) corresponding to the numerical approximation
of pressure and acceleration. These terms do not allow the direct application of the
approximation inequalities, since they do not involve the true solution. However, a
careful choice of test functions will reintroduce the true solution into these terms.

Part I. In this part of the proof, we show that the difference between the
true solutions p and u and their projections onto the finite element spaces can
be bounded as follows:∥∥∥∥1

c
(p− Php)

∥∥∥∥
l∞(L2)

+ ‖u− πH,hu‖l∞(L2)(68)

≤ K
(
h ‖p‖L∞(H1) + H ‖u‖L∞(H1)

)
.

To obtain this bound, notice that∥∥∥∥1
c

(pn − Phpn)
∥∥∥∥

L2

+ ‖un − πH,hun‖L2

≤
∥∥∥∥1

c
(p− Php)

∥∥∥∥
L∞(L2)

+ ‖u− πH,hu‖L∞(L2)(69)

≤ K
(
h ‖p‖L∞(H1) + H ‖u‖L∞(H1)

)
,

where the last inequality follows from approximation properties (26) and (28). Tak-
ing the supremum over the time levels in (69) leads to inequality (68).



556 T. VDOVINA AND S. MINKOFF

Part II. In this part of the proof, we obtain the following bound on the difference
between approximate pressure and acceleration and the projections Php and πH,hu:∥∥∥∥1

c
(P − Php)

∥∥∥∥
l∞(L2)

+ ‖U− πH,hu‖l∞(L2)

≤ K

(
H ‖u‖L∞(H1) + h

∥∥∥∥∂p

∂t

∥∥∥∥
L∞(H1)

(70)

+ (∆t)2
∥∥∥∥∂3p

∂t3

∥∥∥∥
L∞(H1)

+ (∆t)2
∥∥∥∥∂4p

∂t4

∥∥∥∥
L∞(H1)

)
.

As before, let σn = Un − πH,hun, ξn = Pn − Phpn, ηn = un − πH,hun, and
ζn = pn−Phpn. First, we consider the acceleration equations (61) and (16) at time
level n + 1. Subtracting these equations and using projection property (25), we
obtain:

(σn+1,v)− (ξn+1,∇ · v) = (ηn+1,v) for n ≥ 0.(71)

Similarly, if we subtract the pressure equations (62) and (17) and then add and
subtract the discrete derivative of the true solution p and its projection Php we get:(

1
c2

D2
t ξn, w

)
+ (∇ · σn, w) =

(
1
c2

D2
t ζn, w

)
+

(
1
c2

(
∂2p(tn)

∂t2
−D2

t pn

)
, w

)
+ (∇ · ηn, w) for n ≥ 1.(72)

From properties (25) and (27) of operators Ph and πH,h, we obtain that (∇·ηn, w) =
0 for all n.

To obtain a bound on ‖1/c (P − Php)‖L2 and ‖U− πH,hu‖L2 , we have to in-
troduce appropriate terms into equations (71) and (72). In the case of the accel-
eration equation, this can be done directly by suitable choice of test function v.

Equation (72), however, involves the second time derivative of pressure. We inte-
grate equation (72) in the discrete sense with respect to time. We begin by using
relation (57) for the time derivatives in (72):(

1
c2

Dtξ
n+ 1

2 −Dtξ
n− 1

2

∆t
, w

)
+ (∇ · σn, w)

=

(
1
c2

Dtζ
n+ 1

2 −Dtζ
n− 1

2

∆t
, w

)
+ (rn, w),(73)

where rn is defined as follows:

rn =
1
c2

(
∂2p(tn)

∂t2
−D2

t pn

)
for n ≥ 1.(74)

Then, multiplying equation (73) by ∆t and summing over the time levels gives:(
1
c2

(
Dtξ

n+ 1
2 −Dtξ

1
2

)
, w

)
+ (∆t

n∑
i=1

∇ · σi, w)

=
(

1
c2

(
Dtζ

n+ 1
2 −Dtζ

1
2

)
, w

)
+ (∆t

n∑
i=1

ri, w).(75)

At this point, we would like to use the initial conditions to simplify equation (75).
Initial pressure appears in the first inner products on the left- and right-hand sides



CONVERGENCE OF WAVE EQUATION UPSCALING 557

of (75). In order to include initial acceleration into this equation, we introduce the
following quantities:

φ0 =
∆t

2
σ0, φn = φ0 + ∆t

n∑
i=1

σi.(76)

Then, ∆t
∑n

i=1 σi = φn − φ0 and equation (75) becomes:(
1
c2

Dtξ
n+ 1

2 , w

)
+ (∇ · φn, w) =

(
1
c2

(
Dtζ

n+ 1
2 −Dtζ

1
2

)
, w

)
+

(
1
c2

Dtξ
1
2 , w

)
+ (∇ · φ0, w) + (∆t

n∑
i=1

ri, w).(77)

Initial conditions (60) and (15) imply the following relation for the terms on the
right-hand side of (77) (see Appendix A for details) :(

1
c2

Dtξ
1
2 , w

)
+ (∇ · φ0, w)−

(
1
c2

Dtζ
1
2 , w

)
= − 1

2∆tc2

∫ ∆t

0

(t−∆t)2
(

∂3p(t)
∂t3

, w

)
dt.(78)

This relation allows us to reduce (77) to(
1
c2

Dtξ
n+ 1

2 , w

)
+ (∇ · φn, w) =

(
1
c2

Dtζ
n+ 1

2 , w

)
+ (Rn, w),(79)

where

Rn = ∆t
n∑

i=0

ri,(80)

r0 = − 1
2(∆t)2c2

∫ ∆t

0

(t−∆t)2
∂3p(t)
∂t3

dt,(81)

and ri is given by equation (74) for i ≥ 1. Definition (56) of the time derivatives
that appear in equation (79) suggests the following choice of test function w =
(ξn+1 + ξn)/2 ∈ Wh. Using this test function in (79), we obtain:

1
2∆t

(∥∥∥∥1
c
ξn+1

∥∥∥∥2

L2

−
∥∥∥∥1

c
ξn

∥∥∥∥2

L2

)
+
(
∇ · φn,

ξn+1 + ξn

2

)
(82)

=
(

1
c2

Dtζ
n+ 1

2 ,
ξn+1 + ξn

2

)
+
(

Rn,
ξn+1 + ξn

2

)
for n ≥ 0.

Since we have now introduced the term ‖1/c (P − Php)‖L2 into the pressure equa-
tion, we return to the acceleration equation (71). We notice from definition (76)
of φn that σn+1 = (φn+1 − φn)/∆t. Using this fact together with test function
v = (φn+1 + φn)/2 ∈ VH,h in (71) leads to the following equation:

1
2∆t

(∥∥φn+1
∥∥2

L2 − ‖φn‖2L2

)
−

(
ξn+1,∇ · φn+1 + φn

2

)
(83)

=
(

ηn+1,
φn+1 + φn

2

)
for n ≥ 0.
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We now add the pressure and acceleration equations (82) and (83) and multiply by
2∆t to obtain:

∥∥∥∥1
c
ξn+1

∥∥∥∥2

L2

−
∥∥∥∥1

c
ξn

∥∥∥∥2

L2

+
∥∥φn+1

∥∥2

L2 − ‖φn‖2L2(84)

+ ∆t[(∇ · φn, ξn)− (ξn+1,∇ · φn+1)]

= ∆t

(
1
c2

Dtζ
n+ 1

2 , ξn+1 + ξn

)
+ ∆t(Rn, ξn+1 + ξn) + ∆t(ηn+1,φn+1 + φn).

Notice that in addition to the terms we would like to bound, the left-hand side of
(84) contains extra terms. Summing over time levels gives:

∥∥∥∥1
c
ξn+1

∥∥∥∥2

L2

−
∥∥∥∥1

c
ξ0

∥∥∥∥2

L2

+
∥∥φn+1

∥∥2

L2 −
∥∥φ0

∥∥2

L2

+ ∆t[(∇ · φ0, ξ0)− (ξn+1,∇ · φn+1)]

= ∆t
n∑

i=0

(
1
c2

Dtζ
i+ 1

2 , ξi+1 + ξi

)
(85)

+ ∆t
n∑

i=0

(
Ri, ξi+1 + ξi

)
+ ∆t

n∑
i=0

(
ηi+1,φi+1 + φi

)
.

The initial conditions imply that
∥∥ 1

c ξ0
∥∥

L2 ,
∥∥φ0

∥∥
L2 , and (∇ · φ0, ξ0) are zero. In

order to eliminate the divergence term from the left-hand side of (85), we apply the
Cauchy-Schwarz inequality, the inverse assumption (30), and an algebraic inequality
to this term:

∆t(ξn+1,∇ · φn+1) ≤ ∆t
∥∥ξn+1

∥∥
L2

∥∥∇ · φn+1
∥∥

L2

≤ K∆t

h

∥∥ξn+1
∥∥

L2

∥∥φn+1
∥∥

L2(86)

≤ K∆tc0

2h

(∥∥∥∥1
c
ξn+1

∥∥∥∥2

L2

+
∥∥φn+1

∥∥2

L2

)
,

where c0 is an upper bound on the sound velocity and K includes constants from
Lemmas 2 and 3. Choosing h and ∆t so that K∆tc0/2h < 1, we have that:

∆t(ξn+1,∇ · φn+1) <

∥∥∥∥1
c
ξn+1

∥∥∥∥2

L2

+
∥∥φn+1

∥∥2

L2 .(87)
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Using inequality (87) in the left-hand side of (85) and the Cauchy-Schwarz inequal-
ity on the right-hand side, we obtain:

K

(∥∥∥∥1
c
ξn+1

∥∥∥∥2

L2

+
∥∥φn+1

∥∥2

L2

)
≤ ∆t

n∑
i=0

∥∥∥∥ 1
c2

Dtζ
i+ 1

2

∥∥∥∥
L2

(∥∥ξi+1
∥∥

L2 +
∥∥ξi
∥∥

L2

)
(88)

+ ∆t
n∑

i=0

∥∥Ri
∥∥

L2

(∥∥ξi+1
∥∥

L2 +
∥∥ξi
∥∥

L2

)
+ ∆t

n∑
i=0

∥∥ηi+1
∥∥

L2

(∥∥φi+1
∥∥

L2 +
∥∥φi

∥∥
L2

)
,

where K is some constant less than 1. Multiplying (88) by 1/K and using the fact
that

∥∥ξi
∥∥

L2 ≤ ‖ξ‖l∞(L2) and
∥∥φi

∥∥
L2 ≤ ‖φ‖l∞(L2), we obtain:∥∥∥∥1

c
ξn+1

∥∥∥∥2

L2

+
∥∥φn+1

∥∥2

L2

≤ K∆t

∥∥∥∥1
c
ξ

∥∥∥∥
l∞(L2)

(
N∑

i=0

∥∥∥∥ 1
c2

Dtζ
i+ 1

2

∥∥∥∥
L2

+
N∑

i=0

∥∥Ri
∥∥

L2

)
(89)

+ K∆t ‖φ‖l∞(L2)

N∑
i=0

∥∥ηi+1
∥∥

L2 ,

where we have renamed the appropriate constant K again. Applying the algebraic
inequalities ab ≤ 1/4a2 + b2 and (a + b)2 ≤ 2(a2 + b2) to the right-hand side of the
last inequality gives:∥∥∥∥1

c
ξn+1

∥∥∥∥2

L2

+
∥∥φn+1

∥∥2

L2

≤ 1
4

∥∥∥∥1
c
ξ

∥∥∥∥2

l∞(L2)

+ K

(
∆t

N∑
i=0

∥∥∥∥ 1
c2

Dtζ
i+ 1

2

∥∥∥∥
L2

)2

+ K

(
∆t

N∑
i=0

∥∥Ri
∥∥

L2

)2

(90)

+
1
4
‖φ‖2l∞(L2) + K

(
∆t

N∑
i=0

∥∥ηi+1
∥∥

L2

)2

.

Taking the supremum over time levels on the left-hand side of the last inequality,
we have that∥∥∥∥1

c
ξ

∥∥∥∥2

l∞(L2)

+ ‖φ‖2l∞(L2) ≤ K

(
∆t

N∑
i=0

∥∥∥∥ 1
c2

Dtζ
i+ 1

2

∥∥∥∥
L2

)2

(91)

+ K

(
∆t

N∑
i=0

∥∥Ri
∥∥

L2

)2

+ K

(
∆t

N∑
i=0

∥∥ηi+1
∥∥

L2

)2

.

To complete part II of the proof, we need to bound each term on the right-hand
side of (91). We begin with the first term on the right-hand side of (91) and derive
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the following auxiliary estimate:

∥∥∥∥ 1
c2

Dtζ
i+ 1

2

∥∥∥∥2

L2

=
∥∥∥∥ 1

c2
Dt

(
pi+ 1

2 − Phpi+ 1
2

)∥∥∥∥2

L2

=
1

(∆t)2

∥∥∥∥ 1
c2

[(p(ti+1)− Php(ti+1))− (p(ti)− Php(ti))]
∥∥∥∥2

L2

=
1

(∆t)2

∥∥∥∥ 1
c2

∫ ti+1

ti

∂

∂t
(p(t)− Php(t)) dt

∥∥∥∥2

L2

(92)

=
1

(∆t)2

∫
Ω

[
1
c2

∫ ti+1

ti

∂

∂t
(p(t)− Php(t)) dt

]2
dΩ.

The Cauchy-Schwarz inequality gives that:

∥∥∥∥ 1
c2

Dtζ
i+ 1

2

∥∥∥∥2

L2

≤ K

(∆t)2

∫
Ω

∫ ti+1

ti

dt

∫ ti+1

ti

[
∂

∂t
(p(t)− Php(t))

]2
dt dΩ

≤ K

(∆t)2

∫
Ω

∆t

∫ ti+1

ti

[
∂

∂t
(p(t)− Php(t))

]2
dt dΩ

≤ K

∆t

∫ ti+1

ti

∥∥∥∥ ∂

∂t
(p(t)− Php(t))

∥∥∥∥2

L2

dt(93)

≤ K

∆t

∥∥∥∥ ∂

∂t
(p(t)− Php(t))

∥∥∥∥2

L∞(L2)

∫ ti+1

ti

dt

≤ Kh2

∥∥∥∥∂p(t)
∂t

∥∥∥∥2

L∞(H1)

,

where the last inequality follows from the approximation property (26) of the oper-
ator Ph and the constant K includes an upper bound on 1/c2. We take square roots
of both sides of inequality (93) and use it to bound the first term on the right-hand
side of (91):

∆t
N∑

i=0

∥∥∥∥ 1
c2

Dtζ
i+ 1

2

∥∥∥∥
L2

≤ ∆t

N∑
i=0

Kh

∥∥∥∥∂p(t)
∂t

∥∥∥∥
L∞(H1)

(94)

≤ KTh

∥∥∥∥∂p(t)
∂t

∥∥∥∥
L∞(H1)

.

Next, we bound the last term of (91) using approximation property (28) of πH,h :

∆t
N∑

i=0

∥∥ηi+1
∥∥

L2 = ∆t

N∑
i=0

‖u((i + 1)∆t)− πH,hu((i + 1)∆t)‖L2

≤ ∆tH
N∑

i=0

‖u((i + 1)∆t)‖H1 ≤ N∆tH ‖u‖L∞(H1)(95)

≤ TH ‖u‖L∞(H1) .
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Finally, we turn our attention to the second term on the right-hand side of (91):
From definition (80) of Ri, we have that:

∆t
N∑

i=0

∥∥Ri
∥∥

L2 ≤ ∆t
N∑

i=0

∆t
i∑

j=1

∥∥rj
∥∥

L2 + ∆t
∥∥r0
∥∥

L2

(96)

≤ (∆t)2
N∑

i=0

 i∑
j=1

∥∥rj
∥∥

L2 +

∥∥∥∥∥ 1
2(∆t)2c2

∫ ∆t

0

(t−∆t)2
∂3p(t)
∂t3

dt

∥∥∥∥∥
L2

 ,

where the integral term comes from definition (81) of r0. We bound each term in
(96) separately starting with rj . We recall the definition of rj (equation (74)):

rj =
1
c2

(
∂2p

∂t2
(tj)−D2

t pj

)
=

1
c2

(
∂2p

∂t2
(tj)−

pj+1 − 2pj + pj−1

(∆t)2

)
.(97)

Using Taylor expansions of pj−1 and pj+1 around the point tj , we obtain:

pj+1 + pj−1 = 2pj +
∂2p

∂t2
(tj)(∆t)2 +

1
6

[∫ tj+1

tj

(tj + ∆t− t)3
∂4p(t)
∂t4

dt

−
∫ tj

tj−1

(tj −∆t− t)3
∂4p(t)
∂t4

dt

]
(98)

= 2pj +
∂2p

∂t2
(tj)(∆t)2 +

1
6

∫ ∆t

−∆t

(∆t− |t|)3 ∂4p(tj + t)
∂t4

dt,

where we have combined the integrals via the change of variables t = tj + t. Sub-
stituting (98) into (97), we reduce rj to a single integral term:

rj = − 1
6c2(∆t)2

∫ ∆t

−∆t

(∆t− |t|)3 ∂4p(tj + t)
∂t4

dt.(99)

To obtain a bound for
∥∥rj
∥∥

L2 we first use the fact that the maximum of (∆t− |t|)3
on (−∆t,∆t) is achieved at t = 0. The maximum value is (∆t)3. Then

∥∥rj
∥∥2

L2 ≤ K

(∆t)4

∫
Ω

[
max

−∆t<ξ<∆t
(∆t− |ξ|)3

∫ ∆t

−∆t

∂4p(tj + t)
∂t4

dt

]2

dΩ

≤ K(∆t)2
∫

Ω

[∫ ∆t

−∆t

∂4p(tj + t)
∂t4

dt

]2

dΩ,(100)

where K includes an upper bound on 1/(6c2). Then, we make the change of variables
tj +t = t, apply the Cauchy-Schwarz inequality to the integral with respect to time,
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and interchange the integration with respect to the time and space variables:

∥∥rj
∥∥2

L2 ≤ K(∆t)2
∫

Ω

[∫ tj+∆t

tj−∆t

∂4p(t)
∂t4

dt

]2

dΩ

≤ K(∆t)2
∫

Ω

2∆t

∫ tj+∆t

tj−∆t

(
∂4p(t)
∂t4

)2

dt dΩ(101)

≤ K(∆t)3
∫ tj+∆t

tj−∆t

∫
Ω

(
∂4p(t)
∂t4

)2

dΩ dt

≤ K(∆t)3
∫ tj+∆t

tj−∆t

∥∥∥∥∂4p(t)
∂t4

∥∥∥∥2

L2

dt ≤ K(∆t)4
∥∥∥∥∂4p(t)

∂t4

∥∥∥∥2

L∞(L2)

.

In a similar way we can bound the second term on the right-hand side of (96):∥∥∥∥∥ 1
2(∆t)2c2

∫ ∆t

0

(t−∆t)2
∂3p(t)
∂t3

dt

∥∥∥∥∥
2

L2

≤ K(∆t)2
∥∥∥∥∂3p(t)

∂t3

∥∥∥∥2

L∞(L2)

.(102)

Taking square roots on both sides of estimates (101) and (102) and using the results
in (96), we obtain the bound on

∥∥Ri
∥∥

L2 :

∆t

N∑
i=0

∥∥Ri
∥∥

L2

≤ K(∆t)2
N∑

i=0

 i∑
j=0

(∆t)2
∥∥∥∥∂4p(t)

∂t4

∥∥∥∥
L∞(L2)

+ ∆t

∥∥∥∥∂3p(t)
∂t3

∥∥∥∥
L∞(L2)

(103)

≤ K(∆t)2
(

N2(∆t2)
∥∥∥∥∂4p(t)

∂t4

∥∥∥∥
L∞(L2)

+ N∆t

∥∥∥∥∂3p(t)
∂t3

∥∥∥∥
L∞(L2)

)

≤ K(∆t)2
(∥∥∥∥∂4p(t)

∂t4

∥∥∥∥
L∞(L2)

+
∥∥∥∥∂3p(t)

∂t3

∥∥∥∥
L∞(L2)

)
,

where we have renamed the constant K in the last inequality to include T 2 =
N2(∆t)2. Finally, we obtain (70) by combining the bounds (94), (95), and (103) on
the right-hand side of (91). Statement (66) follows immediately from inequalities
(68) and (70) used in the right-hand side of (67). �

7. Numerical Experiments

We note that the theory discussed in the previous sections is valid so long as
the sound velocity is slowly varying and bounded. In real subsurface environments,
variation in parameters would occur on a number of scales. On the smallest scale
the rock material would likely be well mixed and vary fairly smoothly in older
sedimentary regions. However, on a larger scale suitable for numerical computation
one might expect discontinuities in measured sound velocity from one grid point
to the next in the computational domain. In this paper we verify the convergence
theory by running numerical experiments where the medium is homogeneous, and
the source function is chosen to produce a known analytic solution (in other words,
true norm errors can be calculated as a test of rate of convergence).

The utility of the upscaling algorithm of course arises from applying it to het-
erogeneous earth models, and these more realistic cases was explored extensively
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in the earlier paper by Vdovina et al. [32]. Specifically in that paper we describe
three distinct upscaling examples involving heterogeneous earth models. In the
first experiment the sound velocity includes two velocity values which alternate in
a periodic checkerboard. In the second experiment the velocity field is a finely
layered medium typical of subsurface regions such as the Gulf of Mexico. The final
experiment uses a velocity field which is a single realization from a stochastic von
Karman distribution of a two-component material mixture. The latter experiment
is representative of the type of detail possible in deep crustal seismic studies where
such long wavelengths are required to reach the depth of investigation that all small-
scale information must be described statistically rather than deterministically. All
of these experiments contain features typical of select subsurface regions and all con-
tain heterogeneities which are subwavelength-scale (i.e., the heterogeneities vary on
a scale smaller than a single coarse grid block). For example, in the case of the
thinly layered medium, each layer is two fine grid blocks wide. However, the do-
main is discretized so that ten fine blocks are grouped into one coarse block. Hence
the scale of the layers is considerably smaller than the width of the coarse blocks.
Nonetheless, the augmented upscaled solution compares quite favorably with the
full fine scale finite difference solution. The finely-layered structural discontinuities
are clearly evident in the augmented upscaled solution.

In this section, we validate the theory just described by presenting three nu-
merical experiments. Our primary aim is to numerically illustrate the convergence
rate predicted by Theorem 2. In Experiment 1, we assume each coarse block con-
tains only one fine grid block. In this case, the pressure solution will be a function
of coarse-grid acceleration only (subgrid acceleration will be zero), and, therefore,
the algorithm should converge at the rate expected of standard RT0 mixed finite
elements without upscaling. In Experiment 2, the number of coarse grid blocks
is fixed at 100 in both the horizontal and vertical directions. The number of fine
grid blocks per coarse block does change in this experiment, however. Our goal in
this experiment is to demonstrate that pressure converges linearly on the fine scale.
Finally, in Experiment 3, the number of fine blocks is fixed (6400 in each of the
two directions). In this case, the number of coarse blocks (and hence the number
of fine blocks per coarse block) varies. We demonstrate that acceleration converges
linearly on the coarse scale.

In all the experiments, we consider a square domain of size Ω = 100 m ×100 m
with a homogeneous sound velocity of 1000 m/s. We used a source function of the
following form:

f(t, x, y) =
2
c2

(
1− cos

(
2πx

100

))(
1− cos

(
2πy

100

))
− 4π2t(t−∆t)

(
cos
(

2πx

100

)
+ cos

(
2πy

100

)
− 2 cos

(
2πx

100

)
cos
(

2πy

100

))
.

This source function was chosen in order to produce the closed-form pressure solu-
tion:

p(t, x, y) = t(t−∆t)
(

1− cos
(

2πx

100

))(
1− cos

(
2πy

100

))
.

Similarly, since acceleration is the negative gradient of pressure, we can calculate
an analytic expression for the acceleration solution. We chose the time and space
discretizations so that the stability condition is satisfied, and the number of grid
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points per wavelength is sufficient to eliminate dispersion effects. (See [32] for an
extensive discussion of stability and dispersion as well as guidelines for the choice
of time step size in practice.)

Tables 2–4 summarize the convergence studies performed in Experiments 1–3.
In Tables 2–3, the first two columns show the number of grid blocks in the fine
and coarse discretizations, respectively. Columns three and four give the time step
size and total number of time steps. Finally, the last two columns contain the
relative pressure and acceleration errors (difference between upscaled and analytic
solutions). Table 4 shows the same information, although in this experiment the
fine grid is fixed so the time step size is also fixed (as determined by the CFL
condition which comes from the fine grid [32]). In Experiment 1, the number of
grid blocks in the fine and coarse grids are the same. In each row of the table
a different test is performed. Specifically, we halve the spatial grid spacing and
time step size and consider wave propagation for a total of 3.53 × 10−2 s. (Note
that we have to double the number of time iterations in each subtest in order to
obtain results for comparison at the same final time.) Since we used the RT0 mixed
finite element method, we expect to see linear convergence for both pressure and
acceleration. Table 2 shows that, as expected, both variables converge linearly.

Number of Number of Time Number of
||P − p||0
||p||1

||U− u||0
||u||1fine blocks coarse blocks step (s) time steps

16× 16 16× 16 4.41 · 10−3 100 2.46 · 10−2 2.63 · 10−2

32× 32 32× 32 2.21 · 10−3 200 9.75 · 10−3 1.14 · 10−2

64× 64 64× 64 1.10 · 10−3 400 4.26 · 10−3 5.30 · 10−3

128× 128 128× 128 5.52 · 10−4 800 1.98 · 10−3 2.54 · 10−3

256× 256 256× 256 2.76 · 10−4 1600 9.51 · 10−4 1.24 · 10−3

512× 512 512× 512 1.38 · 10−4 3200 4.66 · 10−4 6.17 · 10−4

Table 2. Pressure and acceleration relative errors for Experiment 1.

In Experiment 2, we see that the upscaling algorithm preserves the linear con-
vergence of pressure on the fine scale. We fix the coarse-grid discretization and
halve the subgrid spatial and time step sizes in each subtest, increasing the number
of time iterations. Table 3 shows that, as expected, the acceleration error remains
constant in all the subtests since the coarse grid is fixed, and the pressure solution
exhibits a linear rate of convergence.

Number of Number of Time Number of
||P − p||0
||p||1

||U− u||0
||u||1fine blocks coarse blocks step (s) time steps

400× 400 100× 100 1.77 · 10−4 200 5.48 · 10−3 1.28 · 10−2

800× 800 100× 100 8.83 · 10−5 400 2.75 · 10−3 1.11 · 10−2

1600× 1600 100× 100 4.42 · 10−5 800 1.40 · 10−3 1.06 · 10−2

3200× 3200 100× 100 2.21 · 10−5 1600 7.27 · 10−4 1.05 · 10−2

6400× 6400 100× 100 1.10 · 10−5 3200 3.97 · 10−4 1.04 · 10−2

Table 3. Pressure and acceleration relative errors for Experiment 2.
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In Experiment 3, our goal is to demonstrate that the upscaled acceleration con-
verges linearly on the coarse grid. We fix the number of fine grid blocks in the
domain and reduce the coarse-grid step size by a factor of two in each subtest.
Since time step ∆t is determined from the sound velocity and fine step size only,
we use the same ∆t = 1.104 × 10−5 s for all the subtests. We ran the simulation
for 3200 time steps. Table 4 shows that, as predicted by our theoretical results,
acceleration converges linearly, while the pressure error remains constant.

Number of fine blocks Number of coarse blocks
||P − p||0
||p||1

||U− u||0
||u||1

6400× 6400 100× 100 3.97 · 10−4 1.04 · 10−2

6400× 6400 200× 200 3.50 · 10−4 5.24 · 10−3

6400× 6400 400× 400 3.41 · 10−4 2.65 · 10−3

6400× 6400 800× 800 3.39 · 10−4 1.38 · 10−3

6400× 6400 1600× 1600 3.39 · 10−4 7.97 · 10−4

Table 4. Pressure and acceleration relative errors for Experi-
ment 3. The number of time steps is 3200 with time step size
∆t = 1.104× 10−5 s.

8. Conclusion

Many geoscience problems involve data at a very fine scale or at multiple scales.
Models which use this data will require large amounts of computer memory and
time. One way to circumvent reliance on fine scale data is to employ upscaling
methods. These methods formulate and solve a coarse-scale problem but incorpo-
rate some of the fine-scale information into the coarse solution. The accuracy of up-
scaling algorithms is usually difficult to determine due to the complicated multiscale
structure of the resulting solution. One of the attractions of homogenization-based
techniques has been that asymptotic theory allows calculation of errors. However,
homogenization requires periodicity and scale-separation. Neither assumption is
realistic for most geoscience applications.

Operator-based upscaling solves problems in two stages:
(1) Fine-scale information is captured within each coarse grid block at the

subgrid stage;
(2) The fine-scale subgrid solution is incorporated into the coarse problem to

be solved.
As with most upscaling methods, operator-based upscaling was originally developed
and analyzed for elliptic pde’s. In the paper by Vdovina et al. [32], we extended
operator upscaling to hyperbolic problems. The method parallelizes nicely. In
fact, the primary savings of the algorithm comes from the fact that there is no
communication between coarse blocks at the (expensive) subgrid stage. Numerical
examples indicate that the upscaled solution does capture sub-wavelength scale
fluctuations in the coarse solution. In a second paper [26], Korostyshevskaya and
Minkoff determined which physical problem is solved by operator upscaling applied
to the acoustic wave equation. Specifically, within each coarse element, the pressure
solution (which comes from a second-order finite-difference stencil equivalent to
lowest-order mixed finite elements on the fine grid) is second-order accurate. Along
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the coarse element edges, however, the upscaled solution solves a modified version
of the wave equation. Thus formally the physical analysis indicated that we would
lose one order of accuracy globally (linear convergence).

In summary, in prior work we have shown that operator-based upscaling ap-
plied to the acoustic wave equation produces an efficient and physically meaningful
solution. In the current work, our goal was to rigorously investigate the global
approximation properties of the upscaling algorithm via standard energy estimate
techniques and projection operators. We derived global a priori error estimates
for the continuous-in-time and fully-discrete two-scale numerical schemes that use
RT0 approximation spaces on both the fine and coarse grids. Upscaled acceleration
converges linearly on the coarse scale, and pressure converges linearly on the fine
grid. The fully-discrete scheme is second order in time. The a priori error esti-
mates agreed with our earlier physical intuition and were confirmed via numerical
experiments.

Appendix A

In this appendix, we show that if the initial condition for the discrete-in-time
problem is given by(

2
∆tc2

P 1 − P 0

∆t
, w

)
+
(
∇ ·U0, w

)
=

(
f0 +

2
∆tc2

p1, w

)
(A-1)

for w ∈ Wh, then(
1
c2

Dtξ
1
2 , w

)
+ (∇ · φ0, w)−

(
1
c2

Dtζ
1
2 , w

)
= − 1

2∆tc2

∫ ∆t

0

(t−∆t)2
(

∂3p(t)
∂t3

, w

)
dt.(A-2)

We recall that ξ
1
2 = P

1
2 − Php

1
2 , ζ

1
2 = p

1
2 − Php

1
2 , and φ0 =

∆t

2
(
U0 − πH,hu0

)
.

Then, the left-hand side of equation (A-2) becomes(
1
c2

Dtξ
1
2 , w

)
+ (∇ · φ0, w)−

(
1
c2

Dtζ
1
2 , w

)
=

(
1
c2

Dt

(
P

1
2 − Php

1
2

)
, w

)
+

∆t

2
(
∇ ·
(
U0 − πH,hu0

)
, w
)

−
(

1
c2

Dt

(
p

1
2 − Php

1
2

)
, w

)
=

(
1
c2

P 1 − P 0

∆t
, w

)
+

∆t

2
(
∇ ·U0, w

)
(A-3)

− ∆t

2
(
∇ · πH,hu0, w

)
−
(

1
c2

p1 − p0

∆t
, w

)
=

(
1
c2

P 1 − P 0

∆t
, w

)
+

∆t

2
(
∇ ·U0, w

)
− ∆t

2
(
∇ · u0, w

)
− 1

c2

(
p(∆t)− p(0)

∆t
, w

)
,
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where we use definitions (25) and (27) to show that
(
∇ · πH,hu0, w

)
=
(
Ph∇ · u0, w

)
=
(
∇ · u0, w

)
. At time t = 0, solutions p and u satisfy equation (17). Therefore,

−∆t

2
(∇ · u(0), w) =

∆t

2

(
1
c2

∂p2(0)
∂t2

, w

)
− ∆t

2
(f0, w).(A-4)

We substitute equation (A-4) into (A-3):(
1
c2

Dtξ
1
2 , w

)
+ (∇ · φ0, w)−

(
1
c2

Dtζ
1
2 , w

)
=

(
1
c2

P 1 − P 0

∆t
, w

)
+

∆t

2
(
∇ ·U0, w

)
(A-5)

+
∆t

2

(
1
c2

∂p2(0)
∂t2

, w

)
− ∆t

2
(f0, w)−

(
1
c2

p(∆t)− p(0)
∆t

, w

)
.

We expand p into a Taylor series around zero to obtain

∆t

2
∂p2(0)

∂t2
=

p(∆t)− p(0)
∆t

− pt(0)− 1
2∆t

∫ ∆t

0

(∆t− t)2
∂3p

∂t3
dt(A-6)

Substituting this expansion into equation (A-5) yields:(
1
c2

Dtξ
1
2 , w

)
+ (∇ · φ0, w)−

(
1
c2

Dtζ
1
2 , w

)
=

(
1
c2

P 1 − P 0

∆t
, w

)
+

∆t

2
(
∇ ·U0, w

)
− ∆t

2
(f0, w)(A-7)

−
(

1
c2

pt(0), w
)
− 1

2c2∆t

∫ ∆t

0

(∆t− t)2
(

∂3p

∂t3
, w

)
dt.

Finally, initial condition (A-1) implies that(
1
c2

Dtξ
1
2 , w

)
+ (∇ · φ0, w)−

(
1
c2

Dtζ
1
2 , w

)
(A-8)

= − 1
2c2∆t

∫ ∆t

0

(∆t− t)2
(

∂3p

∂t3
, w

)
dt.
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