Construction of Real Band Anti-Symmetric Matrices from Spectral Data

Qingxiang Yin
Department of Mathematics, Yancheng Teachers College, Yancheng 224002, China.

Received May 26, 2003; Accepted (in revised version) March 15, 2004

Abstract

In this paper, we describe how to construct a real anti-symmetric ($2 p-1$)-band matrix with prescribed eigenvalues in its p leading principal submatrices. This is done in two steps. First, an anti-symmetric matrix B is constructed with the specified spectral data but not necessary a band matrix. Then B is transformed by Householder transformations to a $(2 p-1)$-band matrix with the prescribed eigenvalues. An algorithm is presented. Numerical results are presented to demonstrate that the proposed method is effective.

Key words: anti-symmetric; eigenvalues; inverse problem.
AMS subject classifications: 65F10, 15A09

1 Introduction

This work deals with inverse eigenvalue problems for real banded anti-symmetric matrices. The solution of inverse eigenvalue problems is currently attracting a great interest due to their importance in many applications. In particular, real banded matrices play an important role in areas as applied mechanics [1,2], structure design [3], circuit theory and inverse Sturm-Liouville problem [4].

Let $p, n \in N, 0<p \leq n$ and $\left\{\lambda_{j}^{(k)}\right\}_{j=1}^{k}(k=n-p+1, \cdots, n)$ be a set of real numbers with

$$
\begin{align*}
\lambda_{j}^{(k)} & =-\lambda_{k-j+1}^{(k)}, j=1, \cdots, k ; k=n-p+1, \cdots, n . \tag{1}\\
\lambda_{j}^{(k)} \leq \lambda_{j}^{(k-1)} & \leq \lambda_{j+1}^{(k)}, j=1, \cdots, k-1 ; k=n-p+2, \cdots, n . \tag{2}
\end{align*}
$$

The problem is to determine a real anti-symmetric $n \times n$ matrix A with eigenvalues $\left\{\lambda_{j}^{(k)} i\right\}_{j=1}^{k}$ $\left(i^{2}=-1\right)$ in the leading $k \times k$ principal submatrix of $A(k=n-p+1, \cdots, n)$ and $a_{s t}=0$ for $|s-t| \geq p$. In this paper a matrix A is called real anti-symmetric if $A \in R^{n \times n}, A^{T}=-A$. A similar problem with symmetric matrices has been studied in many papers, (see [5-10]). For anti-symmetric matrices, the case $p=2$ has been studied by He Chengcai [11], but the complex numbers were used there, so that the computation is rather complicated.

[^0]In Section 2 the eigen-properties of real anti-symmetric matrices were studied. In Section 3 an anti-symmetric matrix B is constructed where B has the specified spectral data, but it is not necessary a banded matrix. In Section $4 B$ is transformed to a $(2 p-1)$-band matrix with the prescribed spectra. In Section 5, an algorithm is presented with numerical examples which show that the method is effective.

2 Some properties of real anti-symmetric matrices

In order to prove our main results, let us first investigate the eigen- properties of real antisymmetric matrices. Some of them are well known so the proof is omitted.

Let A be a real anti-symmetric $n \times n$ matrix, i.e. $A \in R^{n \times n}, A^{T}=-A$. Then $-i A \in$ $C^{n \times n},(-i A)^{H}=i A^{T}=-i A$, hence $-i A$ is Hermitian and its eigenvalues are real. Let $\left\{\lambda_{j}^{(k)}\right\}_{j=1}^{k}$ be the eigenvalues of the $k \times k$ leading principal submatrix of $-i A(k=1, \cdots, n)$ satisfying

$$
\begin{equation*}
\lambda_{1}^{(k)} \leq \lambda_{2}^{(k)} \leq \cdots \leq \lambda_{k}^{(k)} \tag{3}
\end{equation*}
$$

According to Cauchy interlacing theorem, we have

$$
\begin{equation*}
\lambda_{j}^{(k)} \leq \lambda_{j}^{(k-1)} \leq \lambda_{j+1}^{(k)}, j=1, \cdots, k-1 ; k=2, \cdots, n . \tag{4}
\end{equation*}
$$

Noting that $A=i(-i A)$, we assert that $\left\{\lambda_{j}^{(k)} i\right\}_{j=1}^{k}$ be the eigenvalues of $k \times k$ leading submatrix of A and (4) hold. Furthermore, because $\left\{\lambda_{j}^{(k)} i\right\}_{j=1}^{k}$ are roots of a polynomial with real coefficients, so

$$
\begin{equation*}
\lambda_{j}^{(k)}=-\lambda_{k-j+1}^{(k)}, j=1, \cdots, k ; k=1, \cdots, n . \tag{5}
\end{equation*}
$$

Lemma 2.1. The eigenvalues of real anti-symmetric $n \times n$ matrix A are either zeroes or conjugate imaginaries. Let $\left\{\lambda_{j}^{(k)} i\right\}_{j=1}^{k}$ be the eigenvalues of the $k \times k$ leading submatrices of A satisfying (3), then (4) and (5) hold.

Lemma 2.2. [12, 2.5.14] $A \in R^{n \times n}$ is anti-symmetric if and only if there exist an orthogonal matrix $U \in R^{n \times n}$ such that

$$
T=U^{T} A U=\left[\begin{array}{ccccccccc}
0 & & & & & & & & \tag{6}\\
& \ddots & & & & & & & \\
& & 0 & 0 & \beta_{1} & & & & \\
& & & -\beta_{1} & 0 & 0 & \beta_{2} & & \\
\\
& & & & & -\beta_{2} & 0 & & \\
& & & & & & & \ddots & \\
& & & & & & & & -\beta_{r}
\end{array}\right)
$$

and $\pm \beta_{1} i, \cdots, \pm \beta_{r} i$ are all non-real eigenvalues of A. In this paper, T is referred to as the normal canonical form of A if $\beta_{1} \leq \beta_{2} \leq \cdots \leq \beta_{r}$ in (6).

Remark 2.1. The orthogonal matrix U can be chosen as follow: the first $n-2 r$ columns are the orthonormal eigenvectors corresponding to zero eigenvalues of A, the remaining columns are the orthonormal imagine part and real part of the eigenvectors corresponding to eigenvalues $\beta_{1} i, \cdots, \beta_{r} i$ respectively. The orthonormalization is needed when there are multiple eigenvalues.

3 Construction of real anti-symmetric matrices from spectral data

One of the main results, Theorem 3.1, will be given in this section, whose proof depends on several lemmas.
Theorem 3.1. Let $\left\{\lambda_{j}^{(k)}\right\}_{j=1}^{k}(k=n-p+1, \cdots, n, 0<p \leq n)$ be a set of real numbers satisfying (1), (2), then there exists a real anti-symmetric $n \times n$ matrix B with eigenvalues $\left\{\lambda_{j}^{(k)} i\right\}_{j=1}^{k}$ in the $k \times k$ leading principal submatrix of $B(k=n-p+1, \cdots, n)$.

3.1 Some lemmas

To prove theorem 3.1, we need following three lemmas.
Lemma 3.1. Let

$$
\begin{equation*}
\mu_{1}<a_{1}<\mu_{2}<\cdots \mu_{k}<a_{k}<0 \tag{7}
\end{equation*}
$$

then there exist $b_{1}, \cdots, b_{k} \in R$ such that

$$
T_{2 k+1}=\left[\begin{array}{cccccccc}
0 & a_{1} & & & & & & b_{1} \tag{8}\\
-a_{1} & 0 & & & & & & 0 \\
& & 0 & a_{2} & & & & b_{2} \\
& & & & \ddots & & & 0 \\
& & & & & 0 & a_{k} & \vdots \\
& & & & & -b_{k} \\
-b_{1} & 0 & -b_{2} & 0 & \cdots & -b_{k} & 0 & 0 \\
\hline
\end{array}\right]
$$

has eigenvalues $\pm \mu_{1} i, \cdots, \pm \mu_{k} i, 0$.
Proof Let

$$
\begin{equation*}
b_{l}=\left(\frac{\prod_{j=1}^{k}\left(\mu_{j}^{2}-a_{l}^{2}\right)}{\prod_{t \neq l}\left(a_{t}^{2}-a_{l}^{2}\right)}\right)^{\frac{1}{2}}, \quad l=1, \cdots, k \tag{9}
\end{equation*}
$$

It follows from (7) that $b_{l} \in R$. Direct calculation gives

$$
p(\lambda)=\operatorname{det}\left(\lambda I-T_{2 k+1}\right)=\lambda\left[\prod_{j=1}^{k}\left(\lambda^{2}+a_{j}^{2}\right)+\sum_{j=1}^{k} b_{j}^{2} \prod_{t \neq j}\left(\lambda^{2}+a_{t}^{2}\right)\right]=\lambda q(\lambda),
$$

where

$$
q(\lambda)=\prod_{j=1}^{k}\left(\lambda^{2}+a_{j}^{2}\right)+\sum_{j=1}^{k} b_{j}^{2} \prod_{t \neq j}\left(\lambda^{2}+a_{t}^{2}\right) .
$$

Let $g(\lambda)=\prod_{j=1}^{k}\left(\lambda^{2}+\mu_{j}^{2}\right)$, then both $q(\lambda)$ and $g(\lambda)$ are monic polynomials of degree $2 k$, while by (9),

$$
q\left(\pm a_{l} i\right)=0+b_{l}^{2} \prod_{t \neq l}\left(a_{t}^{2}-a_{l}^{2}\right)=\prod_{j=1}^{k}\left(\mu_{j}^{2}-a_{l}^{2}\right)=g\left(\pm a_{l} i\right), \quad l=1, \cdots, k
$$

So $q(\lambda) \equiv g(\lambda)$ and therefore $p(\lambda)=\lambda \prod_{j=1}^{k}\left(\lambda^{2}+\mu_{j}^{2}\right)$ which means that $T_{2 k+1}$ has eigenvalues $\pm \mu_{1} i, \cdots, \pm \mu_{k} i, 0$.
Remark 3.1. For the purpose of the later use in constructing of a real anti-symmetric banded matrix numerically, we need to find an orthogonal matrix U so that $U^{T} T_{2 k+1} U$ is the normal canonical form of $T_{2 k+1}$. Note that the eigenvector corresponding to eigenvalue $\mu_{j} i$ can be taken as

$$
\xi_{j}=\left(\frac{-b_{1} \mu_{j} i}{\mu_{j}^{2}-a_{1}^{2}}, \frac{a_{1} b_{1}}{\mu_{j}^{2}-a_{1}^{2}}, \cdots, \frac{-b_{k} \mu_{j} i}{\mu_{j}^{2}-a_{k}^{2}}, \frac{a_{k} b_{k}}{\mu_{j}^{2}-a_{k}^{2}}, 1\right)^{T}=v_{j}+w_{j} i
$$

where $v_{j}, w_{j} \in R^{2 k+1}$ are defined by

$$
\begin{equation*}
v_{j}=\left(0, \frac{a_{1} b_{1}}{\mu_{j}^{2}-a_{1}^{2}}, \cdots, 0, \frac{a_{k} b_{k}}{\mu_{j}^{2}-a_{k}^{2}}, 1\right)^{T}, \quad w_{j}=\left(\frac{-b_{1} \mu_{j}}{\mu_{j}^{2}-a_{1}^{2}}, 0, \cdots, 0, \frac{-b_{k} \mu_{j}}{\mu_{j}^{2}-a_{k}^{2}}, 0,0\right)^{T} \tag{10}
\end{equation*}
$$

The eigenvector corresponding to the zero eigenvalue can be taken as

$$
\begin{equation*}
\xi_{0}=\left(0,-\frac{b_{1}}{a_{1}}, \cdots, 0,-\frac{b_{k}}{a_{k}}, 1\right)^{T} . \tag{11}
\end{equation*}
$$

By (9), it can be verified that $\xi_{0}, w_{1}, v_{1}, \cdots, w_{k}, v_{k}$ are orthogonal vectors. They can be taken as the columns of the matrix U after being normalized.

Lemma 3.2. Let

$$
\begin{equation*}
\mu_{1}<a_{1}<\mu_{2}<\cdots<a_{k-1}<\mu_{k}<0 . \tag{12}
\end{equation*}
$$

Then there exist $b_{0}, b_{1}, \cdots, b_{k} \in R$ such that

$$
T_{2 k}=\left[\begin{array}{ccccccccc}
0 & & & & & & & & b_{0} \tag{13}\\
& 0 & a_{1} & & & & & & b_{1} \\
& -a_{1} & 0 & & 0 & a_{2} & & & \\
& & & -a_{2} & 0 & & & & 0 \\
& & & & & \ddots & & & 0 \\
& & & & & & 0 & a_{k-1} & \\
& & & & & b_{k-1} \\
-b_{0} & -b_{1} & 0 & -b_{2} & 0 & \cdots & -b_{k-1} & 0 & 0
\end{array}\right]
$$

has eigenvalues $\pm \mu_{1} i, \cdots, \pm \mu_{k} i$.
Proof Let

$$
\begin{align*}
b_{0} & =\prod_{j=1}^{k} \mu_{j} / \prod_{j=1}^{k-1} a_{j} \tag{14}\\
b_{l} & =\left(-\prod_{j=1}^{k}\left(\mu_{j}^{2}-a_{l}^{2}\right) / a_{l}^{2} \prod_{t \neq l}\left(a_{t}^{2}-a_{l}^{2}\right)\right)^{\frac{1}{2}}, \quad l=1, \cdots, k-1 \tag{15}
\end{align*}
$$

Then $b_{0}, b_{1}, \cdots, b_{k} \in R$ because of (12). It is easy to verified that

$$
p(\lambda)=\operatorname{det}\left(\lambda I-T_{2 k}\right)=\left(\lambda^{2}+b_{0}^{2}\right) \prod_{j=1}^{k-1}\left(\lambda^{2}+a_{j}^{2}\right)+\lambda^{2} \sum_{j=1}^{k-1} b_{j}^{2} \prod_{t \neq j}\left(\lambda^{2}+a_{t}^{2}\right)
$$

Noticing that $g(\lambda) \equiv p(\lambda)-\prod_{j=1}^{k}\left(\lambda^{2}+\mu_{j}^{2}\right)$ is a polynomial of degree not greater than $2 k-2$, while by (14) and (15),

$$
\begin{aligned}
& g(0)=p(0)-\prod_{j=1}^{k} \mu_{j}^{2}=b_{0}^{2} \prod_{j=1}^{k-1} a_{j}^{2}-\prod_{j=1}^{k} \mu_{j}^{2}=0 \\
& g\left(\pm a_{l} i\right)=0-a_{l}^{2} b_{l}^{2} \prod_{t \neq l}\left(a_{t}^{2}-a_{l}^{2}\right)-\prod_{j=1}^{k}\left(\mu_{j}^{2}-a_{l}^{2}\right)=0 . \quad l=1, \cdots, k-1
\end{aligned}
$$

So $g(\lambda)=0$ and therefore $p(\lambda)=\prod_{j=1}^{k}\left(\lambda^{2}+\mu_{j}^{2}\right)$ which implies that $T_{2 k}$ has eigenvalues $\pm \mu_{1} i, \cdots$, $\pm \mu_{k} i$.

Lemma 3.3. Let $\left\{a_{j}\right\}_{j=1}^{n-1},\left\{\mu_{j}\right\}_{j=1}^{n}$ be two sets of real numbers with

$$
\begin{gather*}
a_{j}=-a_{n-j}, j=1, \cdots, n-1 \tag{16}\\
\mu_{j}=-\mu_{n-j+1}, j=1, \cdots, n \tag{17}\\
\mu_{1} \leq a_{1} \leq \mu_{2} \leq \cdots \leq a_{n-1} \leq \mu_{n} \tag{18}
\end{gather*}
$$

Let

$$
T_{n-1}=\left[\begin{array}{ccccccccc}
0 & & & & & & & & \tag{19}\\
& \ddots & & & & & & & \\
\\
& & 0 & 0 & a_{1} & & & & \\
\\
& & & & 0 & 0 & 0 & a_{2} & \\
-a_{1} & 0 & & & \\
& & & & & & & \ddots & \\
& & & & & & & & 0 \\
& -a_{r} & a_{r}
\end{array}\right]
$$

be the normal canonical form of a real anti-symmetric $(n-1) \times(n-1)$ matrix with eigenvalues $\left\{a_{j} i\right\}_{j=1}^{n-1}$. Then there exists $c \in R^{n-1}$ such that matrix

$$
T_{n}=\left[\begin{array}{cc}
T_{n-1} & c \tag{20}\\
-c^{T} & 0
\end{array}\right]
$$

has eigenvalues $\left\{\mu_{j} i\right\}_{j=1}^{n}$.
Proof Lemma 3.1 and Lemma 3.2 guarantee the existence of $c \in R^{n-1}$ when the strict inequalities hold in (18) and n is odd or even respectively. If there are some equalities in (18), we may take some $a_{i} \mathrm{~s}$ and $\mu_{i} \mathrm{~s}$ out so that the remainder of (18) satisfies strict inequalities and (16)-(17) still hold. For example, if

$$
\mu_{1}<a_{1}=\mu_{2}=\cdots=\mu_{s}<a_{s} \leq \cdots \leq \mu_{n}
$$

then because of (17), (18), we have

$$
\mu_{1}<a_{1}=\mu_{2}=\cdots=\mu_{s}<a_{s} \leq \cdots \leq a_{n-s}<\mu_{n-s+1}=\cdots=\mu_{n-1}=a_{n-1}<\mu_{n}
$$

In this case, we may take $a_{1}=\mu_{2}=\cdots=\mu_{s}$ and $\mu_{n-s+1}=\cdots=\mu_{n-1}=a_{n-1}$ out, remaining

$$
\mu_{1}<a_{s} \leq \cdots \leq a_{n-s}<\mu_{n}
$$

For another example, if

$$
\mu_{1}<a_{1}=\mu_{2}=\cdots=a_{s}<\mu_{s+1} \leq \cdots \leq \mu_{n}
$$

then (18) must be

$$
\mu_{1}<a_{1}=\mu_{2}=\cdots=a_{s}<\mu_{s+1} \leq \cdots \leq \mu_{n-s}<a_{n-s}=\cdots=\mu_{n-1}=a_{n-1}<\mu_{n}
$$

In this case, we may take $a_{1}=\mu_{2}=\cdots=\mu_{s}$ and $\mu_{n-s+1}=\cdots=\mu_{n-1}=a_{n-1}$ out, remaining

$$
\mu_{1}<a_{s}<\mu_{s+1} \leq \cdots \leq \mu_{n-s}<a_{n-s}<\mu_{n}
$$

Repeat the above process till the remainder satisfies strict inequalities, denote by

$$
\begin{equation*}
\hat{\mu}_{1}<\hat{a}_{1}<\hat{\mu}_{2}<\cdots<\hat{a}_{r}<0<-\hat{a}_{r}<\cdots<-\hat{\mu}_{2}<-\hat{a}_{1}<-\hat{\mu}_{1} \tag{21}
\end{equation*}
$$

where, without loss of generality, suppose n is odd. According to Lemma 3.1, there exist $\hat{b}_{1}, \cdots, \hat{b}_{r} \in R$ such that

$$
T_{2 r+1}=\left[\begin{array}{cccccccc}
0 & \hat{a}_{1} & & & & & & \hat{b}_{1} \tag{22}\\
-\hat{a}_{1} & 0 & & & & & & 0 \\
& & -\hat{a}_{2} & \hat{a}_{2} & & & & \hat{b}_{2} \\
& & & & \ddots & & & 0 \\
& & & & & 0 & \hat{a}_{r} & \vdots \\
& & & & & \hat{b}_{r} \\
-\hat{b}_{1} & 0 & -\hat{b}_{2} & 0 & \cdots & -\hat{b}_{r} & 0 & 0 \\
0
\end{array}\right]
$$

has eigenvalues $\pm \hat{\mu}_{1} i, \cdots, \pm \hat{\mu}_{r} i, 0$.
Now, denote the numbers that have been taken out from (18) by $\pm \bar{a}_{1}, \cdots, \pm \bar{a}_{s}, 0, \cdots, 0$. It is obvious that there exists a permutation matrix P such that

On the other hand, from (22) we see that
has eigenvalues $0, \cdots, 0, \pm \bar{a}_{1} i, \cdots, \pm \bar{a}_{s} i, \pm \hat{\mu}_{1} i, \cdots, \pm \hat{\mu}_{r} i, 0$, which are actually $\left\{\mu_{j} i\right\}_{j=1}^{n}$ by the definition of $\bar{a}_{1}, \cdots, \bar{a}_{s}, \hat{\mu}_{1}, \cdots, \hat{\mu}_{r}$.

Now let

$$
\begin{equation*}
c=P\left[0, \cdots, 0, \hat{b}_{1}, 0, \cdots, \hat{b}_{r}, 0\right]^{T} \tag{25}
\end{equation*}
$$

then $c \in R^{n-1}$ and

$$
T_{n}=\left[\begin{array}{cc}
T_{n-1} & c \\
-c^{T} & 0
\end{array}\right]=\left[\begin{array}{cc}
P & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
P^{T} T_{n-1} P & P^{T} c \\
-c^{T} P & 0
\end{array}\right]\left[\begin{array}{cc}
P^{T} & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
P & 0 \\
0 & 1
\end{array}\right] \hat{T}_{n}\left[\begin{array}{cc}
P^{T} & 0 \\
0 & 1
\end{array}\right] .
$$

Therefore, T_{n} has eigenvalues $\left\{\mu_{j} i\right\}_{j=1}^{n}$ as \hat{T}_{n}.

3.2 The proof of Theorem 3.1

Let

$$
B^{(n-p+1)}=\left[\begin{array}{ccccccc}
0 & & & & & & \tag{26}\\
& \ddots & & & & & \\
& & 0 & 0 & \lambda_{1}^{(n-p+1)} & 0 & \\
\\
& & & -\lambda_{1}^{(n-p+1)} & 0 & & \\
& & & & \ddots & & \\
& & & & & -\lambda_{r_{n-p+1}}^{(n-p+1)} & 0
\end{array}\right]
$$

be the normal canonical form of a real anti-symmetric $(n-p+1) \times(n-p+1)$ matrix having eigenvalues $\left\{\lambda_{j}^{(n-p+1)} i\right\}_{j=1}^{n-p+1}$ with $\lambda_{1}^{(n-p+1)} \leq \lambda_{2}^{(n-p+1)} \leq \cdots \leq \lambda_{n-p+1}^{(n-p+1)}$. We shall construct a sequence of matrices $B^{(n-p+1)}, \cdots, B^{(n)}=B$ by embedding a last row and column to preceding matrix, step by step. We now describe how to construct $B^{(m+1)}$ from $B^{(m)}$. Suppose that $B^{(m)}$ be real anti-symmetric matrix with its leading $k \times k$ principal submatrix having eigenvalues
$\left\{\lambda_{j}^{(k)}\right\}_{j=1}^{k}$ where $\lambda_{1}^{(k)} \leq \lambda_{2}^{(k)} \leq \cdots \leq \lambda_{k}^{(k)},(k=n-p+1, \cdots, m)$. By Lemma 2.2, there exists an unitary matrix U_{m} such that

$$
U_{m} B^{(m)} U_{m}^{T}=T^{(m)}=\left[\begin{array}{ccccccc}
0 & & & & & & \tag{27}\\
& \ddots & 0 & & & & \\
& & 0 & 0 & \lambda_{1}^{(m)} & & \\
& & & -\lambda_{1}^{(m)} & 0 & & \\
& & & & \ddots & & \\
& & & & & 0 & \lambda_{r_{m}}^{(m)} \\
& & & & & -\lambda_{r_{m}}^{(m)} & 0
\end{array}\right],
$$

where $T^{(m)}$ is normal canonical form of $B^{(m)}$. By Lemma 3.3, there exists $c^{(m)} \in R^{m}$ so that

$$
\bar{B}^{(m+1)}=\left[\begin{array}{cc}
T^{(m)} & c^{(m)} \tag{28}\\
-c^{(m)^{T}} & 0
\end{array}\right]
$$

with eigenvalues $\left\{\lambda_{j}^{(m+1)} i\right\}_{j=1}^{m+1}$. Let

$$
\bar{U}_{m+1}=\left[\begin{array}{cc}
U_{m} & 0 \tag{29}\\
0 & 1
\end{array}\right] .
$$

Then

$$
\begin{align*}
B^{(m+1)} & =\bar{U}_{m+1}^{T} \bar{B}^{(m+1)} \bar{U}_{m+1}=\left[\begin{array}{cc}
U_{m}^{T} T^{(m)} U_{m} & U_{m}^{T} c^{(m)} \\
-c^{(m)^{T}} U_{m} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
B^{(m)} & U_{m}^{T} c^{(m)} \\
-c^{(m)^{T}} U_{m} & 0
\end{array}\right] \tag{30}
\end{align*}
$$

is a real anti-symmetric $(m+1) \times(m+1)$ matrix with eigenvalues $\left\{\lambda_{j}^{(k)} i\right\}_{j=1}^{k}$ in the leading $k \times k$ submatrix of $B^{(m+1)}(k=n-p+1, \cdots, m, m+1)$. This process for $m=n-p+1, \cdots, n-1$ gives us a matrix B which satisfies all conditions in Theorem 3.1. This completes the proof of Theorem 3.1.

4 Construction of banded anti-symmetric matrices from spectral data

Theorem 4.1. Let $\left\{\lambda_{j}^{(k)}\right\}_{j=1}^{k}(k=n-p+1, \cdots, n .0<p \leq n)$ be a set of real numbers satisfying (1), (2), then there exists a real anti-symmetric $n \times n$ matrix A with eigenvalues $\left\{\lambda_{j}^{(k)} i\right\}_{j=1}^{k}$ in the leading $k \times k$ submatrix of $A(k=n-p+1, \cdots, n)$ and $a_{s t}=0$ for $|s-t| \geq p$.

Proof By Theorem 3.1, there exists a real anti-symmetric $n \times n$ matrix B with eigenvalues $\left\{\lambda_{j}^{(k)} i\right\}_{j=1}^{k}$ in the leading $k \times k$ submatrix of $B(k=n-p+1, \cdots, n)$. But B is not necessary a banded matrix. In order to transform B into ($2 p-1$)-diagonal form we begin to zero the elements outside the band in the nth column(row) and continue with the $(n-1)$ th, $(n-2)$ th, $\cdots,(p+1)$ th column(row), using Householder transformations. Working backward in this way, we do not destroy anti-symmetry and the eigenvalues of the p leading submatrices. We construct similar
matrices $B=A_{0}, A_{1}, \cdots, A_{n-p}=A$, where the last j columns and rows of A_{j} are of (2p-1)diagonal form. To be specific, for $j=0,1, \cdots, n-p-1$, let

$$
\bar{a}_{n-j}=\left[\begin{array}{c}
\bar{a}_{1, n-j} \\
\vdots \\
\bar{a}_{n-j-p+1, n-j}
\end{array}\right]
$$

be the upper part of the $(n-j)$ th column of A_{j}. Let $\bar{H}_{j} \in R^{n-j-p+1}$ be Householder matrix such that

$$
\bar{H}_{j} \bar{a}_{n-j}=r e_{n-j-p+1}
$$

where $r \in R$ and $e_{n-j-p+1} \in R^{n-j-p+1}$ the $(n-j-p+1)$ th unit vector. Now let

$$
H_{j}=\left[\begin{array}{cc}
\bar{H}_{j} & 0 \tag{31}\\
0 & I_{j+p-1}
\end{array}\right]
$$

Then the $(n-j)$ th column and row of

$$
\begin{equation*}
A_{j+1}=H_{j} A_{j} H_{j}^{T} \tag{32}
\end{equation*}
$$

are of $(2 p-1)$-diagonal form. This transformation reserves the $(2 p-1)$-diagonal form of the last j columns and rows of A_{j}. It reserves the eigenvalues of the p greatest leading submatrices of A_{j} either. As consequence, the matrix $A=A_{n-p}$ has $(2 p-1)$-diagonal form and same eigenvalues in the p greatest leading submatrices as those in B.

5 Numerical methods and examples

The process of the proof of Theorems 3.1 and 4.1 provide us with an algorithm to construct the required matrix as follows:

Algorithm 1 This algorithm construct a real anti-symmetric matrix from given spectrum data.
Step 1 Compute $B^{(n-p+1)}$ by (26). Set $U^{(n-p+1)}=I_{n-p+1}$.
Step 2 For $m=n-p+2, \cdots, n$ do Step 3-5.
Step 3 Compute $c^{(m)}$ by (9), (25) when m is odd, or by (14),(15),(25) when m is even.
Step 4 Compute $B^{(m)}$ by (30).
Step 5 If $m<n$, compute $U^{(m+1)}$ by (10), (11).
Step 6 For $j=0,1, \cdots, n-p-1$ do Step 7-8.
Step 7 Compute A_{j+1} by (31), (32).
Step 8 Set $A_{0}=B$.
Step 9 Output $A=A_{n-p}$.
Using the above algorithm for the construction of real anti-symmetric matrix from given spectrum data, we give some examples here to illustrate that the results obtained in this paper are correct. Numerical experiments have been performed implementing a MATLAB routine on an PC.

Example $1 \quad(p=2, n=7)$ Given $\left\{\lambda_{j}^{(7)}\right\}_{j=1}^{7}=\{-7,-5,-3,0,3,5,7\}$ and $\left\{\lambda_{j}^{(6)}\right\}_{j=1}^{6}=\{-6,-4$, $-2,2,4,6\}$. The computed real anti-symmetric tri-diagonal matrix is given below:

$$
\left[\begin{array}{ccccccc}
0.000000 & 3.285052 & & & & & \\
-3.285052 & 0.000000 & -2.389232 & & & & \\
& 2.389232 & 0.000000 & -3.772709 & & \\
& & 3.772709 & 0.000000 & -3.204164 & & \\
& & & 3.204164 & 0.000000 & -3.872983 & \\
& & & & 3.872983 & 0.000000 & -5.196152 \\
& & & & & 5.196152 & 0.000000
\end{array}\right]
$$

Example $2(p=2, n=7)$ Given $\left\{\lambda_{j}^{(7)}\right\}_{j=1}^{7}=\{-5,-5,-2,0,2,5,5\}$ and $\left\{\lambda_{j}^{(6)}\right\}_{j=1}^{6}=\{-5,-3$, $-1,1,3,5\}$. This time (1), (2) hold with equality. The desired matrix is computed as follows:

$$
\left[\begin{array}{ccccccc}
0.000000 & -5.000000 & & & & & \\
5.00000 & 0.000000 & 0.000000 & & & & \\
& 0.000000 & 0.000000 & -1.314257 & & \\
& & 1.314257 & 0.000000 & -1.749915 & & \\
& & & 1.749915 & 0.000000 & -2.282658 & \\
& & & & 2.282658 & 0.000000 & -4.358899 \\
& & & & & 4.358899 & 0.00000
\end{array}\right]
$$

Example $3 \quad(p=3, n=8)$ Given $\left\{\lambda_{j}^{(8)}\right\}_{j=1}^{8}=\{-7.5,-5.5,-3.5,-1.5,1.5,3.5,5.5,7.5\},\left\{\lambda_{j}^{(7)}\right\}_{j=1}^{7}$ $=\{-7,-5,-3,0,3,5,7\}$ and $\left\{\lambda_{j}^{(6)}\right\}_{j=1}^{6}=\{-6,-4,-2,2,4,6\}$. Because A is anti-symmetric pentadiagonal, we only list two upper sub-diagonal entries in Table 1. The eigenvalues of tree greatest leading principal submatrices of A are computed and list in the table to compare with the given data. The results are rather satisfying.

Table 1: Example 3: two upper sub-diagonal entries of matrix A.

j	$a_{j, j+1}$	$a_{j, j+2}$	computed $\lambda_{j}^{(8)}$	computed $\lambda_{j}^{(7)}$	computed $\lambda_{j}^{(6)}$
1	-3.569251945735	+2.448044172744	+7.500000000000 i	+7.000000000000 i	+5.999999999999 i
2	-1.697317755236	-1.070337761180	-7.500000000000 i	-7.000000000000 i	-5.999999999999 i
3	-3.132965850439	-3.376274833182	+5.500000000000 i	+4.999999999999 i	+4.000000000000 i
4	+2.269296078105	-1.633815326846	-5.500000000000 i	-4.999999999999 i	-4.000000000000 i
5	+2.051157187872	-3.000355819338	+3.500000000000 i	+3.000000000000 i	+2.000000000000 i
6	+4.242389062469	-4.136546918404	-3.500000000000 i	-3.000000000000 i	-2.000000000000 i
7	-0.942857142857		+1.500000000000 i	+0.000000000000	
8		-1.500000000000 i			

Acknowledgments

The author would like to thank the referees for their careful reading and valuable comments.

References

[1] Gladwell G M L. Inverse problems in vibration. Appl. Mech. Review, 1986, 39: 1013-1018.
[2] Ram Y M, Elhay S. An inverse eigenvalue problem for the symmetric tridiagonal quadratic pencil with application to damped oscillatory systems. SIAM J. Appl. Math., 1996, 56: 232-244.
[3] Joseph K T. Inverse eigenvalue problem in structural design. AIAA J., 1992, 30: 2890-2896.
[4] Chu M T. Inverse Eigenvalue problems. SIAM Review, 1998, 41(1): 1-39.
[5] Hald O H. Inverse eigenvalues problems for Jacobi matrices. Linear Algebra Appl., 1976, 14: 63-85.
[6] Boley D, Golub G H. Inverse eigenvalue problems for band matrices, in Lecture Notes in Mathematics. Numer. Anal., Dundee 1977, Springer.
[7] Friedland S. The reconstruction of a symmetric matrix from the spectral data. J. Math. Anal. Appl., 1979, 71: 412-422.
[8] Biegler-König F W. Construction of band matrices from spectral data. Linear Algebra Appl., 1981, 40: 79-87.
[9] Mattis M P, Hochstadt H. On the construction of band matrices from spectral data. Linear Algebra Appl., 1981, 38: 109-119.
[10] Yin Q X. Quasi-Lanczos method in solving inverse eigenvalue problem for real symmetric band matrices. Numer. Math., A Journal of Chinese Universities, 1989, 11(1): 65-73 (in Chinese).
[11] He C C, Sun Q Y. About skew-symmetric matrix eigenvalue inverse problem. J. University of Petroleum, 1995, 19(6): 113-116 (in Chinese).
[12] Horn R A, Johnson C R. Matrix analysis. Cambridge University Press, Cambridge, 1985.

[^0]: *Correspondence to: Qingxiang Yin, Department of Mathematics, Yancheng Teachers College, Yancheng 224002, China. Email: qx_yin@sohu.com

