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Abstract We introduce multilevel augmentation methods for solving operator equa-
tions based on direct sum decompositions of the range space of the operator and the
solution space of the operator equation and a matrix splitting scheme. We establish a
general setting for the analysis of these methods, showing that the methods yield ap-
proximate solutions of the same convergence order as the best approximation from the
subspace. These augmentation methods allow us to develop fast, accurate and stable
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second kind equations, special splitting techniques are proposed to develop such algo-
rithms. These algorithms are then applied to solve the linear systems resulting from
matrix compression schemes using wavelet-like functions for solving Fredholm integral
equations of the second kind. For this special case, a complete analysis for computa-
tional complexity and convergence order is presented. Numerical examples are included
to demonstrate the efficiency and accuracy of the methods. In these examples we use
the proposed augmentation method to solve large scale linear systems resulting from
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1 Introduction

Developing stable, efficient and fast numerical algorithms for solving operator equations

including differential equations and integral equations is a main focus of research in numerical

analysis and scientific computation. The development of such algorithms is particularly impor-

tant for large scale computation. Solving an operator equation normally requires three steps of

processing. The first step, at the level of approximation theory, is to choose appropriate sub-

spaces and their suitable bases. The second step is to discretize the operator equations using

these bases and to analyze convergence properties of the approximate solutions. This step of

processing which results in a discrete linear system is a main task considered at the level of

numerical solutions of operator equations. The third step, at the level of numerical linear al-

gebra, is to design an efficient solver for the discrete linear system resulting from the second

step. The ultimate goal is to efficiently solve the discrete linear system which gives an accurate

approximate solution of the original operator equation. Theoretical consideration and practical

implementation in the numerical solution of operator equations show that these three steps of

processing are closely related. A good way of designing efficient algorithms for the discrete linear

system should be taken into consideration choices of subspaces and their bases, methodologies

of discretization of the operator equations and numerical solvers of the resulting discrete linear

system. The well-known multigrid method (cf., [16, 17]) and the related two-grid method [3,4]

are excellent examples of such algorithms.

A good algorithm for solving operator equations should be convenient for implementing

adaptivity. When a computed approximate solution is confirmed to be not accurate enough,

a local or global subdivision is often made aiming at a solution at a finer level. An efficient

algorithm should be able to update the old computed approximate solution obtaining a new,

more accurate approximate solution, at an additional expense proportional to the net gain in

accuracy, avoiding solving the whole equation at the finer level. In other words, the additional

computational costs to obtain the additional accuracy from a (local or global) subdivision should

be proportional to the dimension of the difference space between the coarse level and the finer

level, not at the expense in the order of the dimension of the finer level space. Presently, to our

best knowledge, existing numerical methods in the literature are not yet able to meet this need.

The research reported in this paper is an attempt to accomplish this goal.

We introduce a multilevel augmentation method for solving operator equations based on

multilevel decompositions of the approximate subspaces, aiming at efficiently solving linear sys-

tems of large scale obtained from discretization of the operator equations. For this purpose,

we require that both the range space of the operator and the solution space of the operator

equation have direct sum decompositions. Our method consists of two steps. In the first step,

we use the direct sum decompositions to discretize the operator equation and result in a linear

system. Reflecting the direct sum decompositions of the subspaces, the coefficient matrix of the
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linear system has a special structure. Specifically, the matrix corresponding to a finer level of

approximate spaces is obtained by augmenting the matrix corresponding to a coarser level with

submatrices that correspond to the difference spaces between the spaces of the finer level and

the coarser level. The second step is to split the matrix into a sum of two matrices, with one

reflecting its lower frequency and the other reflecting its higher frequency. We are required to

choose the splitting in a way that the inverse of the lower frequency matrix either has an explicit

form or can be easily computed with a lower computational cost.

The general setting of the multilevel augmentation method presented in this paper is a new

development closely related to the multilevel iteration method introduced in [9] (see, also [15]),

where the idea of Gauss-Seidel is used to define a specific splitting of the matrix. In this paper

we first establish an abstract setting of a general matrix splitting applicable to both first kind

and second kind operator equations. We then specialize a splitting in the case of second kind

equations (different from the Gauss-Seidel approach), which yields an efficient fast algorithm,

aiming at overcoming the limitation of the multilevel iteration method. The limitation is that

at every step we move from a coarse level to a finer level we are required to solve a linear system

with a coefficient matrix of size related to the coarse level. The computational effort builds

up when we repeat the iteration. This limitation is removed by the multilevel augmentation

method introduced in this paper. Specifically, for equations of the second kind, we propose a

matrix splitting scheme with which we need only to solve the linear system of a small scale

corresponding to an initial coarse level k, when we move from a coarse level (say, k + m for

any positive integer m) to a finer level (say, k + m + 1). Therefore, this method is particularly

suitable in the context of adaptive solutions of operator equations in conjunction with an adaptive

strategy based on a multiresolution decomposition.

Our multilevel augmentation method can be roughly described as follows. For a fixed integer

k, we first solve a linear system of level k and obtain the k-th level approximate solution. Suppose

that an adaptive strategy is available to guide the local or global subdivision which generates

a finer level space. We then update this solution from the coarse level to the finer level by

augmenting the coefficient matrix of the coarse level to one of the finer level with submatrices

that reflect the difference between the coarse level and the finer level. This process is repeated

until a satisfactory solution is obtained. Because of the special splitting scheme, at each level we

need only to solve a linear system with the same coefficient matrix of the linear system of the

initial level k but with a different right hand side vector. Noting that the computational cost

for solving this linear system related to level k is constant, our method provides an efficient fast

algorithm for adaptively solving operator equations.

A multiresolution analysis may provide a convenient decomposition for this development.

However, the decomposition upon which this method is developed is not restricted to multireso-

lution analysis. To illustrate this point, we use both the wavelet Galerkin method which is based
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on a multiresolution analysis and the fast collocation method which is based on wavelet-like

functions and collocation functionals (not exactly a multiresolution analysis) to demonstrate the

efficiency of the method.

We organize this paper in five sections. Section 2 is set to describe a general setting of the

multilevel augmentation method for solving operator equations including equations of the first

kind and second kind. This setting covers both differential equations and integral equations. In

terms of methodologies used in discretization of the equations, it is applicable to operator ap-

proximation methods including Galerkin methods, collocation methods and wavelet compression

methods. We provide a general sufficient condition on the matrix splitting which ensures that the

corresponding multilevel augmentation method yields an approximate solution having the same

order of convergence as that of the best approximation from the subspace. Section 3 is devoted

to the development of special multilevel augmentation methods for second kind equations. Using

the special structure of second kind equations, we propose a particular matrix splitting scheme

which results in a fast efficient algorithm for solving second kind equations. Stability analysis of

the multilevel augmentation method for second kind equations is presented to show that such a

method is stable. We estimate the computational complexity of this method. This augmentation

method is particularly useful when it is applied to solve a linear system with a compressed coeffi-

cient matrix. We provide in Section 4 a complete analysis for the computational complexity and

convergence order for this special case. In Section 5, we use the wavelet compressed Galerkin

and collocation methods developed in [20] and [11] respectively as examples to illustrate the

performance of the augmentation method. Numerical examples show that this method is indeed

very efficient and accurate.

2 Multilevel Augmentation Methods

In this section, we describe a general setting of the multilevel augmentation method for

solving operator equations. This method is based on a standard approximate method at a coarse

level and updates the resulting approximate solutions by adding details corresponding to higher

levels in a direct sum decomposition. We prove that this method provides the same order of

convergence as the original approximate method.

We begin with a description of the general setup for the operator equations under consid-

eration. Let X and Y be two Banach spaces, and A : X → Y be a bounded linear operator. For

a function f ∈ Y, we consider the operator equation

Au = f, (2.1)

where u ∈ X is the solution to be determined. We assume that equation (2.1) has a unique

solution in X. To solve the equation, we choose two sequences of finite dimensional subspaces

Xn, n ∈ N0 := {0, 1, . . .} and Yn, n ∈ N0 of X and Y, respectively, such that
⋃

n∈N0

Xn = X,
⋃

n∈N0

Yn = Y,
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and

dim Xn = dim Yn, n ∈ N0.

We suppose that equation (2.1) has an approximate operator equation

Anun = fn, (2.2)

where An : Xn → Yn is an approximate operator of A, un ∈ Xn and fn ∈ Yn is an approximation

of f . Examples of such equations include projection methods such as Galerkin methods and

collocation methods. In particular, for solving integral equations they also include approximate

operator equations obtained from quadrature methods and degenerate kernel methods. Wavelet

compression schemes using both orthogonal projection (Galerkin methods) and interpolation

projection (collocation methods) are also examples of this type.

Our method is based on an additional hypothesis that the subspaces are nested, i.e.,

Xn ⊂ Xn+1, Yn ⊂ Yn+1, n ∈ N0 (2.3)

so that we can define two subspaces Wn+1 ⊂ Xn+1 and Zn+1 ⊂ Yn+1 such that Xn+1 becomes

a direct sum of Xn and Wn+1 and likewise, Yn+1 is a direct sum of Yn and Zn+1. Specifically,

we assume that two direct sums ⊕1 and ⊕2 are defined so that we have the decompositions

Xn+1 = Xn ⊕1 Wn+1, and Yn+1 = Yn ⊕2 Zn+1, n ∈ N0. (2.4)

In practice, the finer level subspaces Xn+1 and Yn+1 are obtained respectively from the coarse

level subspaces Xn and Yn by local or global subdivisions. It follows from (2.4) for a fixed k ∈ N0

and any m ∈ N0 that

Xk+m = Xk ⊕1 Wk+1 ⊕1 · · · ⊕1 Wk+m, (2.5)

and

Yk+m = Yk ⊕2 Zk+1 ⊕2 · · · ⊕2 Zk+m. (2.6)

As in [9], for g0 ∈ Xk and gi ∈ Wk+i, i = 1, 2, . . . , m, we identify the vector [g0, g1, . . . , gm]T

in Xk×Wk+1×· · ·×Wk+m with the sum g0+g1+· · ·+gm in Xk⊕1Wk+1⊕1 · · ·⊕1Wk+m. Similarly,

for g0 ∈ Yk and gi ∈ Zk+i, for i = 1, 2, . . . , m, we also identify the vector [g0, g1, . . . , gm]T in

Yk ×Zk+1 × · · · × Zk+m with the sum g0 + g1 + · · ·+ gm in Yk ⊕2 Zk+1 ⊕2 · · · ⊕2 Zk+m. In this

notation, we describe the multilevel method for solving equation (2.2) with n := k + m which

has the form

Ak+muk+m = fk+m. (2.7)

According to decomposition (2.5), we write the solution uk+m ∈ Xk+m as

uk+m = uk,0 +
m∑

i=1

vk,i, (2.8)
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where uk,0 ∈ Xk and vk,i ∈ Wk+i for i = 1, 2, . . . , m. Hence, uk+m is identified as uk(m) :=

[uk,0, vk,1, . . . , vk,m]T . We will use both of these notations exchangeably.

We let Fk,k+j : Wk+j → Yk, Gk+i,k : Xk → Zk+i and Hk+i,k+j : Wk+j → Zk+i, i, j =

1, 2, . . . , m, be given and assume that the operator Ak+m is identified as the matrix of operators

Ak,m :=

⎡
⎢⎣

Ak Fk,k+1 · · · Fk,k+mGk+1,k Hk+1,k+1 · · · Hk+1,k+m
...

...
...

Gk+m,k Hk+m,k+1 · · · Hk+m,k+m

⎤
⎥⎦ . (2.9)

Equation (2.7) is now equivalent to the equation

Ak,muk(m) = fk+m. (2.10)

We remark that the nestedness of subspaces implies that the matrix Ak,m contains Ak,m−1 as

a submatrix. In other words, Ak,m is obtained by augmenting the matrix of the previous level

Ak,m−1.

With this setup, one can design various iteration schemes to solve equation (2.10) by splitting

the matrix Ak,m defined by (2.9) into a sum of two matrices and applying matrix iteration

algorithms to Ak,m. A multilevel iteration method based on the Gauss-Seidel iteration was

developed in [9]. In the present paper, we will first generalize the result in [9] and then specify

a way of splitting the matrix so that the new algorithms obtained in this way improve the

computational efficiency of the algorithm developed in [9].

For this purpose, we split operator Ak,m as the sum of two operators Bk,m, Ck,m : Xk+m →
Yk+m, that is, Ak,m = Bk,m + Ck,m, m ∈ N0. Note that matrices Bk,m and Ck,m are obtained

from augmenting matrices Bk,m−1 and Ck,m−1, respectively. Hence, equation (2.10) becomes

Bk,muk(m) = fk+m − Ck,muk(m), m ∈ N0. (2.11)

Instead of solving (2.11) directly, we solve (2.11) approximately by using the multilevel augmen-

tation algorithm described below.

Algorithm 1 (Operator Form of the Augmentation Algorithm) Let k > 0 be a fixed

integer.

Step 1 Solve equation (2.2) with n := k for uk ∈ Xk exactly.

Step 2 Set uk,0 := uk and compute the splitting matrices Bk,0 and Ck,0.

Step 3 For m ∈ N, suppose that uk,m−1 ∈ Xk+m−1 has been obtained and do the following.

· Augment the matrices Bk,m−1 and Ck,m−1 to form Bk,m and Ck,m, respectively.

· Augment uk,m−1 by setting uk,m :=
[

uk,m−1
0

]
.

· Solve uk,m ∈ Xk+m from equation

Bk,muk,m = fk+m − Ck,muk,m. (2.12)
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For a fixed positive integer k, if this algorithm can be carried out, it generates a sequence

of approximate solutions uk,m ∈ Xk+m, m ∈ N0. Note that this algorithm is not an iteration

method since for different m we are dealing with matrices of different order and for each m

we only compute the approximate solution uk,m once. To ensure that the algorithm can be

carried out, we have to guarantee that for m ∈ N0, the inverse of Bk,m exists and is uniformly

bounded. Moreover, the approximate solutions generated by this augmentation algorithm neither

necessarily have the same order of convergence as the approximation order of the subspaces Xn

nor necessarily is more efficient to solve than solving equation (2.2) with n := k+m directly, unless

certain conditions on the splitting are satisfied. For this algorithm to be executable, accurate

and efficient, we demand that the splitting of operator Ak,m fulfill three requirements. Firstly,

B−1
k,m is uniformly bounded. Secondly, the approximate solution uk,m preserves the convergence

order of uk+m. That is, uk,m converges to the exact solution u at the approximation order of the

subspaces Xk+m. Thirdly, the inverse of Bk,m is much easier to obtain than the inverse of Ak,m.

We now address the first issue. To this end, we describe our hypotheses.

(I) There exist a positive integer N0 and a positive constant α such that for n ≥ N0,

‖A−1
n ‖ ≤ α−1. (2.13)

(II) The limit

lim
n→∞ ‖Cn,m‖ = 0 (2.14)

holds uniformly for m ∈ N.

Under these two assumptions, we have the following result.

Proposition 2.1 Suppose that hypotheses (I) and (II) hold. Then, there exists a positive

integer N > N0 such that for k ≥ N and m ∈ N, equation (2.12) has a unique solution uk,m ∈
Xk+m.

Proof From hypothesis (I), whenever k ≥ N0 there holds that for x ∈ Xk+m,

‖Bk,mx‖ = ‖(Ak,m − Ck,m)x‖ ≥ (α − ‖Ck,m‖)‖x‖. (2.15)

On the other hand, it follows from (2.14) that there exists a positive integer N > N0 such that

for k ≥ N and for m ∈ N0, ‖Ck,m‖ < α/2. Combining this inequality with (2.15), we find that

for k ≥ N and for m ∈ N0 there holds the estimate

‖B−1
k,m‖ ≤ 1

α − ‖Ck,m‖ ≤ 2α−1. (2.16)

This ensures that for all k ≥ N and m ∈ N0, equation (2.12) has a unique solution.

We next consider the second issue. For n ∈ N0, we let En denote the approximation error in

space Xn for u ∈ X, namely, En = En(u) := inf{‖u − v‖X : v ∈ Xn}. A sequence of nonnegative
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numbers γn, n ∈ N0 is called a majorization sequence of En if γn ≥ En, n ∈ N0 and there exists

a positive integer N0 and a positive constant σ such that for n ≥ N0,
γn+1

γn
≥ σ.

We also need the following hypothesis.

(III) There exist a positive integer N0 and a positive constant ρ such that for n ≥ N0 and

for the solution un ∈ Xn of equation (2.2), ‖u − un‖X ≤ ρEn.

In the next theorem, we show that under the assumptions described above, uk,m approxi-

mates u at an order comparable to Ek+m.

Theorem 2.2 Suppose that hypotheses (I)-(III) hold. Let u ∈ X be the solution of

equation (2.1), γn, n ∈ N0, be a majorization sequence of En and ρ be the constant appearing

in hypothesis (III). Then, there exists a positive integer N such that for k ≥ N and for m ∈ N0

‖u − uk,m‖ ≤ (ρ + 1)γk+m,

where uk,m is the solution of equation (2.12).

Proof We prove this theorem by establishing an estimate on ‖uk,m − uk+m‖. For this

purpose, we subtract (2.11) from (2.12) to obtain Bk,m(uk,m−uk+m) = Ck,m(uk+m−uk,m). The

hypotheses of this theorem ensure that Proposition 2.1 holds. Hence, from the equation above

and inequality (2.16) we have that

‖uk,m − uk+m‖ ≤ ‖Ck,m‖
α − ‖Ck,m‖‖uk+m − uk,m‖. (2.17)

We next prove by induction on m that there exists a positive integer N such that for k ≥ N

and for m ∈ N0,

‖uk,m − uk+m‖ ≤ γk+m. (2.18)

When m = 0, since uk,0 = uk, estimate (2.18) holds trivially. Suppose that the claim holds for

m = r − 1 and we come to prove that it holds for m = r. To accomplish this, by using the

definition of uk,r, hypothesis (III), the induction hypothesis and the definition of majorization

sequences, we obtain that

‖uk+r − uk,r‖ ≤ ‖uk+r − u‖ + ‖u − uk+r−1‖ + ‖uk+r−1 − uk,r−1‖
≤ ργk+r + (ρ + 1)γk+r−1 ≤ (

ρ + (ρ + 1) 1
σ

)
γk+r .

Substituting this estimate into the right hand side of (2.17) with m = r yields

‖uk,r − uk+r‖ ≤ ‖Ck,r‖
α − ‖Ck,r‖

(
ρ + (ρ + 1)

1
σ

)
γk+r.

Again, employing hypothesis (II), there exists a positive integer N such that for k ≥ N and

for r ∈ N0, ‖Ck,r‖ ≤ α

(ρ + 1)(1 + 1
σ )

. We then conclude that for k ≥ N and for r ∈ N0,
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‖Ck,r‖
α − ‖Ck,r‖

(
ρ + (ρ + 1)

1
σ

)
≤ 1. Therefore, for k ≥ N , estimate (2.18) holds for m = r. This

advances the induction hypothesis and thus estimate (2.18) holds for all m ∈ N0.

Finally, the estimate of this theorem follows directly from estimate (2.18) and hypothesis

(III).

We remark that when the exact solution u of equation (2.1) has certain Sobolev or Besov

regularity and specific approximate subspaces Xn are chosen, we may choose the majorization

sequence γn as the upper bound of En which gives the order of approximation of the subspaces

Xn with respect to the regularity. For example, when Xn is chosen to be the usual finite element

spaces with the mesh-size 2−n and when the solution u of equation (2.1) belongs to the Sobolev

space Hr, we may choose γn := c2−rn‖u‖Hr . In this case, the constant σ in the definition of

majorization sequences can be taken as 2−r. Therefore, Theorem 2.2 ensures that the approx-

imate solution uk,m generated by the multilevel augmentation method has the same order of

approximation of the subspaces Xn.

3 Second Kind Equations

In this section, we present special results for projection methods for solving operator equa-

tions of the second kind. Consider equations

(I − K)u = f, (3.1)

where K : X → X is a linear operator. We assume that equation (3.1) has a unique solution. In

this special case, we identify that A := I −K, X = Y, and Xn = Yn. Suppose that Pn : X → Xn

are linear projections and we define the projection method for solving equation (3.1) by

Pn(I − K)un = Pnf, (3.2)

where un ∈ Xn. To develop a multilevel augmentation method, we need another projection

P̂n : X → Xn. We define operators Qn := Pn − Pn−1 and Q̂n := P̂n − P̂n−1, and introduce

subspaces Wn := Q̂nXn, n ∈ N. We allow the projections Pn and P̂n to be different in order

to have a wide range of applications. For example, for Galerkin methods, Pn and P̂n are both

identical to the orthogonal projection and for the collocation method developed in [11], Pn is the

interpolatory projection and P̂n is the orthogonal projection.

For n ∈ N, we set Kn := PnK|Xn and identify An := Pn(I −K)|Xn . We further identify the

operators in (2.9) with

Fk,k+j := Pk(I − K)|Wk+j
, Gk+i,k := Qk+i(I − K)|Xk

, Hk+i,k+j := Qk+i(I − K)|Wk+j
.

We split the operator Kk+m into the sum of two operators Kk+m = KL
k,m +KH

k,m where KL
k,m :=

PkK|Xk+m
, and KH

k,m := (Pk+m − Pk)K|Xk+m
. The operators KL

k,m and KH
k,m correspond to

lower and higher frequency of the operator Kk,m, respectively. According to the decomposition
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of Kk+m, we write the operator Ak,m := Ik+m − Kk,m as a sum of lower and higher frequency

Bk,m := Ik+m − KL
k,m and Ck,m := −KH

k,m. Using this specific splitting in formula (2.12) of

Algorithm 1, we have that

(Ik+m − KL
k,m)uk,m = fk,m + KH

k,muk,m. (3.3)

The next theorem is concerned with convergence order for the multilevel augmentation

method for second kind equations using projection methods.

Theorem 3.1 Suppose that K is a compact linear operator not having 1 as its eigenvalue

and that there exists a positive constant p such that

‖Pn‖ ≤ p, ‖P̂n‖ ≤ p, for all n ∈ N. (3.4)

Let u ∈ X be the solution of equation (3.1) and γn be a majorization sequence of En. Then,

there exist a positive integer N and a positive constant c0 such that for all k ≥ N and m ∈ N,

‖u − uk,m‖ ≤ c0γk+m,

where uk,m is obtained from the augmentation algorithm with formula (3.3).

Proof We prove that the hypotheses of Theorem 2.2 hold for the special choice of the

operators Bk,m and Ck,m for second kind equations. We first remark that the assumption on

the operators K and Pn ensures that hypotheses (I) and (III) hold with An := I − Kn. It

remains to verify hypothesis (II). To this end, we recall the definition of Cn,m which has the form

Cn,m = −(Pn+m − Pn)K|Xn+m . It follows from the second inequality of (3.4) that

‖Cn,m‖ = ‖(Pn+m − Pn)K|Xn+m‖ ≤ p‖(Pn+m − Pn)K‖.

By the first inequality of (3.4) and the nestedness of subspaces Xn, we conclude that Pn point-

wisely converges to the identity operator I of space X. Hence, since K is compact, the last

term of the inequality above converges to zero as n → ∞ uniformly for m ∈ N. Therefore, all

hypotheses of Theorem 2.2 are satisfied and thus, we complete the proof of this theorem.

We next derive the matrix form of the multilevel augmentation method by choosing ap-

propriate bases for the subspaces Xn. For this purpose, we let X
∗ denote the dual space of X

and for � ∈ X
∗, x ∈ X we let 〈�, x〉 denote the value of the linear functional � at x. Suppose

that Ln, n ∈ N0 is a sequence of subspaces of X
∗ which has the property that Ln ⊂ Ln+1 and

dim Ln = dim Xn, n ∈ N0. The operator Pn : X → Xn is defined for x ∈ X by

〈�, x − Pnx〉 = 0, for all � ∈ Ln. (3.5)

It is known (cf. [12]) that the operator Pn : X → Xn is uniquely determined and is a projection if

and only if Ln ∩ X
⊥
n = {0}, n ∈ N0, where X

⊥
n denotes the annihilator of Xn in X

∗. Throughout
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the rest of this section we always assume that this condition is satisfied. We also assume that

we have a decomposition of the space Ln+1, namely,

Ln+1 = Ln ⊕ Vn+1, n ∈ N0. (3.6)

Clearly, the spaces Wi and Vi have the same dimension. We will specify the direct sum in (3.6)

later.

Set w(0) := dim X0 and w(i) := dim Wi, for i ∈ N and Zn := {0, 1, . . . , n − 1}. Suppose

that

X0 = span{w0,j : j ∈ Zw(0)}, L0 = span{�0,j : j ∈ Zw(0)},
Wi = span{wi,j : j ∈ Zw(i)}, Vi = span{�i,j : j ∈ Zw(i)}, i ∈ N.

Introducing the index set Jn := {(i, j) : i ∈ Zn+1, j ∈ Zw(i)}, we have that for n ∈ N0

Xn = span{wi,j : (i, j) ∈ Jn} and Ln = span{�i,j : (i, j) ∈ Jn}.

We remark that the index set Jn has cardinality dn := dim Xn and we assume that the elements

in Jn are ordered lexicographically.

We now present the matrix form of equation (3.2) using these bases. Note that for vn ∈
Xn, there exist unique constants vi,j , (i, j) ∈ Jn, such that vn =

∑
(i,j)∈Jn

vi,jwi,j . It follows

that the solution un, with n := k + m, of equation (3.2) has the vector representation un :=

[ui,j : (i, j) ∈ Jn]T under the basis wi,j , (i, j) ∈ Jn. Using the bases for Xn and Ln, we

let Ei′,j′;i,j := 〈�i′,j′ , wi,j〉, and Ki′,j′;i,j := 〈�i′,j′ ,Kwi,j〉, and introduce the matrices En :=

[Ei′,j′;i,j : (i′, j′), (i, j) ∈ Jn], and Kn := [Ki′,j′;i,j : (i′, j′), (i, j) ∈ Jn]. We also introduce the

column vectors fn := [〈�i′,j′ , f〉 : (i′, j′) ∈ Jn]T . In these notations, equation (3.2) is written in

the matrix form as

(Ek+m − Kk+m)uk+m = fk+m. (3.7)

We partition matrices Kn and En into block matrices according to the decompositions of

the spaces Xn and Ln. Specifically, for i′, i ∈ Zn+1, we introduce the blocks Ki′,i := [Ki′,j′;i,j :

j′ ∈ Zw(i′), j ∈ Zw(i)] and set Kn = [Ki′,i : i′, i ∈ Zn+1]. Moreover, for a fixed k ∈ N we define

the blocks Kk
0,0 := Kk, and for l′, l ∈ N, Kk

0,l := [Ki′,i : i′ ∈ Zk+1, i = k + l], Kk
l,0 := [Ki′,i : i′ =

k + l, i ∈ Zk+1], and Kk
l′,l := Kk+l′,k+l. Using these block notations, for n := k + m we write

Kk+m =
[
Kk

i′,i : i′, i ∈ Zm+1

]
. Likewise, we partition matrix En exactly in the same way.

The decomposition of operator Kk+m suggests the matrix decomposition Kk+m = KL
k,m +

KH
k,m, where

KL
k,m :=

⎡
⎢⎢⎣

Kk
0,0 Kk

0,1 · · · Kk
0,m

0 0 · · · 0
...

...
...

0 0 · · · 0

⎤
⎥⎥⎦ and KH

k,m :=

⎡
⎢⎢⎣

0 0 · · · 0
Kk

1,0 Kk
1,1 · · · Kk

1,m
...

...
...

Kk
m,0 Kk

m,1 · · · Kk
m,m

⎤
⎥⎥⎦ .
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Note that matrices KL
k,m and KH

k,m correspond to lower and higher frequency of matrix Kk,m.

Moreover, we set Bk,m := Ek+m−KL
k,m and Ck,m := −KH

k,m. Next we describe the matrix form

of the multilevel augmentation method for solving equation (3.7) using these two matrices.

Algorithm 2 (Matrix Form of the Augmentation Algorithm) Let k > 0 be a fixed integer.

Step 1 Solve uk ∈ R
dk from the equation (Ek − Kk)uk = fk.

Step 2 Set uk,0 := uk and compute the splitting matrices KL
k,0 and KH

k,0.

Step 3 For m ∈ N, suppose that uk,m−1 ∈ R
dk+m−1 has been obtained and do the follow-

ing.

· Augment the matrices KL
k,m−1 and KH

k,m−1 to form KL
k,m and KH

k,m, respectively.

· Augment uk,m−1 by setting uk,m :=
[ uk,m−1

0
]
.

· Solve uk,m ∈ R
dk+m from the algebraic equations

(Ek,m − KL
k,m)uk,m = fk+m + KH

k,muk,m. (3.8)

It is important to know under what condition the matrix form (3.8) is equivalent to the

operator form (3.3). This issue is addressed in the next theorem. To prepare a proof of this

theorem, we consider an expression of the identity operator I in the subspace Xk+m. Note that

for any x ∈ Xk+j , j ∈ Zm, Qk+1+jx = 0. This is equivalent to the following equations

Qk+1+jI|Xk
= 0, and Qk+1+jI|Wk+1+i

= 0, i ∈ Zj . (3.9)

Using this fact, we express the identity operator I in the subspace Xk+m as

Ik+m := Pk+mI|Xk+m
=

⎡
⎢⎢⎣

PkI|Xk
PkI|Wk+1 · · · PkI|Wk+m

0 Qk+1I|Wk+1 · · · Qk+1I|Wk+m

...
. . . . . .

...
0 · · · 0 Qk+mI|Wk+m

⎤
⎥⎥⎦ .

Taking this into consideration equation (3.3) becomes
⎡
⎢⎢⎣

Pk(I − K)|Xk
Pk(I − K)|Wk+1 · · · Pk(I − K)|Wk+m

0 Qk+1I|Wk+1 · · · Qk+1I|Wk+m

...
. . . . . .

...
0 · · · 0 Qk+mI|Wk+m

⎤
⎥⎥⎦uk,m =

⎡
⎢⎢⎣

Pkf
Qk+1f

...
Qk+mf

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0 0 · · · 0
Qk+1K|Xk

Qk+1K|Wk+1 · · · Qk+1K|Wk+m

...
...

...
Qk+mK|Xk

Qk+mK|Wk+1 · · · Qk+mK|Wk+m

⎤
⎥⎥⎦

⎡
⎣ uk,m−1

0

⎤
⎦ . (3.10)

To state the next theorem, we let Nk := {k, k + 1, . . .} and introduce the following notion.

For finite dimensional subspaces A ⊂ X
∗ and B ⊂ X, we say A ⊥ B if for any � ∈ A and x ∈ B

there holds 〈�, x〉 = 0.
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Theorem 3.2 The following statements are equivalent.

(i) The matrix form (3.8) and the operator form (3.3) are equivalent for any f ∈ X and for

any compact operator K : X → X.

(ii) For any l ∈ Nk, Vl+1 ⊥ Xl.

(iii) For any l ∈ Nk and any j ∈ Zm+1 \ {0}, Vl+j ⊥ Xl.

(iv) For i′, i ∈ Zm+1, i′ > i, Ek
i′,i = 0.

(v) For i′, i ∈ Zm+1, i′ > i, Bk
i′,i = 0.

Proof We first prove the equivalence of statements (i) and (ii). It is clear that for any

x ∈ X and for any � ∈ Vn, 〈�,Pn−1x〉 = 0 if and only if Vn ⊥ Xn−1. On the other hand, we

observe from the definitions of Pn and Qn for n ∈ N that for x ∈ X and for � ∈ Vn

〈�,Qnx〉 = 〈�,Pnx − Pn−1x〉 = 〈�, x〉 − 〈�,Pn−1x〉 .

Hence, for n ∈ N, the following equation holds 〈�,Qnx〉 = 〈�, x〉, for all x ∈ X, � ∈ Vn if and only

if Vn ⊥ Xn−1. Therefore, statement (ii) is equivalent to saying that for any j ∈ Zm,

〈�,Qk+j+1x〉 = 〈�, x〉 , for all x ∈ X, � ∈ Vk+j+1. (3.11)

Noting that for x ∈ X and n ∈ N, Qnx ∈ Zn := QnXn ⊂ Xn, we conclude from (3.5) and (3.9)

that equation (3.10) is equivalent to

〈�,Pk(I − K)uk,m〉 = 〈�,Pkf〉 , for all � ∈ Lk, (3.12)

and

〈�,Qk+j+1uk,m〉 = 〈�,Qk+j+1f + Qk+j+1Kuk,m−1〉 , for all � ∈ Lk+j+1, j ∈ Zm. (3.13)

Using (3.5), equation (3.12) is written as

〈�, (I − K)uk,m〉 = 〈�, f〉 , for all � ∈ Lk. (3.14)

Again, from (3.5) we have that for x ∈ X, and � ∈ Lk+j , j ∈ Zm,

〈�,Qk+j+1x〉 = 〈�,Pk+j+1x − Pk+jx〉 = 0.

In particular, for all � ∈ Lk+j , j ∈ Zm, both sides of equation (3.13) are equal to zero. Noting

that

Lk+j+1 = Lk+j ⊕ Vk+j+1,

equation (3.13) is equivalent to

〈�,Qk+j+1uk,m〉 = 〈�,Qk+j+1f + Qk+j+1Kuk,m−1〉 , for all � ∈ Vk+j+1, j ∈ Zm.
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Now suppose that statement (ii) holds. Using equation (3.11), the equation above is equivalent

to

〈�, uk,m〉 = 〈�, f + Kuk,m−1〉 , for all � ∈ Vk+j+1, j ∈ Zm. (3.15)

In terms of the bases of the spaces Xk, Lk, Wk+j+1 and Vk+j+1, j ∈ Zm, equations (3.14) and

(3.15) are equivalent to the matrix equation (3.8). Conversely, if (i) holds, we can prove that

equation (3.11) is satisfied and thus, (ii) holds.

The proof of (iii) implying (ii) is trivial. Statement (ii) and the nestedness assumption on

Xn ensures the validity of (iii). Statement (iv) is the discrete version of (iii) and hence they are

equivalent. Finally, the equivalence of (iv) and (v) follows from the definition of matrix Bk,m.

Note that condition (ii) in Theorem 3.2 specifies the definition of the direct sum (3.6). In

other words, the space Vn+1 is uniquely determined by condition (ii). From now on, we will

always assume that condition (ii) is satisfied to guarantee the equivalence of (3.3) and (3.8).

Another way to write the equivalence conditions in Theorem 3.2 is

〈�i′,j′ , wi,j〉 = 0, i, i′ ∈ Nk, i < i′, j ∈ Zw(i), j
′ ∈ Zw(i′). (3.16)

When condition (3.16) is satisfied we call the bases �i,j and wi,j semi-biorthogonal. Under this

condition, when the solution uk,m of equation (3.8) is computed, we conclude from Theorem

3.2 that the function defined by uk,m := uT
k,mxk+m is the solution of the equation (3.3), where

xn = [wi,j : (i, j) ∈ Jn]T . We remark that condition (3.16) is satisfied for wavelet Galerkin

methods and wavelet collocation methods developed in [20] and [11], respectively. In fact, in

the case of the Galerkin method using orthogonal piecewise polynomial wavelets constructed in

[18] the matrix En is the identity and in the case of the collocation method using interpolating

piecewise polynomial wavelets and multiscale functionals constructed in [8] the matrix En is

upper triangular with the diagonal entries equal to one.

We now turn to a study of computational complexity of Algorithm 2. Specifically, we will

estimate the number of multiplications used in the method. For this purpose, we rewrite equation

(3.8) in a block form. Letting n := k + m we partition the matrix Ek+m in the same way as

we have done for the matrix Kk+m to obtain blocks Ek
i,i′ , i, i′ ∈ Zm+1. We also partition the

vectors uk,m and fk+m accordingly as uk,m := [um
i : i ∈ Zm+1] and fk+m := [fk,i : i ∈ Zm+1].

Here and in what follows, we require that the appropriate bases are chosen so that Ek
i′,i = 0, for

0 ≤ i < i′ ≤ m, and Ek
i,i = I. With this assumption, we express the matrix Bk,m as

Bk,m =

⎡
⎢⎢⎢⎢⎢⎢⎣

I − Kk Ek
0,1 − Kk

0,1 Ek
0,2 − Kk

0,2 · · · Ek
0,m−1 − Kk

0,m−1 Ek
0,m − Kk

0,m

0 I Ek
1,2 · · · Ek

1,m−1 Ek
1,m

0 0 I · · · Ek
2,m−1 Ek

2,m
...

...
...

...
...

0 0 0 · · · I Ek
m−1,m

0 0 0 · · · 0 I

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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It is clear from this matrix representation that inverting matrices Bk,m, m ∈ N0, is basically

equivalent to inverting I − Kk. The strength of Algorithm 2 is that it only requires computing

the inverse (I − Kk)−1. Using this block form of matrix Bk,m, equation (3.8) becomes

um
i = fk,i +

m−1∑
j=0

Kk
i,ju

m−1
j −

m∑
j=i+1

Ek
i,ju

m
j , i = m, m − 1, . . . , 1, (3.17)

f̂k,0 := fk,0 −
m∑

j=1

(Ek
0,j − Kk

0,j)u
m
j , and um

0 = (I − Kk)−1f̂k,0. (3.18)

For a matrix A, we denote by N (A) the number of non-zero entries of A. Note that we

need N (KH
k,m)+N (Ek+m) multiplications to obtain um

i , i = 1, 2, . . . , m from equation (3.17). In

addition, the computation of f̂k,0 requires N (KL
k,m) number of multiplications. We assume that

computing um
0 from the second equation of (3.18) needs M(k) multiplications, which is constant

independent of m. Hence, the number of multiplications for computing uk,m from uk,m−1 is

Nk,m := N (Kk+m) + N (Ek+m) + M(k). (3.19)

Recall that to compute uk,m, we first compute uk and then use algorithm (3.17)-(3.18) to compute

uk,i, i = 1, 2, . . . , m, successively. By formula (3.19), the total number of multiplications required

to obtain uk,m is given by

M(k) +
m∑

i=1

Nk,i = (m + 1)M(k) +
m∑

i=1

[N (Kk+i) + N (Ek+i)] .

We now summarize the discussion above in a proposition.

Proposition 3.3 The total number of multiplications required for computing uk,m from

uk is given by

(m + 1)M(k) +
m∑

i=1

[N (Kk+i) + N (Ek+i)].

To close this section, we analyze stability of Algorithm 2. It can be shown that if the

condition number κ(Bk,m) of matrix Bk,m is small, then small perturbations of the matrices

Bk,m and Ck,m and the vector uk,m only cause a small perturbation in the solution uk,m. For

this reason, we study the condition number of matrix Bk,m. Our theorem will confirm that the

condition numbers κ(Bk,m) and κ(Ak+m) have the same order. In other words, the augmentation

method will not ruin the well-condition property of the original multilevel method.

We first establish a result that stability of Bk,m is inherited from that of Ak+m.

Lemma 3.4 Suppose that the family of operators An, n ∈ N0 have the property that there

exist positive constants c1 and c2 and a positive integer N0 such that for n ≥ N0 ‖An‖ ≤ c1, and

‖Anv‖ ≥ c2‖v‖, for all v ∈ Xn. Moreover, suppose that for any k, m ∈ N0, Ak+m = Bk,m + Ck,m
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where Ck,m satisfies hypothesis (II). Then, there exist positive constants c′1 and c′2 and a positive

integer N1 such that for k > N1, m ∈ N0, ‖Bk,m‖ ≤ c′1, and ‖Bk,mv‖ ≥ c′2‖v‖, for all v ∈ Xk+m.

Proof By the triangular inequality, we have for any k, m ∈ N0 that

‖Ak+m‖ − ‖Ck,m‖ ≤ ‖Bk,m‖ ≤ ‖Ak+m‖ + ‖Ck,m‖.

The hypotheses of this lemma ensure that there exists a positive integer N ′ such that for k > N ′

and m ∈ N0, ‖Ck,m‖ ≤ c2/2. We let N1 := max{N0, N
′} and observe that for k > N1, m ∈ N0,

‖Bk,m‖ ≤ c1 + c2/2, and ‖Bk,mv‖ ≥ ‖Ak+mv‖−‖Ck,mv‖ ≥ c2
2 ‖v‖, for all v ∈ Xk+m. By choosing

c′1 := c1 + c2
2 and c′2 := c2

2 , we complete the proof of this lemma.

We now return to the discussion of the condition number of matrix Bk,m. To do this, we need

auxiliary bases for X0 and Wi, for i ∈ N, which are bi-orthogonal to {�i,j : j ∈ Zw(i), i ∈ N0},
that is, X0 = span {ζ0,j : j ∈ Zw(0)}, Wi = span {ζi,j : j ∈ Zw(i)}, with the bi-orthogonal

property 〈�i′,j′ , ζi,j〉 = δi′,iδj′,j , for i, i′ ∈ N0, j ∈ Zw(i), j′ ∈ Zw(i′). For any v ∈ Xn, we

have two representations of v given by v =
∑

(i,j)∈Jn

vi,jwi,j and v =
∑

(i,j)∈Jn

v′i,jζi,j . We let

v,v′ ∈ R
dn be the vectors of the coefficients in the two representations of v, respectively, i.e.,

v := [vi,j : (i, j) ∈ Jn]T and v′ := [v′i,j : (i, j) ∈ Jn]T .

Theorem 3.5 Let n ∈ N0 and suppose that there exist functions μi(n), νi(n), i = 1, 2,

such that for any v ∈ Xn,

μ1(n)‖v‖ ≤ ‖v‖ ≤ μ2(n)‖v‖, ν1(n)‖v′‖ ≤ ‖v‖ ≤ ν2(n)‖v′‖. (3.20)

Suppose that the hypothesis of Lemma 4.1 is satisfied. Then, there exists a positive integer N

such that for any k > N and any m ∈ N0,

κ(Ak+m) ≤ c1μ2(k + m)ν2(k + m)
c2μ1(k + m)ν1(k + m)

and κ(Bk,m) ≤ c′1μ2(k + m)ν2(k + m)
c′2μ1(k + m)ν1(k + m)

.

Proof We will prove the bound for both matrices at the same time. To this end, for

n := k + m we let Hk,m denote either Ak+m or Bk,m and Hk,m for the corresponding operator.

For any v = [vi,j : (i, j) ∈ Jk+m]T ∈ R
dk+m , we define a vector g = [gi,j : (i, j) ∈ Jk+m]T ∈ R

dk+m

by letting g := Hk,mv. Introducing v =
∑

(i,j)∈Jk+m

vi,jwi,j , and g =
∑

(i,j)∈Jk+m

gi,jζi,j , we have the

corresponding operator equation Hk,mv = g. Since the hypotheses of Lemma 3.4 are satisfied, by

using Lemma 3.4, there exist positive constants c′1 and c′2 and a positive integer N such that for

k > N , m ∈ N0, ‖Bk,m‖ ≤ c′1, and ‖Bk,mv‖ ≥ c′2‖v‖, for all v ∈ Xk+m. Therefore, in either case,

there exist positive constants c1 and c2 and a positive integer N such that for k > N , m ∈ N0,

‖Hk,m‖ ≤ c1, and ‖Hk,mv‖ ≥ c2‖v‖, for all v ∈ Xk+m. It follows from (3.20) that for any k > N

and m ∈ N0

‖Hk,mv‖ = ‖g‖ ≤ ‖g‖
ν1(k + m)

=
‖Hk,mv‖
ν1(k + m)

≤ c1‖v‖
ν1(k + m)

≤ c1μ2(k + m)
ν1(k + m)

‖v‖
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which yields ‖Hk,m‖ ≤ c1μ2(k+m)
ν1(k+m) . Likewise, by (3.20) we have that for any k > N and m ∈ N0

μ1(k + m)‖v‖ ≤ ‖v‖ ≤ ‖Hk,mv‖
c2

=
‖g‖
c2

≤ ν2(k + m)
c2

‖g‖ =
ν2(k + m)

c2
‖Hk,mv‖,

which ensures that ‖H−1
k,m‖ ≤ ν2(k + m)

c2μ1(k + m)
. Combining the estimates for ‖Hk,m‖ and ‖H−1

k,m‖,
we confirm the bounds of the condition numbers of Ak+m and Bk,m.

We next apply this theorem to two specific cases to obtain two useful special results.

Remark 3.6 For wavelet Galerkin methods developed in [20] and wavelet Petrov-Galerkin

methods developed in [8], κ(Ak+m) = O(1) and κ(Bk,m) = O(1).

Proof In these wavelet methods, we use orthogonal wavelet bases. Thus, quantities μi(n)

and νi(n), i = 1, 2, appearing in (3.20) are constant independent of n. By Theorem 3.5, in these

cases condition numbers κ(Ak+m) and κ(Bk,m) are constant independent of n.

Remark 3.7 For wavelet collocation methods developed in [11], κ(Ak+m) = O(log2 dk+m)

and κ(Bk,m) = O(log2 dk+m), where dk+m denotes the order of matrices Ak+m and Bk,m.

Proof In the wavelet collocation methods developed in [11], we have that μ1(k + m) =

O(1), ν1(k + m) = O(1), μ2(k + m) = O(log dk+m), and ν2(k + m) = O(log dk+m). Therefore,

the result of this remark follows from Theorem 3.5.

4 Wavelet Compression Schemes

This section is devoted to an application of the multilevel augmentation method for solving

linear systems resulting from wavelet compression schemes.

We assume that a wavelet compression strategy has been applied to compress the full ma-

trix Kn to obtain a sparse matrix K̃n, where the number of nonzero entries of K̃n is of order

dn logα dn, with α = 0, 1 or 2, that is,

N (K̃n) = O(dn logα dn). (4.1)

Methods of this type were studied in [1, 5, 7,10,11,13,14,20-24]. In particular, when orthogo-

nal piecewise polynomial wavelets and interpolating piecewise polynomial wavelets constructed

respectively in [18] and [8] are used to develop the wavelet Galerkin method [20], the wavelet

Petrov-Galerkin methods [7,10] and the wavelet collocation method [11], we have that N (K̃n) =

O(nαμn), where the corresponding wavelets are constructed with a μ-adic subdivision of the

domain when the kernel K(s, t), s, t ∈ D ⊆ R
d, of the integral operator K satisfies the conditions

described in these papers. The compression scheme for these methods has the form

(En − K̃n)ũn = fn. (4.2)

Equation (4.2) has an equivalent operator equation. Let K̃n : Xn → Xn be the linear

operator relative to the basis {wij : (i, j) ∈ Jn} having the matrix representation E−1
n K̃n. We
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have that

(I − K̃n)ũn = Pnf, (4.3)

where ũn ∈ Xn and it is related to the solution ũn of equation (4.2) by the formula ũn = ũT
nxn,

where xn := [wij : (i, j) ∈ Jn]T . It is known that under certain conditions for Galerkin methods

and collocation methods we have that if u ∈ Wr,p(D),

‖u − ũn‖p ≤ cμ−rn/dnα‖u‖r,p, (4.4)

where p = 2 for the Galerkin method and p = ∞ for the collocation method and r denotes the

order of piecewise polynomials used in these methods.

To develop the multilevel augmentation method for solving the operator equation (4.3), we

note that K̃n = PnK̃n, from which equation (4.3) is rewritten as

(I − PnK̃n)ũn = Pnf. (4.5)

Hence, for n := k + m, we have that K̃k+m = PkK̃k+m + (Pk+m − Pk)K̃k+m and from this

equation we define B̃k,m := Ik+m − PkK̃k+m and C̃k,m := −(Pk+m − Pk)K̃k+m. As done in

Section 3, we can define the multilevel augmentation method for equation (4.3).

We have the following convergence result.

Theorem 4.1 Let u ∈ Wr,p(D). Suppose that the estimate (4.4) holds and

lim
n→∞ ‖Kn − K̃n‖ = 0. (4.6)

Then, there exist a positive integer N and a positive constant c such that for all k > N and

m ∈ N0,

‖u − ũk,m‖ ≤ cμ−r(k+m)/d(k + m)α‖u‖r,p.

Proof The proof is done by employing Theorem 2.2 with a majorization sequence γn :=

cμ−rn/dnα‖u‖r,p. We conclude that
γn+1

γn
≥ μ−r/d. In other words, γn is a majorization sequence

of En with σ := μ−r/d. It is readily shown that

‖C̃k,m‖ ≤ 2p‖K̃k+m −Kk+m‖ + ‖Ck,m‖ + 2p2‖(Pk+m − I)K‖.

By (4.6), we have that limk→∞ ‖C̃k,m‖ = 0 uniformly for m ∈ N0. Also, it can be verified that

other conditions of Theorem 2.2 are satisfied with both the wavelet Galerkin method and the

collocation method using piecewise polynomial wavelets of order r. By applying Theorem 2.2 we

complete the proof.

We now formulate the matrix form of the multilevel augmentation method directly from

the compressed matrix. Because the compressed matrix K̃n inherits the multilevel structure of

matrix Kn, we may use the multilevel augmentation method to solve equation (4.2) as described
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in Section 3. Specifically, we partition the compressed matrix K̃n as it is done for the full matrix

Kn in Section 3, let

K̃L
k,m :=

⎡
⎢⎢⎣

K̃k
0,0 K̃k

0,1 · · · K̃k
0,m

0 0 · · · 0
...

...
...

0 0 · · · 0

⎤
⎥⎥⎦ and K̃H

k,m :=

⎡
⎢⎢⎢⎣

0 0 · · · 0
K̃k

1,0 K̃k
1,1 · · · K̃k

1,m
...

...
...

K̃k
m,0 K̃k

m,1 · · · K̃k
m,m

⎤
⎥⎥⎥⎦ ,

and define B̃k,m := Ek+m − K̃L
k,m and C̃k,m := −K̃H

k,m.

Algorithm 3 (Matrix Form of the Augmentation Algorithm for Wavelet Compression

Schemes) Let k be a fixed positive integer.

Step 1 Solve ũk ∈ R
dk from the equation

(
Ek − K̃k

)
ũk = fk.

Step 2 Set ũk,0 := ũk and compute the splitting matrices K̃L
k,0 and K̃H

k,0.

Step 3 For m ∈ N, suppose that ũk,m−1 ∈ R
dk+m−1 has been obtained and do the follow-

ing.

-Augment the matrices K̃L
k,m−1 and K̃H

k,m−1 to form K̃L
k,m and K̃H

k,m, respectively.

-Augment ũk,m−1 by setting ũk,m :=
[

ũk,m−1
0

]
.

-Solve ũk,m ∈ R
dk+m from the algebraic equations

(Ek,m − K̃L
k,m)ũk,m = fk+m + K̃H

k,mũk,m.

Since E−1
n K̃n is the matrix representation of the operator K̃n relative to the basis {wij :

(i, j) ∈ Jn}, we conclude that
〈
�i′j′ , K̃nwij

〉
=

∑
(i′′,j′′)∈Jn

(E−1
n K̃n)i′′j′′,ijEi′j′,i′′j′′ = (K̃n)i′j′,ij

and see that the matrix form of multilevel augmentation method derived above is equivalent to

the corresponding operator form.

In the next result, we estimate the number of multiplications used in Algorithm 3.

Theorem 4.2 Let k be a fixed positive integer and m ∈ N0. Suppose that for some

α ∈ {0, 1, 2} and some integer μ > 1, N (K̃n) = O(nαμn), and suppose that for n ∈ N0,

N (En) ≤ N (K̃n). Then, the total number of multiplications required for computing ũk,m from

ũk is of O((m + k)αμm+k).

Proof According to Proposition 3.3, the total number of multiplications required for com-

puting ũk,m from ũk is given by Ñk,m = O(m) +
m∑

i=1

[N (K̃k+i) + N (Ek+i)]. Since N (En) ≤

N (K̃n), it suffices to estimate the quantity
m∑

i=1

N (K̃k+i). To this end, we may show the identity
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m∑
i=1

(k + i)αμk+i = O((k + m)αμk+m). Using this formula and the hypotheses of this theorem,

we complete the proof of this result.

It can be verified that for the wavelet compression schemes presented in [10,11,20] condition

(4.6) and assumption on Theorem 4.2 are fulfilled. Therefore, the conclusions of Theorems 4.1

and 4.2 hold for the class of methods proposed in these papers.

5 Numerical Experiments

We present in this section numerical examples to demonstrate the performance of the mul-

tilevel augmentation method associated with the wavelet Galerkin method and the wavelet col-

location method. To focus on the main issue of the multilevel augmentation method, we choose

a second kind integral equation on the unit interval since the augmentation method is indepen-

dent of the dimension of the domain of the integral equation. Consider equation (3.1) with the

integral operator K defined by

(Ku)(s) :=
∫ 1

0

log | cos(πs) − cos(πt)|u(t)dt, s ∈ I := [0, 1].

In our numerical experiments, for convenience of comparison we choose the right hand side

function in equation (3.1) as

f(s) = sin(πs) +
1
π

[2 − (1 − cos(πs)) log(1 − cos(πs)) − (1 + cos(πs)) log(1 + cos(πs))]

so that u(s) = sin(πs), s ∈ I, is the exact solution of the equation. We choose Xn as the space of

piecewise linear polynomials on I with knots at the dyadic points j/2n, j = 1, 2, . . . , 2n−1. Note

that the theoretical convergence rate for piecewise linear approximation is 2. All our numerical

algorithms are run on a personal computer with a 600MHz CPU and 256M memory.

Example 1: Wavelet Galerkin Methods. In our first experiment, we consider the

wavelet Galerkin method for solving equation (3.1). Choose an orthonormal basis w00(t) := 1

and w01(t) :=
√

3(2t − 1), for t ∈ I for X0 and

w10(t) :=

⎧⎪⎨
⎪⎩

1 − 6t, t ∈ [0,
1
2
],

5 − 6t, t ∈ [
1
2
, 1],

w11(t) :=

⎧⎪⎨
⎪⎩

√
3(1 − 4t), t ∈ [0,

1
2
],

√
3(4t − 3), t ∈ [

1
2
, 1]

for W1. An orthonormal basis wij , j = 0, 1, . . . , 2i for Wi is constructed according to the

construction given in [18]. We choose Pn = P̂n as the orthogonal projection mapping L2(I) onto

Xn and �ij = wij .

In this case, En is an identity matrix because of the orthogonality of the basis and the

matrix Kn is truncated to A54FFFFFFFFFFFF54AA5454AA54FFFFFFFFFFFF54AA5454AA54FFFFFFFFFFFF54AA54

k,m is smaller than that

of Ãk+m.

Table 4 Condition numbers of the matrices from collocation method

m κ(Ã5+m) Δ1 κ(B̃5,m) Δ2

0 7.742223

1 9.446764 1.704541 9.383285

2 11.096629 1.649865 11.003597 1.620312

3 12.695555 1.598926 12.589373 1.585776

4 14.256352 1.560797 14.151313 1.561940

5 15.789732 1.533380 15.690938 1.539625

Both theoretical analysis and numerical experiment show that the multilevel augmentation

method is particularly suitable for solving large scale linear systems resulting from wavelet com-

pression schemes applied to integral equations. It is a stable and fast algorithm which provides

accurate numerical solutions of integral equations.
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