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NUMERICAL SOLUTIONS OF AN EIGENVALUE

PROBLEM IN UNBOUNDED DOMAINS∗

Han Houde(���) Zhou Zhenya(���) Zheng Chunxiong (��	)

Abstract A coupling method of finite element and infinite large element is proposed

for the numerical solution of an eigenvalue problem in unbounded domains in this paper.

With some conditions satisfied, the considered problem is proved to have discrete spectra.

Several numerical experiments are presented. The results demonstrate the feasibility of

the proposed method.
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1 Introduction

A great deal of work has been done on the numerical solution of eigenvalue problems, which

have widespread applications in physics and engineering. In this paper, we will consider an

eigenvalue problem in unbounded domains and introduce a numerical approach for the proposed

problem.

This paper is inspired by the successful application of infinite large element to Helmholtz

equation in exterior domains by K.Gerds[7,8,9] and L.Demkowicz[9] and various concepts of large

element and infinite large elements developed by Han Hou-de and Ying Lung-an[2], P.Bettess[4,5],

and D.S.Burnett[6]. Here we will introduce a coupling method of finite element(FE) and infinite

large element(ILE) to overcome the essential difficulty for obtaining the numerical solution of

the given problem which originates from the unboundedness of physical domain.

We now consider the following eigenvalue problem in the unbounded domain Ωe
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Find λ ∈ C, u �= 0 such that

−�u − λρ(x)u = 0, in Ωe, (1.1)

u|Γ = 0, on Γ, (1.2)∫
Ω

e
|∇u|2dx +

∫
Ωe

ρ|u|2dx < ∞. (1.3)

Here Ω = R2\Ω̄e is assumed to be a bounded domain with smooth boundary Γ. ρ(x) > 0 is

continuous in R2. Besides, we assume

B = {x : |x| < 1} ⊂⊂ Ω.

Problem (1.1)-(1.3) can be deduced from the following initial-boundary of heat equation on

the unbounded domain Ωe × (0, T ]:

ρ(x)
∂w

∂t
= �w, (x, t) ∈ Ωe × (0, T ], (1.4)

w|Γ = 0, 0 < t ≤ T, (1.5)

w|t=0 = w0(x), (1.6)

w(x, t) is bounded, (1.7)

where w0(x) is a given function, w|Γ = 0 and support {w0(x)} is compact. Consider the solution

of the problem (1.4)-(1.7) in the following form

w(x, t) = e−λtu(x), (1.8)

where (λ, u(x)) is to be determined. Substituting (1.8) into problem (1.4)-(1.7) we know that

{λ, u(x)} is determined by eigenvalue problem (1.1)-(1.3).

The organization is as the following. In section 2, we introduce the variational formulation

of the eigenvalue problem and analyze some of its properties. In section 3, we present the

discretization of exterior domain. Some numerical examples are given in section 4.

2 Some properties of the eigenvalue problem

We suppose ρ(x) satisfies:

0 < δ(R) ≤ min
1≤|x|≤R

ρ(x), for R ≥ 1, (2.1)

ρ(x) ≤ ρ0(|x|), 1 ≤ |x| < +∞, (2.2)

M =
∫ ∞

1

r ln rρ0(r)dr < +∞,
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where δ(R) is a given function. Denote

C∞
∗ (Ωe) =

{
v : v ∈ C∞(Ωe),

∂v

∂x1
,

∂v

∂x2
∈ C∞

0 (Ω
e
), v|Γ = 0

}
and introduce an inner product

(u, v)1,ρ,Ωe =
∫

Ωe

∇u · ∇v̄dx +
∫

Ωe

ρuv̄dx (2.3)

and a semi-inner product

[u, v]1,ρ,Ωe =
∫

Ωe

∇u · ∇v̄dx

in this space. The induced norm and seminorm are defined by

‖u‖1,ρ,Ωe =
√

(u, u)1,ρ,Ωe , |u|1,ρ,Ωe =
√

[u, u]1,ρ,Ωe .

Denote H1,ρ
0 (Ωe) as the completed space of C∞

∗ (Ωe) under inner product (2.3), and it is

easy to prove

H1,ρ
0 (Ωe) ⊂

{
u :

∫
Ωe

|∇u|2dx +
∫

Ωe

ρ|u|2dx < ∞, u|Γ = 0
}
.

Furthermore, we denote

H0,ρ(Ωe) =
{

u :
∫

Ωe

ρ|u|2dx < ∞
}

.

H0,ρ(Ωe) has a natural inner product:

(u, v)0,ρ,Ωe =
∫

Ωe

ρuv̄dx,

and the corresponding norm is denoted as

‖u‖0,ρ,Ωe =
√

(u, u)0,ρ,Ωe .

It is obvious that H0,ρ(Ωe) is a Hilbert space. Let R be a positive number and satisfy

ΓR
def= {x : |x| = R} ⊂ Ωe.

Denote:

H1,ρ
0 (ΩR) =

{
u|ΩR : u ∈ H1,ρ

0 (Ωe)
}

,

H0,ρ(ΩR) =
{

u|ΩR : u ∈ H0,ρ(Ωe)
}

,

where ΩR = {x : x ∈ Ωe , |x| < R}. Let Ω∗
R = {x : |x| > R}.

Lemma 2.1 (Poincare inequality) Suppose that ρ(x) satisfies the condition (2.1)-(2.2),

then there exists a constant C > 0 such that

‖u‖1,ρ,Ωe ≤ C|u|1,ρ,Ωe , ∀u ∈ H1,ρ
0 (Ωe).
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Proof Since C∞
∗ (Ωe) is dense in ∈ H1,ρ

0 (Ωe), we need only to prove ∀u ∈ C∞
∗ (Ωe), there

exists a constant C > 0 such that

‖u‖1,ρ,Ωe ≤ C|u|1,ρ,Ωe , ∀u ∈ H1,ρ
0 (Ωe).

Let

û =
{

u(x) x ∈ Ωe,
0 x ∈ Ω̄,

then, we have

|û2(r, θ)| =
∣∣∣ ∫ r

1

∂û

∂r
dr

∣∣∣2 ≤
∫ r

1

r
∣∣∣∂û

∂r

∣∣∣2dr · ln r ≤
∫ ∞

1

r
∣∣∣∂û

∂r

∣∣∣2dr · ln r, r ≥ 1.

Multiplying rρ0(r) on the above inequality and integrating with respect θ and r we obtain∫ 2π

0

∫ ∞

1

ρ0(r)|û(r, θ)|2rdrdθ ≤ M

∫ 2π

0

∫ ∞

1

∣∣∣∂û(r, θ)
∂r

∣∣∣2rdrdθ.

It follows immediately that∫
R2\B

ρ|û|2dx ≤ M

∫ 2π

0

∫ ∞

1

∣∣∣∂û(r, θ)
∂r

∣∣∣2rdrdθ.

Namely,

‖u‖0,ρ,Ωe ≤
√

M |u|1,ρ,Ωe .

The proof is complete.

Lemma 2.2 Suppose that ρ(x) satisfies the conditions (2.1)-(2.2), then the imbedding

from H1,ρ
0 (Ωe) to H0,ρ(Ωe) is compact.

Proof Let S be a bounded subset of H1,ρ
0 (Ωe), and for any u ∈ S,

‖u‖1,ρ,Ωe ≤ MS .

We only need to prove that S is a compact set in H0,ρ(Ωe).

For any u ∈ S, by the Lemma 2.1, we have
∫

Ω∗
η

ρ|u|2dx ≤
∫

Ω∗
η

ρ0|u|2dx =
∫ 2π

0

∫ ∞

η

ρ0|u|2rdrdθ ≤
∫

Ωe

∣∣∣∂u

∂r

∣∣∣2dx

∫ ∞

η

r ln rρ0(r)dr,

≤ M2
S

∫ ∞

η

r ln rρ0(r)dr.

Therefore we obtain: for any ε > 0, ∃R, such that∫
Ω∗

R

ρ|u|2dx ≤ ε/4, ∀u ∈ S. (2.4)

By conditions (2.1)-(2.2),the imbedding H1,ρ
0 (ΩR) ↪→ H0,ρ(ΩR) is compact.
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Then the restriction of S on ΩR is a compact set in H0,ρ(ΩR), thus for any ε > 0, there

exists {u1, u2, . . . , uM} ∈ S such that ∀u ∈ S, ∃i, 1 ≤ i ≤ M , there is

‖u − ui‖0,ρ,ΩR < ε/2

by (2.4), we know that ∀ε > 0, there exists {u1, u2, . . . , uM} ∈ S such that ∀u ∈ S, ∃i, 1 ≤ i ≤
M , there is

‖u − ui‖0,ρ,Ωe < ε.

Hence S is a compact set in H0,ρ(Ωe). Therefore the imbedding from H1,ρ
0 (Ωe) to H0,ρ(Ωe) is

compact.

The variational formulation of eigenvalue problem (1.1)-(1.3) is⎧⎪⎨
⎪⎩

Find λ ∈ C, u ∈ H1,ρ
0 (Ωe), and u �= 0 such that∫

Ωe

∇u · ∇v̄dx − λ

∫
Ωe

ρuv̄dx = 0, ∀v ∈ H1,ρ
0 (Ωe).

(2.5)

We can see that if (λ, u) satisfies (2.5), and u ∈ C2(Ωe), then (λ, u) satisfies (1.1)-(1.3).

Theorem 2.1 Assume that ρ(x) satisfies conditions (2.1)-(2.2), then eigenvalue problem

(2.5) has real discrete eigenvalues

0 < λ1 ≤ λ2 ≤ · · ·.

Proof Let

a(u, v) =
∫

Ωe

∇u · ∇v̄dx, b(u, v) =
∫

Ωe

ρuv̄dx.

The eigenvalue problem (2.5) can be written in the following form:{
Find λ ∈ C, u ∈ H1,ρ

0 (Ωe) and u �= 0 such that
a(u, v) − λb(u, v) = 0, ∀v ∈ H1,ρ

0 (Ωe).

The bilinear form a(u, v) is bounded and coercive in H1,ρ
0 (Ωe), namely there is a positive constant

μ, such that

|a(u, v)| ≤ ‖u‖1,ρ,Ωe‖v‖1,ρ,Ωe , ∀u, v ∈ H1,ρ
0 (Ωe),

a(u, u) ≥ μ‖u‖2
1,ρ,Ωe, ∀u ∈ H1,ρ

0 (Ωe). (2.6)

It is obvious that

b(u, u) > 0, ∀u ∈ H0,ρ(Ωe), u �= 0. (2.7)

Introduce the operator T : H1,ρ
0 (Ωe) → H1,ρ

0 (Ωe) defined by Tu ∈ H1,ρ
0 (Ωe), Tu is the

unique solution of the following variational problem for given u ∈ H1,ρ
0 (Ωe)

a(Tu, v) = b(u, v), ∀v ∈ H1,ρ
0 (Ωe), (2.8)
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Taking v = Tu in (2.8), we obtain

μ‖Tu‖2
1,ρ,Ωe ≤ a(Tu, Tu) = b(u, Tu) ≤ ‖u‖0,ρ,Ωe‖Tu‖0,ρ,Ωe.

Therefore we have

‖Tu‖1,ρ,Ωe ≤ 1
μ
‖u‖0,ρ,Ωe , ∀u ∈ H0,ρ(Ωe). (2.9)

If {uj} is a bounded sequence in H1,ρ
0 (Ωe), then, since H1,ρ

0 (Ωe) imbeds in H0,ρ(Ωe) compactly,

we know there is a subsequence {ujl
} that is Cauchy in H0,ρ(Ωe). It then follows immediately

from (2.9), applied to ujl
− ujk

, that {Tujl
} is Cauchy, and hence convergent in H1,ρ

0 (Ωe), Thus

T : H1,ρ
0 (Ωe) → H1,ρ

0 (Ωe) is compact. Suppose (λ, u) is an eigenvalue of (2.5) if and only if

Tu =
1
λ

u, u �= 0.

Finally from the spectral theory of compact operators we know that the eigenvalue problem

(2.5) has discrete eigenvalues. For the symmetry of bilinear form a(·, ·), b(·, ·) and (2.6)-(2.7),

we know that the eigenvalues of problem (2.5) are real and positive.

3 The numerical solution of eigenvalue problem (2.5)

In this section, we discuss the numerical approximation of eigenvalue problem (2.5). We

introduce a coupling method of finite element and infinite large element to overcome the difficulty,

which originates from the unboundedness of physical domain Ωe.

Suppose R1 is large enough such that ΓR1 ={x : |x| = R1} ⊂ Ωe. Thus ΓR1 divides domain

Ωe into two parts: the unbounded part Ω∗
R1

= {x : |x| > R1} and the bounded part ΩR1 = {x :

x ∈ Ωe, |x| < R1}.

On circle ΓR1 , we take N nodes {xi = (R1 cos θi, R1 sin θi) : θi =
2πi

N
, i = 1, ..., N}. The

rays {−−→Oxi}N
i=1 divide the domain Ω∗

R1
into N subsets:

Ke
j ={x : |x| ≥ R1, θj−1 ≤ θ ≤ θj}, j = 1, ...N, θ0 = 0.

Each subset Ke
j (j = 1, ...N) is an infinite large element. Let hג

e = {Ke
j }1≤j≤N .

Then we divide domain ΩR1 into finite number of triangles {Ki
j , j = 1, ..., M}, which may

have one curve side, and {xi, i = 1, ..., N} belong to the set of vertexes of the triangles. Let

hג
i = {Ki

j}1≤j≤M and hג = hג
e ∪ hג

i . Finally we obtain the partition hג of domain Ωe, which

include the triangle elements {Ki
j , j = 1, ..., M} and infinite large elements {Ke

j , j = 1, ..., N}.
On triangle element Ki

j we use the linear shape function in planimetric rectangular coordinates.

On infinite large element Ke
j = {x : r ≥ R1, θj−1 ≤ θ ≤ θj}, j = 1, ..., N we take another

2K − 1 nodes xi,j−1 = {Ri cos θj−1, Risinθj−1}, xi,j = {Ri cos θj , Ri sin θj}, i = 2, ..., K, with
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R1 < R2 < ... < RK , and node x∞ at infinity which is shared by all infinite large elements. Let

V =

⎧⎨
⎩a0 +

K∑
i=1

2∑
j=1

ai,j
θj−1

ri
: a0, ai,j ∈ R, i = 1, 2, ...K, j = 1, 2

⎫⎬
⎭ ,

then the shape function fj(r, θ) on Ke
j is taken to be

fj(r, θ) ∈ V, (3.1)

define the value of fj(r, θ) at x∞ as

fj(x∞) = lim
r→∞fj(r, θ),

which is independent of j. On element Ke
j , the shape function (3.1) can be determined by the

values at the nodes {xi,j−1, xi,j}, i = 1, ...., K and node x∞, where (x1,j−1 = xj−1, x1,j = xj).

Here we present a specific example to give a further explanation.

For example Figure.1 shows an infinite large element Ke
j with node xj−1, xj , x2,j−1, x2,j ,

Figure 1

and their corresponding coordinates are (R1, θj−1), (R1, θj), (R2, θj−1), (R2, θj), x∞ at in-

finity is a public node. Let

p1(r, θ) =
(r − R2)(θ − θj)R2

1

δRδθr2
, p2(r, θ) = − (r − R2)(θ − θj−1)R2

1

δRδθr2
,

p3(r, θ) = − (r − R1)(θ − θj)R2
2

δRδθr2
, p4(r, θ) =

(r − R1)(θ − θj−1)R2
2

δRδθr2
,

p5(r, θ) =
(r − R1)(r − R2)

r2
,

where δR = R2 − R1, δθ = θj − θj−1, It is obvious that
{
pi(r, θ)}1≤i≤5 are the basis of function

space V , therefore for fj(r, θ) ∈ V , fj(r, θ) can be written as

fj(r, θ) = fj(xj−1)p1(r, θ) + fj(xj)p2(r, θ) + fj(x2,j−1)p3(r, θ)+

fj(x2,j)p4(r, θ) + fj(x∞)p5(r, θ).

Now we introduce a finite dimensional function space to approximate H1,ρ
0 (Ωe).
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Let

Vh = {vh : vh|ΩR1
∈ C0(ΩR1), vh|Ω∗

R1
∈ C0(Ω∗

R1
), vh is continuous at the nodes

xi(i = 1, ..., N). vh|Ki
j
∈ P1, ∀Ki

j ∈ ג
h
i ; vh|Ke

j
∈ V (Ke

j ), ∀Ke
j ∈ ג

h
e ; vh|yi = 0,

when yi ∈ Γ(i = 1, ..., J)},

where P1 is a linear polynomial space, and {yi, i = 1, ..., J} denote the nodes on the boundary

Γ.

Generally, Vh is not a subspace of H1,ρ
0 (Ωe). Therefore the coupling method of FE\ILE is

nonconforming.

Let {zl}1≤l≤L , including the node x∞, be the all nodes except {yi, i = 1, ..., J} of the

discretization, {ϕi}1≤i≤L be the basis of Vh, such that

ϕi(zl) = δil.

Then we obtain an approximate variational formulation of eigenvalue problem (2.5)⎧⎪⎨
⎪⎩

Find λh ∈ R, uh ∈ Vh, and uh �= 0 such that∑
e∈גh

∫
e

∇uh · ∇vdx − λh

∑
e∈גh

∫
e

ρuhvdx = 0, ∀v ∈ Vh. (3.2)

Suppose

uh(x) =
L∑

j=1

ϕjuj. (3.3)

Substituting (3.3) into (3.2) and taking v = ϕi, for i = 1, 2, ..., L lead to

L∑
j=1

∑
e∈גh

∫
e
∇ϕj · ∇ϕiujdx − λh

L∑
j=1

∑
e∈גh

∫
e
ρϕjϕiujdx = 0, i = 1, ...L.

Let

A = (Ai,j)L×L, B = (Bi,j)L×L,

x = (u1, u2, ...uL)T ,

where

Ai,j =
∑
e∈גh

∫
e
∇ϕj∇ϕidx, Bi,j =

∑
e∈גh

∫
e
ρϕjϕidx.

Then we have a linear generalized eigenvalue system:{
Find λh ∈ R, x ∈ RL, and x �= 0 such that
Ax = λhBx

(3.4)
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Solving (3.4), we can get a series of approximate eigenvalues

0 < μ1 ≤ μ2 ≤ μ3 ≤ . . . ,

and their corresponding approximate eigenfunctions of problem (2.5).

4 Numerical experiments

4.1 Example 1

First we consider the eigenvalue problem (1.1)-(1.3) in exterior domain

Ωe = {x : |x| > 1},

and ρ(r, θ) =
1
r4

.

By separation of variables and condition (1.3), we have the following form of eigen-

function u(r, θ) corresponding to eigenvalue λ:

u(r, θ) = Jm(

√
λ

r
)(am cos(mθ) + bm sin(mθ)),m = 0, 1, 2, ...,

where Jm is m-order Bessel function of the first kind, and by condition (1.2), we know

λ satisfies

Jm(
√

λ) = 0,m = 0, 1, 2, ....

Solving the above equation for λ, we have a series of eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . ,

which are shown in table 1.

Table 1 Exact eigenvalue

eigenvalue λ1 λ2 λ3 λ4 λ5 λ6

value 5.7840 14.6842 14.6842 26.3785 26.3785 30.4704

Let

0 < μ1 ≤ μ2 ≤ μ3 ≤ . . .

be the approximate eigenvalues given by (3.2), then error can be defined as

error(λi) =
|μi − λi|

λi
.
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We divide domain Ωe into two parts by Γ1.2 ={x : |x| = 1.2}, one is the truncated domain

Ω1.2, the other is an exterior domain Ω∗
1.2. Let n be the numbers of infinite large elements

and

Ri = 1.2 + (i − 1)2
π

32
, i = 1, 2, ...K,

where Ri, i = 1, 2, ...K and K is defined in section 3.

On Ω1.2, interval [1, 1.2] is partitioned into
n

16
subintervals. Then we obtain a mesh

structure with n× n

16
×2 triangle elements for domain Ω1.2 and n infinite large elements

for domain Ω∗
1.2. Figure 2 shows the disretization with n = 16.

Figure 2 Discretization of disc exterior domain

Firstly let K = 3, and n varies from 16 to 128, and we get Table 2. Table 2 indicates

that at a certain point, it does not make any sense to simply refine the FE\ILE meshes.

Table 2 Numerical results with K=3

n \ error error(λ1) error(λ2) error(λ3) error(λ4) error(λ5) error(λ6)

16 0.0044 0.0184 0.0184 0.0598 0.0598 0.0153

32 0.0014 0.0079 0.0079 0.0210 0.0210 0.0140

64 0.0006 0.0053 0.0053 0.0115 0.0115 0.0137

128 0.0005 0.0046 0.0046 0.0091 0.0091 0.0136

Secondly let K = 7, and n varies from 16 to 128, and we get Table 3. Table 2

and Table 3 indicate that increasing K may improve not only the accuracy but also the

order of convergence rate.
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Table 3 Numerica results with K = 7

n \ error error(λ1) error(λ2) error(λ3) error(λ4) error(λ5) error(λ6)

16 0.00583 0.01842 0.01842 0.06044 0.06044 0.01017

32 0.00134 0.00457 0.00457 0.01524 0.01524 0.00279

64 0.00023 0.00103 0.00103 0.00372 0.00372 0.00073

128 0.00006 0.00014 0.00014 0.00082 0.00082 0.00021

Thirdly, the finite mesh is fixed as 64 × 64
16

× 2, which means we have a 64 infinite

large elements mesh.When K varies from 3 to 7, we have Table 4. From Table 4, we

can see that with more degrees of freedom in the radial direction, we may obtain more

accurate numerical results, but after a certain point, it does not make any sense to

increase degrees of freedom in the radial direction of infinite large element. That is

because the error caused by infinite large elements is not so significant as finite element

approximation error in domain Ωe.

Table 4 Numerical result when K varies from 3 to 7

n \ error error(λ1) error(λ2) error(λ3) error(λ4) error(λ5) error(λ6)

3 0.00064 0.00528 0.00528 0.01148 0.01148 0.01369

4 0.00023 0.00104 0.00104 0.00448 0.00448 0.00172

5 0.00023 0.00104 0.00104 0.00373 0.00373 0.00077

6 0.00023 0.00104 0.00104 0.00372 0.00372 0.00074

7 0.00023 0.00103 0.00103 0.00372 0.00372 0.00073

4.2 Example 2

In the following, we consider the eigenvalue problem (1.1)-(1.3) in exterior domain

Ωe = R
2\{x : |x1| ≤

√
2/2, |x2| ≤

√
2/2}

to illustrate the effectiveness of our coupling method of FE\ILE.

In our first experiment of this example, We let ρ(r, θ) = 1/r2.1. We divide domain

Ωe into two parts by Γ1.2, one is the truncated domain Ω1.2, the other is an exterior

domain Ω∗
1.2. Let 4n be the numbers of intervals in θ direction, which means we have
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4n infinite large elements. Let

Ri = 1.2 + (i − 1)2
π

32
, i = 1, 2, ...K.

Let K be 5. Figue 3 shows the disretization when n = 4. Let n = 4, 8, 16, 32, we obtain

Table 5.

Figure 3 Discretization of rectangle exterior domain

Table 5 Numerical results with ρ(r, θ) = 1/r2,1

n\ eigenvalue μ1 μ2 μ3 μ4

4 0.0276 0.6320 1.7987 1.7987

8 0.0274 0.6257 1.7788 1.7788

16 0.0274 0.6232 1.7728 1.7728

32 0.0274 0.6222 1.7710 1.7710

In second experiment of the example, let ρ(r, θ) = (1+sin2 θ)/r2.1. The disretization

of domain Ωe is the same as that in the first experiment. Let n = 4, 8, 16, 32, we obtain

Table 6.

Table 6 Numerical results with ρ(r, θ) = (1 + sin2θ)/r2.1

n\eigenvalue μ1 μ2 μ3 μ4

4 0.0184 0.4182 1.0229 1.4310

8 0.0183 0.4142 1.0116 1.4145

16 0.0183 0.4127 1.0083 1.4096

32 0.0182 0.4121 1.0073 1.4081

From Table 5 and Table 6, we can see that the coupling method of finite and infinite
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large element for eigenvalue problem does converge on rectangle exterior domain.
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