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Abstract. An augmented method is proposed for solving stationary incompressible
Stokes equations with a Dirichlet boundary condition along parts of the boundary. In
this approach, the normal derivative of the pressure along the parts of the boundary is
introduced as an additional variable and it is solved by the GMRES iterative method.
The dimension of the augmented variable in discretization is the number of grid points
along the boundary which is O(N). Each GMRES iteration (or one matrix-vector
multiplication) requires three fast Poisson solvers for the pressure and the velocity. In
our numerical experiments, only a few iterations are needed. We have also combined
the augmented approach for Stokes equations involving interfaces, discontinuities, and
singularities.
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1 Introduction

In this paper, we consider the following stationary incompressible Stokes equations:

∇p = ∇ · µ
(

∇u + (∇u)T
)

+ g(x), (x, y) ∈ [a, b] × [c, d], (1.1)

∇ · u = 0, (1.2)

u(x, c) = u1(x), u(x, d) = u2(x), (1.3)

u(a, y) = u(b, y), p(a, y) = p(b, y), (1.4)
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where u = (u, v)T is the velocity, p is the pressure, µ is the viscosity, x = (x, y) is
the Cartesian coordinate variable, u1(x) and u2(x) are two given vector functions, and
g = (g1, g2) is an external force. In other words, we have a Dirichlet boundary condition
for the velocity at the two sides y = c and y = d, and a periodic boundary condition for
all variables at x = a and x = b, see Fig. 1 for an illustration. Such Stokes equations have
many applications. In this paper, we assume that the viscosity is constant or piecewise
constant.

Note that if the viscosity is constant, then by applying the divergence operator to the
momentum equation, we get

∆p = ∇ · g, (1.5)

due to the incompressibility condition. A fast Poisson solver, e.g., Fishpack [1] can be ap-
plied to solve the pressure if the boundary condition of the pressure is Dirichlet, Neumann,
or periodic. After the pressure is solved, the velocity can be solved from

∆u =
px − g1
µ

, ∆v =
py − g2
µ

, (1.6)

by applying the same fast Poisson solver twice. This approach is called the three Poisson

equations approach. For example, if all variables (p and u) are periodic, then the stationary
Stokes equations can be solved by calling a fast Poisson solver three times.

If a Dirichlet boundary condition is prescribed for the velocity, then it is well known
that the pressure along the boundary is not a free variable and it is uniquely determined
(up to a constant) from the governing equation (1.1)-(1.4). In other words, we can not
specify the boundary condition for the pressure arbitrarily. Otherwise the problem is
over-determined. This brings some difficulties to numerical schemes using uniform Carte-
sian grids. Note that from the momentum equation, we do have a boundary condition
(1.7) for the pressure, but it is coupled with the velocity. For time-dependent Stokes or
Navier-Stokes equations, some approaches in dealing with pressure boundary conditions
are discussed in [5, 8, 15]. However, for stationary Stokes equations, one cannot use the
three fast Poisson solver approach directly because the pressure boundary condition is
coupled with the velocity as follows

∂p

∂n

∣

∣

∣

∣

y=c,y=d

=
(

µ (∆u) · n + g · n
)
∣

∣

∣

y=c,y=d
. (1.7)

In this paper, we propose a novel method by introducing an augmented variable that
is only defined along the boundary where a Dirichlet boundary condition of the velocity is
prescribed. The idea of the new method is to set ∂p/∂n as part of the unknowns, which
we call the augmented variable, along the boundary, which should satisfy the momentum
equation projected to the same boundary. Given a guess of the augmented variable, we
can solve the Stokes equations easily by calling a fast Poisson solver three times. Since the
augmented variable is defined along the boundary, we can get a small system of equations



876 Z. Li, X. Wan, K. Ito and S. R. Lubkin / Commun. Comput. Phys., 1 (2006), pp. 874-885

that can be solved efficiently using the GMRES iterative method. Each iteration requires
a fast Stokes solver with a known ∂p/∂n. The number of iterations is very small, 3 ∼ 4
for a problem with smooth solutions, and 7 ∼ 9 for an interface problem in which the
pressure is discontinuous and the velocity is non-smooth as shown in Section 3.2.

The idea of the augmented approach is from the recent research for solving incom-
pressible Stokes equations with discontinuous viscosity [12] where the authors introduce
an augmented variable to decouple the jump condition for the pressure and the veloc-
ity. While augmented approaches have been developed for elliptic interface problems or
problems defined on irregular domains in [2, 6, 7, 11, 13, 14, 17], the augmented approach
proposed in this paper provides a way to get a second order finite difference discretiza-
tion to solve the stationary Stokes equations with a prescribed velocity. Note that the
Stokes equations can also be solved as a bi-harmonic equation by introducing the vorticity
ω = ∇ × u to get −∆ψ = ω, and µ∆2ψ = −∇ × g, where ψ is the stream function.
With this, Glowinski in [3] proposed an algorithm that may bear some similarities to the
augmented method proposed in this paper. In [3], the pressure (not the normal deriva-
tive) along the boundary is introduced as a Lagrangian multiplier. The multiplier then is
coupled with another equation from the formulation of the related bi-harmonic equation
discussed in [4]. A mixed finite element method is often used to solve the system.

2 The augmented method for the pressure boundary con-

dition

Assume that we are given a pressure boundary condition, either periodic or of Neumann
type, along the four sides of the rectangle R = [a, b] × [c, d]. Then an approximation of
the pressure Pij ≈ p(xi, yj) can be obtained from the finite difference equations

Pi−1,j − 2Pi,j + Pi+1,j

h2
x

+
Pi,j−1 − 2Pi,j + Pi,j+1

h2
y

=
g1(xi+1, yj) − g1(xi−1, yj)

2hx
+
g2(xi, yj+1) − g2(xi, yj−1)

2hy
,

(2.1)

where hx and hy are the mesh spacing in the x- and y- directions, respectively. The linear
system of equations can be solved by, for example, the fast Poisson solver from Fishpack [1].
The fast solver allows Dirichlet, Neumann, and periodic boundary conditions along each
side of a rectangular domain. Once we have solved the pressure, then we can solve the
velocity from

Ui−1,j − 2Ui,j + Ui+1,j

h2
x

+
Ui,j−1 − 2Ui,j + Ui,j+1

h2
y

=
Pi+1,j − Pi−1,j

µ 2hx
−
g1(xi, yj)

µ
, (2.2)

Vi−1,j − 2Vi,j + Vi+1,j

h2
x

+
Vi,j−1 − 2Vi,j + Vi,j+1

h2
y

=
Pi,j+1 − Pi,j−1

µ 2hy
−
g2(xi, yj)

µ
, (2.3)
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where (Uij , Vij) ≈ (u(xi, yj), v(xi, yj)) is an approximation of the velocity at the grid point
(xi, yj).

2.1 Introducing the augmented variable

Assume that the velocity is prescribed along two sides y = c and y = d. The Neumann
boundary condition of the pressure is coupled with the Laplacian of the velocity which is
unknown. Therefore, we can not solve the pressure using (2.1) directly.

The idea of our new method is to set ∂p
∂n |y=c,y=d as part of the unknowns, which we

call the augmented variable

q =
∂p

∂n

∣

∣

∣

∣

y=c,y=d

, (2.4)

which should satisfy the following equation

q =
∂p

∂n

∣

∣

∣

∣

y=c,y=d

=
(

µ (∆u) · n + g · n
)
∣

∣

∣

y=c,y=d
. (2.5)

The equations (2.4)-(2.5) above, together with the Stokes equations (1.1)-(1.4), form a
closed system. Given a guess of q, we can solve the Stokes equations easily by calling a
fast Poisson solver three times. The solution will depend on q, so it can be denoted as
(p(q),u(q)), which is the solution to the original problem if (1.7) is satisfied. Note that
the choice of augmented variable is not unique. Different choices will lead to different
algorithms. Since we wish to use three fast Poisson solvers and decouple the pressure and
the velocity, it is natural to choose ∂p

∂n as the augmented variable.

In discretization, we set

Q =
[

q1 q2 · · · qM−1 qM · · · q2M−2

]T
(2.6)

to define q at (x1, c), (x2, c), · · · , (xM−1, c), and (x1, d), (x2, d), · · · , (xM−1, d). The
dimension of Q is 2M − 2 which is much smaller than MN , where M and N are the
number of grid lines in the x- and y- directions respectively.

Let us put the discrete solution {Pij(Q)}, {Uij(Q)}, and {Vij(Q)} together as a big
vector Ũ whose dimension is O(3MN). Then the discrete solution of (2.1)-(2.3) can be
written as

A Ũ +BQ = F1, (2.7)

for some vector F1 and sparse matrices A and B. The operator A corresponds to solving
three Poisson equations to get Ũ (Q) given Q.

Once we know the solution Ũ for a given Q, we can use U to get

R(Q) =

(

∂P (Q)

∂n
− µ (∆U(Q)) · n− G · n

)
∣

∣

∣

∣

y=c,y=d
(2.8)
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along the boundary y = c and y = d, or (xi, c) and (xi, d), where G is the vector formed
from g at the grid points along the two sides y = c and y = d. If ‖R(Q)‖ is smaller
than a given tolerance, then the method has already converged and Pij , Uij is a set
of approximate solutions. The computation of the residual vector R(Q), which will be
explained in the next sub-section, depends on Ũ and Q linearly. Therefore we can write

R(Q) =

(

∂P (Q)

∂n
− µ (∆U(Q)) · n −G · n

)
∣

∣

∣

∣

y=c,y=d

= S Ũ + EQ − F2, (2.9)

where S and E are two sparse matrices, and F2 is a vector. The matrices depend on the
interpolation scheme but do not need to be actually constructed in the algorithm. We
need to choose a vector Q such that (2.5) is satisfied along the two sides y = c and y = d.
If we put the two matrix-vector equations (2.7) and (2.9) together, we get

[

A B
S E

] [

Ũ

Q

]

=

[

F1

F2

]

. (2.10)

Note that Q is defined only on a set of grid points along two sides y = c and y = d, while
Ũ is defined at all grid points. The Schur complement for Q is

(E − SA−1B)Q = F2 − SA−1F1 = F̄. (2.11)

If we can solve the system above to get Q, then we can get Ũ easily. Because the
dimension of Q is much smaller than that of Ũ , we expect to get a fast algorithm for the
Stokes equations if we can solve (2.11) efficiently.

In the implementation, the GMRES iterative method [16] is used to solve (2.11). The
GMRES method only requires matrix-vector multiplication. We explain below how to
evaluate the right-hand side F̄ of the Schur complement, and how to evaluate the matrix-
vector multiplication needed by the GMRES iteration. We can see why we do not need
to form the coefficient matrix E − SA−1B explicitly.

2.2 Computing the right-hand side of the Schur complement

First we set Q = 0 and solve the system (2.1)-(2.3), or (2.7) in the discrete form, to get
Ũ (0) which is A−1F1 from (2.7). From the interpolation (2.9), we also have

R(0) = 0 −
(

µ (∆U(0)) · n + G · n
)

= S Ũ (0) + E 0 − F2 = S Ũ (0) − F2. (2.12)

Note that the residual of the Schur complement for Q = 0 is

Rs(0) = (E − SA−1B)0 − F̄ = −F̄

= −
(

F2 − SA−1F1

)

= −F2 + S Ũ (0) (2.13)

=

(

∂P (0)

∂n
− µ (∆U) · n− G · n

)

∣

∣

∣

∣

y=c,y=d

,

which is exactly the same as R(0) defined in (2.8). Therefore Rs(0) = R(0), and R(0)
gives the right-hand side of the Schur complement system with the opposite sign.
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2.3 Computing the matrix-vector multiplication

Once the system of equations for Q is determined, we use the GMRES iterative method
to solve Q. Once Q has been found, the pressure and velocity can be obtained by solving
three Poisson equations. Given an initial guess Q0, the GMRES method will produce a
sequence {Qk}. Each iteration requires the matrix-vector multiplication (E−SA−1B)Qk.
For simplification of notations, we omit the superscript k and write (E − SA−1B)Qk as
(E − SA−1B)Q.

The matrix-vector multiplication of the Schur complement system for a given Q is
obtained from the following two steps:

Step 1: Solve the Stokes system (2.1)-(2.3), or (2.7) in the discrete form, to get Ũ (Q).

Step 2: Interpolate Ũ (Q) using (2.9) to get R(Q) defined in (2.8). The procedure is
explained in the next subsection. Then the matrix-vector multiplication is

(

E − SA−1B
)

Q = R(Q) −R(0). (2.14)

This is because

(

E − SA−1B
)

Q = EQ − SA−1BQ

= EQ − S
(

A−1F1 − Ũ (Q)
) (

from (2.7)
)

,

= EQ + S Ũ (Q) − F2 + F2 − SA−1F1

= R(Q) + F̄
(

from (2.9)
)

,

= R(Q) −R(0),
(

from (2.13)
)

.

Now we can see that a matrix-vector multiplication is equivalent to solving the system
(1.1)-(1.4) with ∂p

∂n |y=c,y=d = q, or (2.7) in the discrete form, to get Ũ , and using an
interpolation scheme (2.9) to get R(Q) at the grid points along two sides y = c and y = d.

Since we know the right-hand side of the linear system of equations and the matrix-
vector multiplication of the coefficient matrix, it is straightforward to use GMRES or other
iterative methods.

In summary, the system of equations for Q can be written as

AqQ = b, (2.15)

where

b = −R(0) = −

(

∂P (0)

∂n
− µ (∆U(0)) · n− G · n

)
∣

∣

∣

∣

y=c,y=d

. (2.16)
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The coefficient matrix Aq does not need to be formed explicitly. Given a guess of Q, the
matrix-vector multiplication that is needed for the GMRES iterative method is simply

AqQ = R(Q) −R(0). (2.17)

The only question remaining is how to compute the Laplacian of the velocity along the
sides y = c and y = d, which is not trivial.

2.4 Computing the Laplacian of the velocity along a boundary for a

Dirichlet boundary condition

In this subsection, we explain how to interpolate u(q) to get the Laplacian ∆u(q) that
is needed in (2.8) along the boundary y = d. The discussion for the boundary y = c
is similar. Without loss of generality, we assume vxx = 0 along the side y = d. Since
n = (0, 1) along y = d, we just need to approximate ∆v = vxx + vyy = vyy. To compute
vyy along y = d, we make use of the incompressibility condition ux + vy = 0. From the
Taylor expansion we have

v(x, d − hy) = v(x, d) − vy(x, d)hy +
1

2
vyy(x, d)h

2
y + O(h3

y)

= v(x, d) + ux(x, d)hy +
1

2
vyy(x, d)h

2
y + O(h3

y).

(2.18)

Thus we get an approximation for vyy

vyy(x, d) ≈
2 (v(x, d− hy) − v(x, d) − ux(x, d)hy)

h2
y

. (2.19)

Note that ux(x, d) is computable since u(x, t) is given along y = d, so is its first order
derivative, v(x, d−hy) has been obtained after we have solved the three Poisson equations
for p(q), u(q), v(q) given q.

3 Numerical examples of the augmented pressure boundary

condition method

We have carried out a number of experiments to validate our new method. All the com-
putations are done on a P4 3.00GHz DELL desktop PC with 1GB memory. The compu-
tational domain is Ω = [−2, 2] × [−2, 2]. The tolerance of the GMRES iteration is set to
be 10−5.

3.1 An example of a rectangular domain

In this example, we solve the Stokes equations with a body force g. The boundary condi-
tion is periodic in the x direction. In the y direction (y = c and y = d), Dirichlet boundary
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Table 1: A grid refinement analysis for the example in Section 3.1. Second order convergence is confirmed.

n ‖En(p)‖∞ Order(p) ‖En(u)‖∞ Order(u) ‖En(v)‖∞ Order(v)

32 1.4068 10−1 4.5500 10−2 2.5701 10−2

64 3.7910 10−2 1.8918 1.1499 10−2 1.9844 6.3541 10−3 2.0161
128 9.8619 10−3 1.9426 2.8843 10−3 1.9952 1.5875 10−3 2.0009
256 2.5159 10−3 1.9708 7.2161 10−4 1.9989 3.9646 10−4 2.0015
512 6.3542 10−4 1.9853 1.8044 10−4 1.9997 9.9062 10−5 2.0008
1024 1.5967 10−4 1.9926 4.5114 10−5 1.9999 2.4759 10−5 2.0004

Table 2: The number of GMRES iterations and CPU time for the example in Section 3.1. Note that only three
iterations are needed regardless of grids.

n niter CPU Time (s) n niter CPU Time (s)

32 3 <1 256 3 1
64 3 <1 512 3 4
128 3 <1 1024 3 18

conditions for the velocity u = (u, v) are prescribed. The constructed exact solutions are

p = y ey cos
(πx

2

)

+ y sin (πx) ,

u = 4 y cos
(πx

2

)

, v = y2 π sin
(πx

2

)

.

The body force g is

g1 = −
π

2
sin

(πx

2

)

eyy + cos (πx) πy + π2 cos
(πx

2

)

y,

g2 = cos
(πx

2

)

eyy + cos
(πx

2

)

ey +
π3

4
sin

(πx

2

)

y2 − 2π sin
(πx

2

)

+ sin (πx) ,
(3.1)

which is determined from the governing Stokes equations. In Table 1 we show a grid
refinement analysis by doubling the the grid lines in each coordinate direction. The order
of convergence is defined as

Order (·) =
log

(

‖En/2 (·) ‖∞/‖En (·) ‖∞
)

log 2
. (3.2)

We clearly see second-order convergence in the maximum norm. In Table 2, we show an
efficiency analysis for the algorithm. The number of GMRES iterations is only 3 and it
is independent of the mesh size. The CPU time is also listed which indicates that our
method behaves like a fast algorithm for the Stokes equations.
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3.2 An example of an interface problem

Now we present an example of an interface problem where the source term has a singularity

g(x) +

∫

Γ

f(s) δ
(

x− X(s)
)

ds, (3.3)

where Γ ⊂ R is a C2 curve in the solution domain; δ is the Dirac delta function in two
dimensions which is defined in the distribution sense, X is a point on the interface. For this
type of problem, we have the standard Stokes equations (1.1)-(1.2) in the interior domain
excluding the interface. We define n and τ as the unit normal and tangential directions
of the interface Γ. The solutions in each sub-domain are coupled with the following jump
conditions.

[p] = f̂1,

[

∂p

∂n

]

=
df̂2

ds
, (3.4)

[u] = 0,

[

∂u

∂n

]

= f̂2 sin θ, (3.5)

[v] = 0,

[

∂v

∂n

]

= −f̂2 cos θ, (3.6)

where θ is the angle between the normal direction and the x- axis, f̂1 = f · n, f̂2 = f · τ ,
and df̂2/ds is the tangential derivative of f̂2 which is defined along the interface. The
immersed interface method has been applied to solve this type of interface problem with
the pressure boundary condition being either a periodic or an approximated Neumann
boundary condition. Given a Dirichlet, or Neumann, or periodic boundary condition for
the pressure and the velocity, the pressure and the velocity can still be solved by calling
the three Poisson solver three times. The only modification needed is to add correction
terms to the right-hand side of the finite difference equations at irregular grid points, where
the interface cuts through the standard central stencil. For example, the finite difference
equation for the pressure would be

Pi−1,j − 2Pi,j + Pi+1,j

h2
x

+
Pi,j−1 − 2Pi,j + Pi,j+1

h2
y

=
g1(xi+1, yj) − g1(xi−1, yj)

2hx
+
g2(xi, yj+1) − g2(xi, yj−1)

2hy
+ Cij ,

(3.7)

where Cij is zero at a regular grid point, and a non-zero correction term at an irregular
grid point. The correction term depends on the source density f and the geometry of
the interface (tangential and normal direction and the curvature). We refer the readers
to [9,10] on how to determine the correction terms. The emphasis of this paper is to show
that the augmented method for the pressure boundary condition works well for interface
problems as well.
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Now we present such a numerical example. We assume µ = 1.0 in the solution domain.
The interface Γ is chosen as a periodic function along the x direction

y = cos
(πx

2

)

. (3.8)

The exact solution of (u, p) is constructed as

(u, v, p) =











(

cos (πx/2) + y,
πy

2
sin (πx/2) , y

)

if y < cos (πx/2),
(

2y,
π

2
sin (πx/2) cos (πx/2) ,

π

2
sin (πx/2) + y

)

if y ≥ cos (πx/2).

(3.9)
The body force term g = (g1, g2)

T is determined from the Stokes equations

(g1, g2) =



















(

π2

4
cos (πx/2) , 1 +

π3y

8
sin (πx/2)

)

if y < cos (πx/2),

(

π2

4
cos (πx/2) , 1 +

π3

2
cos (πx/2) sin (πx/2)

)

if y ≥ cos (πx/2)

(3.10)

and the force density is

f̂1 =
π

2
sin (πx/2) , f̂2 = 1 +

π2

4
−
π2

4
cos (πx/2)2 . (3.11)

In Table 3 we show a grid refinement analysis by doubling the the grid lines in each
coordinate direction. We clearly see second order convergence in the maximum norm.
In Table 4, we show an efficiency analysis for the algorithm. The number of GMRES
iterations is only about 7 and it is independent of the mesh size. The number of iterations
is more than that in Table 1 reflecting the fact that we are solving a more difficult problem
due to the presence of the interface. The CPU time is also listed which indicates that our
method behaves like a fast algorithm for the Stokes equations. We show the solution
domain and the interface in Fig. 1(a), and the error plot of the pressure computed from a
60 by 60 grid in Fig. 1(b). While the error of the pressure is large along y = d = 2 where
the exact solution pressure is a sine function of x, the error is smooth and decreases with
h = max{hx, hy} quadratically. The error on the other side y = c = −2 is small because
pressure is a linear function.

4 Conclusions

In this paper, we proposed an augmented method for solving incompressible Stokes equa-
tions with a Dirichlet boundary condition along parts of the boundary. The main idea is
to introduce ∂p/∂n as an augmented variable along the parts of the boundary where the
Dirichlet boundary condition is known. The augmented equation is the momentum equa-
tion projected to the part of the boundary. In the discrete case, the focus is to solve the
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Table 3: A grid refinement analysis for the example in Section 3.2. Second order convergence is confirmed.

n ‖En(p)‖∞ Order(p) ‖En(u)‖∞ Order(u) ‖En(v)‖∞ Order(v)

32 6.9641 10−2 1.6940 10−2 1.3313 10−2

64 1.7424 10−2 1.9989 4.4485 10−3 1.9290 3.1352 10−3 2.0862
128 4.4292 10−3 1.9760 1.1796 10−3 1.9150 7.3526 10−4 2.0922
256 1.1082 10−3 1.9988 2.9497 10−4 1.9997 1.8091 10−4 2.0230
512 2.7856 10−4 1.9922 7.6178 10−5 1.9531 4.4888 10−5 2.0109
1024 6.9494 10−5 2.0030 1.8919 10−5 2.0095 1.1159 10−5 2.0081

Table 4: The number of GMRES iterations and CPU time for the example in Section 3.2. Note that only 7 ∼ 9
iterations are needed regardless of grids.

n niter CPU Time (s) n niter CPU Time (s)

32 9 <1 256 7 2
64 8 <1 512 7 7
128 7 <1 1024 7 28
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Figure 1: (a). Computational domain and interface for the example in Section 3.2. (b). Error plot of the
computed pressure.

augmented variable whose dimension is much smaller than those for the pressure and the
velocity by the GMRES iterative method. Each GMRES iteration (or one matrix-vector
multiplication) requires three fast Poisson solvers for the pressure and the velocity. We
have also implemented the augmented approach for Stokes equations involving interfaces.
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