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Abstract. This paper is concerned with the numerical simulation of multiphase, multi-
component flow in porous media. The model equations are based on compositional flow
with mass interchange between phases. The compositional model consists of Darcy’s
law for volumetric flow velocities, mass conservation for hydrocarbon components, ther-
modynamic equilibrium for mass interchange between phases, and an equation of state
for saturations. High-accurate finite volume methods on unstructured grids are used to
discretize the model governing equations. Special emphasis is placed on studying the
influence of gravitational effects on the overall displacement dynamics. In particular,
free and forced convections, diffusions, and dispersions are studied in separate and com-
bined cases, and their interplays are intensively analyzed for gravitational instabilities.
Extensive numerical experiments are presented to validate the numerical study under
consideration.
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1 Introduction

This paper is concerned with the numerical simulation of multiphase, multicomponent
compositional model often used in petroleum reservoirs. This model incorporates com-
pressibility, compositional effects, and mass interchange between phases. It consists of
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Darcy’s law for volumetric flow velocities, mass conservation for hydrocarbon compo-
nents, thermodynamic equilibrium for mass interchange between phases, and an equation
of state for saturations. It models important hydrocarbon recovery processes such as nat-
ural depletion or gas cycling drive for gas condensate reservoirs and miscible flooding for
volatile oil reservoirs. To understand complex thermodynamic and physical phenomena of
multiphase flow in petroleum reservoirs, it has become increasingly important to simulate
numerically such a realistic model.

A qualitative analysis of the compositional model under consideration was given in
[6, 14]. The mathematical structure of the differential system describing this model was
studied, and numerical results were given for a one-dimensional version of this model.
Three-dimensional simulations of the compositional model using finite difference and fi-
nite element methods were presented in [4,5]. In this paper, we present numerical results
for the three-dimensional compositional model using high-accurate finite volume methods
on unstructured grids, with an emphasis on the numerical study of interfacial instabilities
under gravitational forces. An implicit second-order integration scheme is exploited for
time differentiation terms, the Newton-Raphson iteration is utilized for linearization, and
the BiCGSTAB (biconjugate gradient stabilized) iterative algorithm with ILU precondi-
tioners is employed for the solution of linear systems.

Fluid flow models in porous media involve large systems of nonlinear, coupled, time-
dependent partial differential equations. An important problem in reservoir simulation
is to develop stable, efficient, robust, and accurate solution approaches for solving these
coupled equations. Essentially, there are three types of solution approaches in reservoir
simulation: the IMPES (implicit in pressure and explicit in saturation), the fully implicit,
and the sequential. The fully implicit solution approach, which is also called the simulta-
neous solution approach [7], solves all of the coupled nonlinear equations simultaneously.
This approach is stable and can take very large time steps, while its stability is maintained.
However, due to a large number of partial differential equations to solve for the composi-
tional model, this solution approach is computationally prohibitive, even on today’s most
powerful supercomputers. The sequential solution approach [10] splits the coupled system
of nonlinear governing equations of reservoir simulation up into individual equations and
solves each of these equations separately and implicitly. This approach is less stable but
more efficient than the fully implicit approach for the compositional model, and will be
investigated in our future study for this model. In the present paper, by a careful choice
of the primary unknowns an iterative IMPES solution approach is employed to solve the
system of the compositional governing equations.

As an application of the solution approach developed here, the stability of interfaces
separating fluids of different densities and viscosities in porous media is studied. By
means of experiments and, more recently, numerical simulations, the nonlinear interfacial
dynamics has been studied using a variety of physical models and geometries [9]. In many
reservoir applications, the basic instability is due to the density and viscosity contrast and
permeability (conductivity) variations. In this paper, the nonlinear evolution of interfaces
between miscible fluids of different densities is particularly analyzed. Both forced convec-
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tion (i.e., transport driven by a hydraulic gradient) and free convection (i.e., buoyancy
driven transport) are conducted to show the interfacial instability. Depending on the rel-
ative magnitude of these two forces, the mixed fluid system can be characterized by the
development of hydrodynamic instabilities causing perturbations in the hydraulic as well
as in the concentration field of the mixed flow. These instabilities are of gravitational
origin.

The rest of the paper is organized as follows. In the next section, we review the
compositional governing equations. Then, in the third section, we choose the primary
unknowns and present an iterative IMPES approach using these unknowns. In the fourth
section, we report numerical experiments. Finally, we draw some concluding remarks in
the last section.

2 Basic differential equations

We consider a compositional model under the assumptions that the flow process is isother-
mal (i.e., the constant temperature), the components form at most three phases (e.g.,
water, oil, and gas), there is no mass interchange between the water phase and the hydro-
carbon phases (i.e., the oil and gas phases), and the diffusive effects are neglected.

Let φ and k denote the porosity and permeability of the porous medium Ω ⊂ ℜ3,
and Sα, µα, pα, uα, and krα be the saturation, viscosity, pressure, volumetric velocity,
and relative permeability of the α phase, α = w, o, g, respectively. Also, let ξio and ξig

represent the molar densities of component i in the oil (liquid) and gas (vapor) phases,
respectively, i = 1, 2, . . . , Nc, where Nc is the number of components. The molar density
of phase α is given by

ξα =

Nc
∑

i=1

ξiα, α = o, g. (2.1)

The mole fraction of component i in phase α is then defined by xiα = ξiα/ξα, for i =
1, · · · , Nc and α = o, g. The total mass is conserved for each component:

∂(φξwSw)

∂t
+ ∇ · (ξwuw) = qw, (2.2a)

∂(φ[xioξoSo + xigξgSg])

∂t
+ ∇ · (xioξouo + xigξgug) = xioqo + xigqg, 1 ≤ i ≤ Nc, (2.2b)

where ξw is the molar density of water and qα stands for the flow rate of phase α at wells.
In equation (2.2), the volumetric velocity uα is given by Darcy’s law:

uα = −krα

µα
k (∇pα − ρα℘∇z) , α = w, o, g, (2.3)

where ρα is the mass density of the α-phase, ℘ is the magnitude of the gravitational
acceleration, and z is the depth. The mass flow rates of wells are given by Peaceman’s
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formulas [12]

qα =

Nw
∑

k=1

Mwk
∑

m=1

2π∆zk,m

ln(re,k,m/rc,k) + sk,m

k̄krαρα

µα
[pbh,k − pα − ρα℘(zw,k − z)] δ (x − xk,m) ,

where δ(x − xk,m) is the Dirac delta function at xk,m, Nw is the total number of wells,
Mw,k is the total number of perforated zones of the kth well, sk,m, ∆zk,m, and xk,m are
the skin factor, segment length, and central location of the mth perforated zone of the kth
well, rc,k denotes the wellbore radius of the kth well, re,k,m is the drainage radius of the
kth well at the grid block in which xk,m is located, respectively, k̄ denotes some average
of k at wells [12], and pbh,k is the bottom hole pressure of the kth well at datum zw,k.

In addition to the differential equations (2.2) and (2.3), there are also algebraic con-
straints. The mole fraction balance implies that

Nc
∑

i=1

xio = 1,

Nc
∑

i=1

xig = 1. (2.4)

In the transport process, the saturation constraint reads

Sw + So + Sg = 1. (2.5)

Finally, the phase pressures are related by capillary pressures

pcow = po − pw, pcgo = pg − po. (2.6)

Mass interchange between phases is characterized by the variation of mass distribution
of each component in the oil and gas phases. As usual, these two phases are assumed
to be in the phase equilibrium state at every moment. This is physically reasonable
since the mass interchange between phases occurs much faster than the flow of porous
media fluids. Consequently, the distribution of each hydrocarbon component into the two
phases is subject to the condition of stable thermodynamic equilibrium, which is given by
minimizing the Gibbs free energy of the compositional system [1,6]:

fio(po, x1o, . . . , xNco) = fig(pg, x1g, . . . , xNcg), (2.7)

where fio and fig, 1 ≤ i ≤ Nc, are the fugacity functions of the ith component in the oil
and gas phases, respectively.

Equations (2.2)–(2.7) provide 2Nc + 9 independent relations, differential or algebraic,
for the 2Nc + 9 dependent variables: xio, xig, uα, pα, and Sα, α = w, o, g, i = 1, . . . , Nc.
With appropriate boundary and initial conditions, there is a closed differential system for
these unknowns. For the convenience of presentation, set

pcw = pw − po, pcg = pg − po; (2.8)
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i.e., pcw = −pcow and pcg = pcgo. Moreover, for notational convenience, let pco = 0. Several
EOS (equations of state) can be used to define the fugacity functions fio and fig, such
as the Redlich-Kwong, Redlich-Kwong-Soave, and Peng-Robinson EOSs. Here we employ
the most used Peng-Robinson EOS.

Define, for α = o, g,

aα =

Nc
∑

i=1

Nc
∑

j=1

xiαxjα(1 − κij)
√

aiaj , bα =

Nc
∑

i=1

xiαbi,

where κij is a binary interaction coefficient between components i and j, and ai and
bi are empirical factors for pure component i. The interaction coefficients account for
molecular interactions between two unlike molecules. By definition, κij is zero when i
and j represent the same component, small when i and j represent components that do
not differ much (e.g., when components i and j are both alkanes), and large when i and
j represent components that are substantially different. Ideally, κij depends on pressure
and temperature and only on the identities of components i and j [15, 17].

The factors ai and bi can be computed by ai = ΩiaαiR
2T 2

ic/pic and bi = ΩibR Tic/pic,
where R is the universal gas constant (R = 0.8205), T is the temperature, Tic and pic

are the critical temperature and pressure, the EOS parameters Ωia = 0.45724 and Ωib =
0.07780,

αi =
(

1 − λi

[

1 −
√

T/Tic

])2
, λi = 0.375 + 1.542ωi − 0.27ω2

i ,

and ωi is the acentric factor for components i. The acentric factors roughly express the
deviation of the shape of a molecule from a sphere [13]. We define

Aα =
aαpα

R2T 2
, Bα =

bαpα

R T
, α = o, g, (2.9)

where the pressure pα is given by the Peng-Robinson two-parameter equation of state

pα =
RT

Vα − bα
− aα

Vα(Vα + bα) + bα(Vα − bα)
, (2.10)

with Vα being the molar volume of phase α. Introducing the compressibility factor

Zα = pαVα/(RT ), α = o, g, (2.11)

then equation (2.10) can be expressed as a cubic equation in Zα:

Z3
α − (1 − Bα)Z2

α + (Aα − 2Bα − 3B2
α)Zα − (AαBα − B2

α − B3
α) = 0. (2.12)

Now, for i = 1, . . . , Nc and α = o, g, the fugacity coefficient ϕiα of component i in the
mixture can be obtained from the equation

lnϕiα=
bi

bα
(Zα − 1) − ln(Zα − Bα)

− Aα

2
√

2Bα





2

aα

Nc
∑

j=1

xjα(1 − κij)
√

aiaj −
bi

bα



 ln

(

Zα + (1 +
√

2)Bα

Zα − (1 −
√

2)Bα

)

.

(2.13)
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Finally, the fugacity of component i is defined by

fiα = pαxiαϕiα, i = 1, . . . , Nc, α = o, g. (2.14)

The distribution of each hydrocarbon component into the fluid and vapor phases is given
by the thermodynamic equilibrium relation (2.7).

3 Iterative IMPES solution approach

When the IMPES is used within a Newton-Raphson iteration, we call it the iterative
IMPES.

3.1 Choice of primary variables

As discussed in the previous section, equations (2.2)–(2.7) form a strongly coupled system
of time-dependent, nonlinear differential equations, and algebraic constraints. While there
are 2Nc + 9 equations for the same number of dependent variables, this system can be
written in terms of 2Nc + 2 primary variables and other variables can be expressed as
functions of them. The choice of these primary variables is very important. They must
be carefully chosen so that main physical properties inherent in the governing equations
and constraints are preserved, the nonlinearity and coupling among the equations are
weakened, and efficient numerical methods for the solution of the resulting system can be
devised.

To simplify the expressions in equation (2.2), we introduce some notation. We utilize
the potentials

Φα = pα − ρα℘z, α = w, o, g. (3.1)

Also, we use the total mass variable F of the hydrocarbon system [11,16]

F = ξoSo + ξgSg, (3.2)

and the mass fractions of the oil and gas in this system

L = ξoSo/F, V = ξgSg/F. (3.3)

Note that L+V = 1. Next, instead of exploiting the individual mole fractions, we use the
total mole fraction of the components in the hydrocarbon system

zi = Lxio + (1 − L)xig, i = 1, . . . , Nc. (3.4)

Then it is easy to see, using (2.4), (3.2) and (3.3), that

Nc
∑

i=1

zi = 1, (3.5)
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and xioξoSo + xigξgSg = Fzi, for i = 1, . . . , Nc. Consequently, applying (2.3) and (3.1),
the second equation of (2.2) becomes

∂(φFzi)

∂t
−∇ ·

(

k
[

xioξokroµ
−1
o ∇Φo + xigξgkrgµ

−1
g ∇Φg

])

= xioqo + xigqg, i = 1, . . . , Nc.

(3.6)
Adding the equations in (3.6) over i and exploiting (2.4) and (3.5) give

∂(φF )

∂t
−∇ ·

(

k
[

ξokroµ
−1
o ∇Φo + ξgkrgµ

−1
g ∇Φg

])

= qo + qg. (3.7)

Equation (3.6) is the individual flow equation for the ith component (i = 1, . . . , Nc − 1)
and equation (3.7) is the global hydrocarbon flow equation.

To simplify the differential equations further, we define the transmissibilities

Tα =
ξαkrα

µα
k, Tiα =

xiαξαkrα

µα
k, α = o, g, i = 1, · · · , Nc. (3.8)

We now summarize the equations needed in the iterative IMPES. The equilibrium relation
(2.7) is recast:

fio(po, x1o, · · · , xNco) = fig(po + pcg, x1g, · · · , xNcg), i = 1, · · · , Nc. (3.9)

Using (3.8), equation (3.6) becomes

∂(φFzi)

∂t
= ∇ · (Tio∇Φo + Tig∇Φg) + xioqo + xigqg, i = 1, · · · , Nc − 1. (3.10)

Similarly, it follows from (3.7) that

∂(φF )

∂t
= ∇ · (To∇Φo + Tg∇Φg) + qo + qg. (3.11)

Next, applying the first equation of (2.2) and (3.8) yields

∂(φξwSw)

∂t
= ∇ · (Tw∇Φw) + qw. (3.12)

Finally, using (3.2) and (3.3), the saturation state equation (2.5) becomes

F
(

Lξ−1
o + (1 − L)ξ−1

g

)

+ S = 1. (3.13)

The differential system consists of the 2Nc + 2 equations (3.9)–(3.13) for the 2Nc + 2
primary unknowns: xio (or xig), L (or V ), zi, F , S = Sw, and p = po, i = 1, · · · , Nc − 1.
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3.2 The iterative IMPES

Let n > 0 (an integer) refer to a time step. For any function v of space and time, we
write vn(·) = v(·, tn), and use δ̄v to denote the time difference δ̄v = vn+1 − vn. A time
approximation at the (n+1)-th level for the system of equations (3.9)–(3.13) can be defined
as follows:

fio(p
n+1
o , xn+1

1o , · · · , xn+1
Nco ) = fig(p

n+1
g , xn+1

1g , · · · , xn+1
Ncg ), 1 ≤ i ≤ Nc, (3.14a)

1

∆t
δ̄(φFzi) = ∇ · (Tn+1

io ∇Φn+1
o + Tn+1

ig ∇Φn+1
g )

+xn+1
io qn+1

o + xn+1
ig qn+1

g , 1 ≤ i ≤ Nc − 1, (3.14b)

1

∆t
δ̄(φF ) = ∇ · (Tn+1

o ∇Φn+1
o + Tn+1

g ∇Φn+1
g ) + qn+1

o + qn+1
g , (3.14c)

1

∆t
δ̄(φξwS) = ∇ · (Tn+1

w ∇Φn+1
w ) + qn+1

w , (3.14d)

[

F
(

Lξ−1
o + (1 − L)ξ−1

g

)

+ S
]n+1

= 1, (3.14e)

where ∆t = tn+1 − tn. System (3.14) is nonlinear in the primary unknowns, and can
be linearized via the Newton-Raphson iteration, for example. For function v, we set
vn+1,l+1 = vn+1,l + δv, where l refers to the number of Newton-Raphson’s iteration and δv
represents the increment in this iteration step. When no ambiguity occurs, we will write
vn+1,l+1 and vn+1,l by vl+1 and vl, respectively (i.e., the superscript n + 1 is omitted).
Note that

vn+1 ≈ vl+1 = vl + δv,

so δ̄v ≈ vl − vn + δv. Using this approximation in system (3.14) yields

fio(p
l+1
o , xl+1

1o , · · · , xl+1
Nco) = fig(p

l+1
g , xl+1

1g , · · · , xl+1
Ncg), 1 ≤ i ≤ Nc, (3.15a)

1

∆t

[

(φFzi)
l − (φFzi)

n + δ(φFzi)
]

= ∇ · (Tl+1
io ∇Φl+1

o + Tl+1
ig ∇Φl+1

g )

+xl+1
io ql+1

o + xl+1
ig ql+1

g , 1 ≤ i ≤ Nc − 1, (3.15b)

1

∆t

[

(φF )l − (φF )n + δ(φF )
]

= ∇ · (Tl+1
o ∇Φl+1

o + Tl+1
g ∇Φl+1

g ) + ql+1
o + ql+1

g , (3.15c)

1

∆t

[

(φξwS)l − (φξwS)n + δ(φξwS)
]

= ∇ · (Tl+1
w ∇Φl+1

w ) + ql+1
w , (3.15d)

[

F
(

Lξ−1
o + (1 − L)ξ−1

g

)

+ S
]l+1

= 1. (3.15e)

We expand the potentials and transmissibilities in terms of the primary unknowns. To-
ward that end, we need to identify these unknowns. If the gas phase dominates in the
hydrocarbon system (e.g., L < 0.5), the primary unknowns will be xio, L, zi, F , S,
and p, i = 1, · · · , Nc − 1. That is, the so-called L-X iteration type is used. If the oil
phase dominates (e.g., L ≥ 0.5), the primary unknowns will be xig, V , zi, F , S, and
p, i = 1, · · · , Nc − 1, which corresponds to the V -Y iteration type. As an example, we
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illustrate how to expand the potentials and transmissibilities in terms of δxio, δL, δzi, δF ,
δS, and δp, i = 1, · · · , Nc − 1; a similar expansion can be performed for the V -Y iteration
type. For the ith component flow equation,

δ(φFzi) = cipδp + ciF δF + cizδzi, i = 1, · · · , Nc − 1, (3.16)

where cip = φocR(Fzi)
l, ciF = (φzi)

l and ciz = (φF )l, with φo being the porosity at a
reference pressure po and cR the rock compressibility. For the global hydrocarbon flow
equation,

δ(φF ) = cpδp + cF δF, (3.17)

where cp = φocRF l and cF = φl. For the water flow equation,

δ(φξwS) = cwpδp + cwSδS, (3.18)

where

cwp = φocR (ξwS)l +

(

φ
dξw

dp
S

)l

, cwS = (φξw)l .

In the iterative IMPES, all the saturation functions krw, kro, krg, pcw, and pcg are evaluated
at the saturation values of the previous time step in Newton-Raphson’s iteration, and
the densities and viscosities in the transmissibilities, phase potentials, and well terms are
computed using the previous Newton-Raphson iteration values. Thus the phase potentials
are calculated by

Φl+1
α = pl+1 + pn

cα − ρl
α℘z, α = w, o, g, (3.19)

and the transmissibilities are computed by

Tl+1
α =

ξl
αkn

rα

µl
α

k, Tl+1
iα =

xl
iαξl

αkn
rα

µl
α

k, α = o, g, i = 1, · · · , Nc. (3.20)

It follows from (3.19) that

Φl+1
α = Φl

α + δp, α = w, o, g. (3.21)

We now expand each of the equations in system (3.15). For this, we need to replace the
derivatives in xig by those in the primary variables, i = 1, · · · , Nc. Applying relation (3.4),
we see that

∂xig

∂xio
=

L

L − 1
,

∂xig

∂zi
=

1

1 − L
,

∂xig

∂L
=

xio − xig

L − 1
, i = 1, · · · , Nc.

Consequently, the chain rule implies

∂

∂xio
=

∂xig

∂xio

∂

∂xig
=

L

L − 1

∂

∂xig
,

∂

∂zi
=

∂xig

∂zi

∂

∂xig
=

1

1 − L

∂

∂xig
,

∂

∂L
=

∂xig

∂L

∂

∂xig
=

xio − xig

L − 1

∂

∂xig
.



836 Z. Chen, G. Zhou and D. Carruthers / Commun. Comput. Phys., 1 (2006), pp. 827-846

Thus, after using (2.4) and (3.5) to eliminate xNco and zNc
, the first equation in (3.15)

can be expanded as follows:

Nc−1
∑

j=1

(

wo + Llwg/(1 − Ll)
)

δxjo +
1

1 − Ll

Nc
∑

j=1

(

∂fig

∂xjg
(xjo − xjg)

)l

δL

= f l
ig − f l

io +

[

(

∂fig

∂p

)l

−
(

∂fio

∂p

)l
]

δp +
1

1 − Ll

Nc−1
∑

j=1

wgδzj , (3.22)

where,

w∗ =

(

∂fi∗

∂xj∗

)l

−
(

∂fi∗

∂xNc∗

)l

, ∗ = o, g, (3.23)

f l
io = fio(p

l
o, x

l
1o, · · · , xl

Nco) and f l
ig = fig(p

l
g, x

l
1g, · · · , xl

Ncg), for i = 1, · · · , Nc. Equation
(3.22) is used to solve for (δx1o, · · · , δx(Nc−1)o, δL) in terms of (δz1, · · · , δzNc−1, δp). Note
that this equation is linear in (δx1o, · · · , δx(Nc−1)o, δL).

Next, applying (3.16) and (3.21), it follows that, from the second equation in (3.15)
i = 1, · · · , Nc − 1,

1

∆t

[

(φFzi)
l − (φFzi)

n + cipδp + ciF δF + cizδzi

]

= ∇ · (Tl
io∇Φl

o + Tl
ig∇Φl

g) + ∇ ·
(

(Tl
io + Tl

ig)∇(δp)
)

+
(

xl
io + δxio

)

qo(δp, δpbh) +
(

xl
ig + δxig

)

qg(δp, δpbh).

(3.24)

Equation (3.24) is solved for (δz1, δz2, · · · , δzNc−1) in terms of (δF, δp, δpbh). Similarly,
from the third equation in (3.15) we see that

1

∆t

[

(φF )l − (φF )n + cpδp + cF δF
]

= ∇ · (Tl
o∇Φl

o + Tl
g∇Φl

g)

+∇ ·
(

(Tl
o + Tl

g)∇(δp)
)

+ qo(δp, δpbh) + qg(δp, δpbh),

(3.25)

which is employed to solve for δF in terms of δp and δpbh. From the fourth equation in
(3.15), (3.18) and (3.21), we have

1

∆t

[

(φξwS)l − (φξwS)n + cwpδp + cwSδS
]

= ∇ · (Tl
w∇Φl

w) + ∇ ·
(

Tl
w∇(δp)

)

+ qw(δp, δpbh). (3.26)

Equation (3.26) is utilized to obtain δS in terms of δp and δpbh. It follows from (2.11)
that

1

ξα
=

1

pα
Zα(pα, x1α, · · · , xNcα)RT, α = o, g.
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Then, applying (2.4) and (3.5), it follows from the last equation in (3.15) that

(

FLRT

p

)l Nc−1
∑

j=1

(Wo − Wg) δxjo +

(

FRT

p

)l


Zo − Zg −
Nc
∑

j=1

(

∂Zg

∂xjg
(xjo − xjg)

)l


 δL

+

(

FRT

p

)l Nc−1
∑

j=1

Wgδzj +

(

RT

p
(LZo + (1 − L)Zg)

)l

δF + δS

+

(

FRT

p

[

L
∂Zo

∂p
− LZo

p
+ (1 − L)

∂Zg

∂p
− (1 − L)Zg

p

])l

δp

= 1 − (F [L/ξo + (1 − L)/ξg] + S)l , (3.27)

where

W∗ =

(

∂Z∗

∂xj∗

)l

−
(

∂Z∗

∂xNc∗

)l

, ∗ = o, g. (3.28)

After substitution of δxjo, δL, δzj , δF and δS, j = 1, · · · , Nc−1 into (3.27) using equations
(3.22)-(3.26), the resulting equation will become the pressure equation, which, together
with the well control equations, is implicitly solved for δp and δpbh. The CVFE introduced
in the next section is applied to the discretization of equations (3.22)–(3.27).

In summary, the iterative IMPES for the compositional model has following features:

• The difference between the iterative IMPES and the classical IMPES is that the iter-
ative IMPES is used within each Newton-Raphson iteration loop, while the classical
one is utilized before the Newton-Raphson iteration procedure.

• All the saturation functions krw, kro, krg, pcw, and pco employ the previous time step
values of saturation in Newton-Raphson’s iteration.

• The densities and viscosities in the transmissibilities, phase potentials, and well
terms are computed using the previous Newton-Raphson iteration values.

• The saturation constraint equation is used to solve implicitly for pressure p.

• The equilibrium relation is solved for (x1o, · · · , x(Nc−1)o, L).

• The ith component flow equation is utilized to obtain explicitly for (z1, · · · , zNc−1).

• The global hydrocarbon flow equation is exploited to solve explicitly for F .

• The water flow equation is explicitly solved for S.

• Relation (3.4) generates (x1g, · · · , xNcg).

3.3 Solution of equilibrium relation

In this section we discuss the solution for the thermodynamic equilibrium relation (3.9),
which describes the mass distribution of each component in the oil and gas phases.
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3.3.1 Successive substitution method

The equilibrium flash vaporization ratio for component i is defined by

Ki = xig/xio, i = 1, · · · , Nc, (3.29)

where the quantity Ki is called the K-value of component i. If the iterative IMPES in the
preceding section is used (i.e., the capillary pressure pcg is evaluated at the previous time
step value of saturation in Newton-Raphson’s iteration), it follows from (2.14) that

fiα = pxiαϕiα, i = 1, · · · , Nc, α = o, g. (3.30)

Then, using (2.7), we see that xioϕio = xigϕig, i = 1, · · · , Nc. Thus, by (3.29), we have

Ki = ϕio/ϕig, i = 1, · · · , Nc, (3.31)

where the fugacity coefficients ϕio and ϕig are defined in equation (2.13).

A flash calculation is an instant phase equilibrium: Given p, T , and zi; and find L (or
V ), xio, and xig, i = 1, · · · , Nc. It follows from (3.4) and (3.29) that

Nc
∑

i=1

zi(1 − Ki)

L + (1 − L)Ki
= 0, xio =

zi

L + (1 − L)Ki
, i = 1, · · · , Nc. (3.32)

Based on (3.32), we introduce the following successive substitution method for the flash
calculation:

• Initially, Ki is evaluated by the empirical formula

Ki = pir
−1 exp

(

5.3727(1 + ωi)
[

1 − Tir
−1
])

, pir = p/pic, Tir = T/Tic.

• (F1) Given Ki and zi, find L by using the following equation:

Nc
∑

i=1

zi(1 − Ki)

L + (1 − L)Ki
= 0;

• (F2) Find xio and xig by

xio =
zi

L + (1 − L)Ki
, xig = Kixio, i = 1, . . . , Nc;

• (F3) Obtain Ki and zi by

Ki = ϕio/ϕig, zi = Lxio + (1 − L)xig, i = 1, . . . , Nc.

• Return to (F1) and iterate until convergence.
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In general, convergence of this successive substitution method is very slow. One can use
the GDEM method to accelerate the convergence in the calculation of Ki:

ln(Kj+1
i ) = ln(Kj

i ) +
ln(Kj

i ) − ln(Kj−1
i )

1 + ν
,

or equivalently

Kj+1
i = Kj

i exp

(

ln(Kj
i ) − ln(Kj−1

i )

1 + ν

)

,

where ν is the maximum characterization value

ν =

〈

ln
(

Kj
i /K

j−1
i

)

, ln
(

Kj−1
i /Kj−2

i

)〉

〈

ln
(

Kj−1
i /Kj−2

i

)

, ln
(

Kj−1
i /Kj−2

i

)〉 ,

and j indicates the iteration number. This iteration proceeds until ν is constant.
In the neighborhood of a critical point (see Section 3.3.4), ν < 0. In this case, one can

use the RISNES method to accelerate the convergence in the calculation of Ki:

Kj+1
i = Kj

i

(

Rj
i

)1/(1+κ)
, κ =

Rj
i − 1

Rj−1
i − 1

,

where Rj
i = (fio/fig)

j = (Kixio/xig)
j , i = 1, . . . , Nc. Again, this iteration proceeds until

κ is constant.

3.3.2 Newton-Raphson flash calculation

As mentioned, convergence of the successive substitution method is very slow. One can
employ the Newton-Raphson iteration in the flash calculation as in the iterative IMPES;
see (3.22). Set

Gij = wo + +
Ll

1 − Ll
wg, GiNc

=
1

1 − Ll

Nc
∑

j=1

(

∂fig

∂xjg
(xjo − xjg)

)l

,

Hi(δp, δz1, · · · , δzNc−1) = f l
ig − f l

io +

[

(

∂fig

∂p

)l

−
(

∂fio

∂p

)l
]

δp +
1

1 − Ll

Nc−1
∑

j=1

wgδzj ,

for i = 1, . . . , Nc, j = 1, . . . , Nc − 1, where w∗ is defined by (3.23). Then equation (3.22)
can be written in matrix form
















G11 G12 · · · G1,Nc−1 G1,Nc

G21 G22 · · · G2,Nc−1 G2,Nc

· · · · · · ·
GNc−1,1 GNc−1,2 · · · GNc−1,Nc−1 GNc−1,Nc

GNc,1 GNc,2 · · · GNc,Nc−1 GNc,Nc

































δx1o

δx2o

·
δx(Nc−1)o

δL

















=

















H1

H2

·
HNc−1

HNc

















. (3.33)
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This system solves for (δx1o, δx2o, . . . , δx(Nc−1)o, δL) in terms of δzi and δp. One can use
the forward Gauss elimination method to obtain an up-triangular system for (3.33).

We point out the difference between the successive substitution method and the Newton-
Raphson iteration in the flash calculation.

• The former method is easier to implement and is more reliable, even near a critical
point. However, its convergence is slower; it may take over 1,000 iterations near the
critical point.

• The latter method is faster. But it needs a good initial guess for xio and L, i =
1, . . . , Nc; moreover, this method may difficultly converge near a critical point.

• These two methods can be combined. For example, the Newton-Raphson iteration
can be utilized first, and when it is difficult to converge, the successive substitution
method is employed.

3.3.3 Derivatives of fugacity coefficients

We calculate the partial derivatives involved in the Jacobian coefficient matrix of (3.33).
First, by (3.30), one sees that, i, j = 1, . . . , Nc, α = o, g,

∂fiα

∂p
= xiαϕiα + pxiα

∂ϕiα

∂p
,

∂fiα

∂xjα
= p

∂xiα

∂xjα
ϕiα + pxiα

∂ϕiα

∂xjα
,

where
∂xiα

∂xjα
=

{

1 if i = j,

0 if i 6= j.

As a result, it suffices to find the derivatives of ϕiα, which is defined by (2.13). It follows
from (2.9) that

∂Aα

∂p
=

aα

R2T 2
,

∂Bα

∂p
=

bα

RT
, α = o, g. (3.34)

Then differentiating both sides of (2.13) gives

1

ϕiα

∂ϕiα

∂p
=

bi

bα

∂Zα

∂p
− 1

Zα − Bα

(

∂Zα

∂p
− Bα

p

)

(3.35)

− Aα

2
√

2Bα





2

aα

Nc
∑

j=1

xjα(1 − κij)
√

aiaj − bi/bα



 · 2Bα

βα

(

Zα

p
− ∂Zα

∂p

)

,

where βα = Z2
α + 2

√
2ZαBα + B2

α. Similarly, we can obtain ∂ϕiα/∂xjα using the following
expressions:

∂Aα

∂xjα
=

p

R2T 2

∂aα

∂xjα
,

∂Bα

∂xjα
=

p

R T

∂bα

∂xjα
,

∂aα

∂xjα
= 2

Nc
∑

i=1

xiα(1 − κij)
√

aiaj ,
∂bα

∂xjα
= bj,

(3.36)
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for i, j = 1, . . . , Nc, α = o, g. The Z-factors, Zα (α = o, g), are determined by equation
(2.12), which can be exploited to find their derivatives. An application of the implicit
differentiation to (2.12) yields

∂Zα

∂p
= −

{

∂Bα

∂p
Z2

α +

(

∂Aα

∂p
− 2 [1 + 3Bα]

∂Bα

∂p

)

Zα

−
(

∂Aα

∂p
Bα + γα

∂Bα

∂p

)}

/
(

2Z2
α − 2(1 − Bα)Zα + γα

)

, (3.37)

where γα = Aα − 2Bα − 3B2
α. Consequently, substitution of (3.34) into (3.37) gives

∂Zα/∂p. A similar argument, together with (3.36), computes the derivatives ∂Zα/∂xjα,
j = 1, . . . , Nc.

3.3.4 Practical considerations

We point out a few practical issues in programming.

Iteration switch. As noted, depending on the size of L, different variables, either xio

and L or xig and V , should be used in the flash calculation, i = 1, . . . , Nc. If the gas
phase dominates in the hydrocarbon system (e.g., L < 0.5), the primary unknowns will
be xio and L. If the oil phase dominates (e.g., L ≥ 0.5), the primary unknowns will be xig

and V . This choice can improve solution accuracy and convergence speed. For example,
as L gets close to one, the flash calculation may not converge. In this case, the primary
unknown needs to switch to V . In programming, the switch of iterations should be done
automatically.

Determination of bubble points. The following system of Nc +1 equations are solved
simultaneously for pressure p (bubble point pressure) and compositions xig by the Newton-
Raphson iteration:

ziϕio = xigϕig, i = 1, . . . , Nc,

Nc
∑

i=1

xig = 1. (3.38)

In the late Newton-Raphson iterations (e.g., after ten iterations), the second equation in
(3.38) can be replaced by

Nc
∑

i=1

ϕio/ϕigzi = 1. (3.39)

In the iteration process, if the successive values of pressure change less than 0.01 psi,
this iteration process is said to converge. The process fails to converge if more than 30
iterations are used or if |zi−xig| < 0.001|zi|. In the latter case, the successive substitution
method can be utilized to obtain p and xig, i = 1, . . . , Nc. A trivial solution occurs when
xig = zi for any value of p, indicating that a dew point occurs. In the Newton-Raphson
iteration, the equations in (3.38) (or (3.39)) can be expanded as in the iterative IMPES.
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Determination of dew points. The dew point pressure p and the compositions xio sat-
isfy the system of Nc + 1 equations

xioϕio = ziϕig, i = 1, . . . , Nc,

Nc
∑

i=1

xio = 1. (3.40)

Again, after ten Newton-Raphson’s iterations, the second equation in (3.40) is replaced
by

Nc
∑

i=1

ϕig/ϕiozi = 1. (3.41)

Using the same guideline as in the treatment of bubble points, if the successive values of
pressure in the iteration process change less than 0.01 psi, this process is said to converge.
The convergence fails if more than 30 iterations are employed or if |zi − xio| < 0.001|zi|.
In the latter case, the successive substitution method can be utilized to obtain p and xio,
i = 1, 2, . . . , Nc. A trivial solution occurs when xio = zi for any value of p, indicating that
a bubble point occurs.

4 Numerical results

The compositional model presented in the previous section is now applied to the numer-
ical study of the nonlinear evolution of interfaces between two miscible fluids of different
densities. Special emphasis is placed on studying the influence of free convection, forced
convection, diffusion/dispersion, and Peclet numbers on the interfacial instabilities un-
der gravitational forces. Finite volume methods are used for the spacial discretization
of the model equations, an implicit second-order integration scheme is exploited for time
differentiation terms, the Newton-Raphson iteration is utilized for linearization, and the
BiCGSTAB iterative algorithm with ILU preconditioners is employed for the solution of
linear systems. The finite volume methods used are of second-order accuracy in both time
and space for the concentrations [2].

4.1 Free convection

This is a free convection system where we start with a heavier fluid on top and a lighter
fluid in bottom (no diffusion). The initial concentrations are given in Fig. 1(a). The
physical data are: The domain Ω is a two-dimensional homogeneous medium with a no-
flow boundary condition, the permeability is 5.6e−4, the porosity is 0.38, and the relative
density and viscosity are 0.02 and 0.35, respectively. The grid-point number is of order
100 in each horizontal direction. The concentration contours at two different times are
shown in Figs. 1(b) and 1(c). From these figures, we see that the mean flow is influenced
by the average density gradients causing descent of the heavier fluid. There is also a local
region near the lower edge of the heavier fluid in which this fluid overlies the lighter one
resulting in a system that is gravitational unstable.
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(a) Initial time (b) A later time (c) Another later time

Figure 1: Concentration for a free convection system in three different times.

(a) Time 1. (b) Time 2. (c) Time 3.

Figure 2: Concentration for a forced convection system in three different times.

(a) Time 1. (b) Time 2. (c) Time 3

Figure 3: Concentration for a forced convection/dispersion system in three different times.
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(a) Porosity (b) Horizontal permeability (c) Vertical permeability

Figure 4: Porosity, horizontal and vertical permeability.

(a) Time 1. (b) Time 2.

Figure 5: Concentration for a three-dimensional heterogeneous medium in two different times.

4.2 Forced convection

This is a forced convection system where we inject a heavier component into a fluid which
consists entirely of a lighter component without diffusion. The physical data are the same
as in the free convection case except that the left and right boundaries are now given with
a constant velocity. Three concentration contours at three different times are illustrated
in Fig. 2. The interfacial instabilities are of the form of lobe-shaped protuberances that
manifested themselves near the lower edge of the plume. As they develop spatially and
temporally, they penetrate deeper and deeper into the plume, resulting in considerable
modification to the overall dispersion.
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4.3 Forced convection plus dispersion

This is now a forced convection system with dispersion. The Peclet number (character-
istic speed and length divided by diffusion/dispersion) equals 5,000, and the longitudinal
and transverse dispersion coefficients are, respectively, 0.031e−2 and 0.00217e−2 . Three
concentration contours at three different times are presented in Fig. 3.

There are two basic processes operating to transport chemical species. Diffusion is
the process by which both ionic and molecular species dissolved in a fluid phase (e.g.,
water) move from areas of higher concentration (i.e., chemical activity) to areas of lower
concentration. Advection is the process by which the moving fluid phase carries with
it dissolved species. The process of dispersion acts to dilute the species and lower its
concentration of movement so that it may not move as fast as the advection rate indicates.

If the transverse dispersion is too low, the movement remains narrow and stable. On
the other hand, if the value is too high, the movement spreads rapidly and again remains
stable. It is only at some intermediate values between these two extremes that instability
appears.

4.4 Forced convection in a heterogeneous porous medium

In the last example, we simulate a forced convection system with dispersion in a three-
dimensional heterogeneous porous medium. The physical data are: A no-flow boundary
condition is imposed at the bottom of the domain, all other boundaries are of Dirichlet
type, the Peclet number is 5,000, the relative density and viscosity are 0.02 and 0.35,
and the longitudinal and transverse dispersion coefficients are 0.031e−2 and 0.00217e−2 ,
respectively. The porosity, the horizontal and vertical permeabilities are shown in Fig. 4.
Two concentrations in three dimensions are presented in Fig. 5. Observations similar to
those made in the previous example can be made here.

5 Concluding remarks

The main contributions of this paper are to develop an iterative IMPES solution ap-
proach for the numerical simulation of three-dimensional, multiphase, multicomponent
compositional flow in porous media, to apply it for the study of the nonlinear evolution of
interfaces between miscible fluids of different densities, and to develop a high-order finite
volume method for numerical solution of the compositional model. Extensive numerical
experiments have been presented. Fluid mixing is the process of diffusion across inter-
facial surfaces to produce fluid of intermediate density and is irreversible. Instability is
governed by the magnitude of the horizontal flow velocity, fluid injection rate, and the
density difference. Density differences influence the flow primarily by establishing a nar-
row gravity layer in which the effective Peclet number is enhanced owing to the higher
flow rate. However, buoyancy forces of a certain magnitude can lead to a pinch-off of the
gravity layer, thereby slowing it down. Overall, an increase of the gravitational parameter
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is found to enhance mostly the vertical perturbation, while larger Peclet values act towards
amplifying horizontal disturbances.
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