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Abstract. Are extensions to continuum formulations for solving fluid dynamic prob-
lems in the transition-to-rarefied regimes viable alternatives to particle methods? It
is well known that for increasingly rarefied flow fields, the predictions from continuum
formulation, such as the Navier-Stokes equations lose accuracy. These inaccuracies are
attributed primarily to the linear approximations of the stress and heat flux terms in the
Navier-Stokes equations. The inclusion of higher-order terms, such as Burnett or high-
order moment equations, could improve the predictive capabilities of such continuum
formulations, but there has been limited success in the shock structure calculations, es-
pecially for the high Mach number case. Here, after reformulating the viscosity and heat
conduction coefficients appropriate for the rarefied flow regime, we will show that the
Navier-Stokes-type continuum formulation may still be properly used. The equations
with generalization of the dissipative coefficients based on the closed solution of the
Bhatnagar-Gross-Krook (BGK) model of the Boltzmann equation, are solved using the
gas-kinetic numerical scheme. This paper concentrates on the non-equilibrium shock
structure calculations for both monatomic and diatomic gases. The Landau-Teller-Jeans
relaxation model for the rotational energy is used to evaluate the quantitative difference
between the translational and rotational temperatures inside the shock layer. Variations
of shear stress, heat flux, temperatures, and densities in the internal structure of the
shock waves are compared with, (a) existing theoretical solutions of the Boltzmann so-
lution, (b) existing numerical predictions of the direct simulation Monte Carlo (DSMC)
method, and (c) available experimental measurements. The present continuum formu-
lation for calculating the shock structures for monatomic and diatomic gases in the
Mach number range of 1.2 to 12.9 is found to be satisfactory.
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1 Introduction

The classification of the various flow regimes based on the dimensionless parameter, the
Knudsen number, is a measure of the degree of rarefaction of the medium. The Knudsen
number Kn is defined as the ratio of the mean free path to a characteristic length scale of
the system. In the continuum flow regime where Kn < 0.001, the Navier-Stokes equations
with linear relations between stress and strain and the Fourier’s law for heat conduction
are adequate to model the fluid behavior. For flows in the continuum-transition regime
(0.1 < Kn < 1), the Navier-Stokes equations are known to be inadequate. This regime is
important for many practical engineering problems, such as the simulation of microscale
flows [12] and hypersonic flow around space vehicles in low earth orbit [15]. Hence, there
is a strong desire and requirement for accurate models which give reliable solutions with
lower computational costs. The Boltzmann equation describes the flow in all flow regimes;
continuum, continuum-transition and free molecular.

The numerical techniques available for solving the Boltzmann equation can be classi-
fied into particle methods and continuum methods. The direct simulation Monte Carlo
(DSMC) [7] falls in the category of particle methods. The DSMC method is a widely used
technique in the numerical prediction of low density flows. However, in the continuum-
transition regime, where the density is not low enough, the DSMC requires a large number
of particles for accurate simulation, which makes the technique expensive both in terms
of the computation time and memory requirement. At present, the accurate modeling
of realistic configurations, such as aerospace vehicles in three dimensions by the DSMC
method for Kn << 1, is beyond the currently available computing power. Alternative
methods, which solve the Boltzmann or model equations directly with the discretization
of the phase space [3, 18], have attracted attentions in recent years.

Among continuum solution methodologies, there are primarily two approaches: (1)
the Chapman-Enskog method [9], and (2) the method of moments [13]. In the Chapman-
Enskog method, the phase density is expanded in powers of the Knudsen number, the
zeroth-order expansion yielding the Euler equations, the first-order results in the equations
of Naver-Stokes and Fourier, the second order the Burnett equations, and the third order
expansion the so-called super-Burnett equations. It is well recognized that the equations
of Navier-Stokes and Fourier cease to be accurate for Knudsen number above 0.1, and
one might theorize that the Burnett and Super-Burnett equations are valid for larger
Knudsen numbers. Unfortunately, the higher-order equations are shown to be linearly
unstable for processes involving small wavelengths, or high frequencies, and thus cannot
be used in numerical simulations [8]. In recent years, several authors presented augmented
forms of the Burnett equations containing additional terms of the super-Burnett order as
a way of stabilizing the Burnett equations [35], the BGK-Burnett equations [4], or the
regularized hyperbolic equations through relaxation, reproducing the Burnett equations
when expanded in Kn [16].

In the method of Grad, the Boltzmann equation is replaced by a set of moment equa-
tions which are the first order partial differential equations for the moments of the dis-



Xu and Josyula / Commun. Comput. Phys., 1 (2006), pp. 425-448 427

tribution function. The actual number of moments needed depends on the process being
considered, but experience shows that the number of moments had to be increased with
increasing Knudsen number [23]. Since the moment equations are hyperbolic, the Grad
method leads to a shock structure with spurious sub-shocks for Mach numbers greater
than 1.65. It is interesting to note that a close connection between the Grad’s moments
method and the Burnett and Super-Burnett equations has been established. [29]. Fur-
ther, Struchtrup and Torrilhon regularized Grad’s 13 moment equations with the help of
the Burnett equations and successfully applied the method to the shock structures up to
Mach 3 of a monatomic gas [21]. However, at the current stage of research, a system-
atic development of a continuum method for monatomic and diatomic gas for the highly
non-equilibrium flow inside the shock structure is not in place. For the solution of the
structure of the shock wave, the following statement in [23] may still be true: “this is a

long-standing problem in gas dynamics and it has been ’proved’ several times that the

method of moments cannot solve it, because the smooth shock structure breaks down at

finite Mach numbers”.
The goal of this study is to develop a continuum formulation for low density rarefied

gas flows. The continuum model developed in the present study will be used to solve
non-equilibrium shock structures for monatomic and diatomic gases in the Mach number
range of 1.2 to 12.9. In what follows, Section 2 provides details on the construction of the
current continuum model and Section 3 presents the numerical method for solving this
model. This is followed by the results and discussion of the shock structure calculations
presented in Section 4. This final section of the paper are the concluding remarks.

2 Equilibrium and non-equilibrium continuum models

2.1 Translational and rotational temperature equilibrium model

The Boltzmann equation expresses the behavior of a many-particle kinetic system in terms
of the evolution equation for a single particle gas distribution function. The simplification
of the Boltzmann equation given by the BGK model is formulated as

∂f

∂t
+ u · ∂f

∂x
=
f eq − f

τ
, (2.1)

where f is the number density of molecules at position x and particle velocity u at time
t. The left hand side of the above equation represents the free streaming of molecules
in space, and the right side denotes the collision term. If the distribution function f
is known, macroscopic variables, such as mass, momentum, energy and stress, can be
obtained by integration over the moments of molecular velocity. In the BGK model, the
collision operator involves simple relaxation to a state of local equilibrium, the distribution
function given by f eq with a characteristic time scale τ . The equilibrium state is given by
a Maxwellian,

f eq = ρ(
λ

π
)

K+3

2 e−λ((u−U)2+ξ2),
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where ρ is the density, U the macroscopic fluid velocity, and λ = m/2kT , where m is the
molecular mass, k the Boltzmann constant, and T the temperature. For an equilibrium
flow, the internal variable ξ accounts for the rotational and vibrational modes, such as
ξ2 = ξ21 + ξ22 + · · · + ξ2K , and the total number of degrees of freedom K is related to the
specific heat ratio γ. In the current paper, we only consider cases, where K = 0 for the
monatomic gas and K = 2 for the diatomic gas with two rotational degree of freedom. The
relation between mass ρ, momentum ρU, and energy densities ρE with the distribution
function f is

(ρ, ρU, ρE)T =

∫
ψαfdudξ, (2.2)

where ψα is the component of the vector of moments ψ = (1,u, 1
2(u2 + ξ2))T , and the

volume element in the phase space with du = dudvdw and dξ = dξ1dξ2...dξK . Since
mass, momentum and energy are conserved during particle collisions, f and f eq satisfy
the conservation constraint, ∫

(f eq − f)ψαdudξ = 0, (2.3)

at any point in space and time.
The BGK model was originally proposed to describe the essential physics of molecu-

lar interactions with τ chosen as the molecular collision time. Although the BGK model
appears to describe only weak departures from local equilibria, it has long been recog-
nized that such an approximation works well beyond its theoretical limits as long as the
relaxation time is known for the physical process. Based on the above BGK model, the
Navier-Stokes equations can be derived with the Chapman-Enskog expansion truncated
to the 1st-order as,

f = f eq + Knf1 = f eq − τ(∂f eq/∂t+ u · ∂f eq/∂x). (2.4)

For the Burnett and super-Burnett solutions, the above expansion can be naturally ex-
tended [25], such as f = f eq + Knf1 + Kn

2f2 + Kn
3f3 + ....

Based on Eq.(2.4) and the BGK model for the continuum flow limit of the Navier-Stokes
equations, the stress and Fourier heat conduction terms can be derived. The Navier-Stokes
equations for the monatomic gas in the one-dimensional case can be written as,




ρ
ρU
ρE





t

+




ρU

ρU2 + p
(ρE + p)U





x

=




0

4
3µUx

5
2µRTx + 4

3µUUx





x

,

where µ = τp is the dynamic viscosity coefficient. With the relation λ = m/2kT and
Cp = 5k/2m for a monatomic gas, the heat conduction coefficient in the above equations
becomes κ = 5kµ/2m, and the Prandtl number becomes a fixed value Pr = µCp/κ = 1.
This is a well-known result for the BGK model. One way to modify Pr in the kinetic
scheme for the above continuum equations will be presented in Section 3. Based on
Eq.(2.4), the stress tensor and heat conduction terms can be derived for a diatomic gas
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for the translational and rotational modes in equilibrium. In the one dimensional case,
the Navier-Stokes equations become




ρ
ρU
E





t

+




ρU

ρU2 + p
(E + p)U





x

=




0

8
5µUx

7
2RµTx + 8

5µUUx





x

, (2.5)

where the bulk viscosity (4/15)τp to account for the relaxation of the rotational degree
of freedom is included in the above formulation [32]. The detail derivation of the above
equations can be found in the Appendix. Instead of solving the above Navier-Stokes
equations, our numerical procedure implements a finite volume scheme for the viscous flow
calculation, constructed directly from the time evolution of the continuum gas distribution
function in Eq.(2.4) [33].

2.2 Non-equilibrium rotational and translational temperatures model

It is well recognized that the standard form of Navier-Stokes equations with the bulk
viscosity given by the Stokes hypothesis, cannot properly describe the non-equilibrium
flow. In the general case of non-equilibrium, temperatures for the translational and rota-
tional energy modes will be different. In this subsection, we will discuss implementation
of the non-equilibrium rotational relaxation model into the BGK model. The modeling of
translational non-equilibrium through the generalization of transport coefficients will be
presented in the next subsection.

In general, based on the above-mentioned BGK model, for a diatomic gas we assume
two temperatures, one for translational and the other for rotational.

f eq = ρ(
λt

π
)

3

2 (
λr

π
)e−λt(u−U)2−λrξ2

, (2.6)

where ρ is the density, λt = m/2kTt is related to the translational temperature Tt, and
λr = m/2kTr to the rotational temperature Tr. The nitrogen molecule has two rotational
degrees of freedom ξ2 = ξ21 + ξ22 . The relation between mass ρ, momentum ρU, total
energy ρE, and rotational energy ρEr densities with the distribution function f is

W = (ρ, ρU, ρE, ρEr)
T =

∫
ψfdudξ,

where ψ has the components

ψ = (1,u,
1

2
(u2 + ξ2),

1

2
ξ2)T .

Only the mass, momentum and total energy are conserved during particle collisions, so f
and f eq are said to satisfy the condition

∫
(f eq − f)ψαdudξ = S = (0, 0, 0, s)T , α = 1, 2, 3, 4. (2.7)
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From the BGK model, taking the moment of the rotational variables ξ2, the source term s
for the rotational energy can be obtained as, s = ρ(Eeq

r −Er)/τ . Here τ is the relaxation
time for rotational energy to reach equilibrium, which will be generalized in section 3 using
the Landau-Teller-type model, sometimes referred to as the Jeans equation, to account
for the longer relaxation time for the rotational non-equilibrium through the rotational
collision number ZR. The equilibrium energy ρEeq

r in the above equation is determined
by Tr = Tt = T ,

ρEeq
r = ρ/λeq and λeq =

5

4

ρ

ρE − 1
2ρU

2
.

For a flow with different translational Tt and rotational Tr temperatures, the mass, mo-
mentum, total energy, and the rotational energy equations in 1D case are obtained as,





ρ
ρU
ρE
ρEr





t

+





ρU
ρU2 + p

(ρE + p)U
ρErU





x

=





0
0
0

3ρ
5τR(Tt − Tr)



 ,

where ρE = (1/2)ρ(U2 + 3RTt + 2RTr) is the total energy, ρEr = ρRTr is the rotational
energy. The pressure p is related to the translational temperature using the ideal gas law,
p = ρRTt. For Tt = Tr, the above equations revert to the Euler equations for a diatomic
gas.

Using the BGK model with the thermodynamic state as in Eq.(2.6) and the Chapman-
Enskog expansion up to the 1st order,

f = f eq + Knf1 = f eq − τ(∂f eq/∂t+ u · ∂f eq/∂x). (2.8)

the macroscopic Navier-Stokes continuum equations in 1D case can be derived,





ρ
ρU
ρE
ρEr





t

+





ρU
ρU2 + p

(ρE + p)U
ρErU





x

(2.9)

=





0
3
4τpUx − 2

5ρR(Tt − Tr)
4
3τpUUx + τρRTt(Tr)x + 5

2τρRTt(Tt)x − 2
5ρRU(Tt − Tr)

τp(Tr)x + 3
5ρRU(Tt − Tr)





x

+





0
0
0

3ρ
5τR(Tt − Tr)



 .

Instead of using the bulk viscosity term as in Eq.(2.5), the relaxation term is obtained in
the above equations to model the non-equilibrium process. In the limiting case of small
departures from equilibrium, we have

Tt − Tr = −2

3
τTUx,
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and the normal bulk viscosity term can be exactly recovered, given by

−2

5
ρR(Tt − Tr) =

4

15
τpUx.

As discussed in section 4, the assumption of small departures from equilibrium is not valid
inside the shock layer, hence the above governing equations with a relaxation term are
more physically meaningful. However, instead of solving the nonlinear system (2.9), the
kinetic equation with the distribution function truncated to the Navier-Stokes order (2.8)
will be directly used in the numerical scheme for the solution of Eq.(2.9).

From the above relaxation model, we can see that the bulk viscosity is not a physical
property of a gas, but rather, an approximation designed to simulate the effect of thermal
relaxation when the governing equations are cast in terms of a single temperature. This
approximation is based on the assumption that the time scale of the macroscopic gas
motion is much larger than the relaxation time for the rotational equilibrium. This is a
good approximation only for low Knudsen number flows.

When the characteristic time for rotational relaxation is much longer than that of
translational in the shock layer where the characteristic flow time is of the order of particle
collision time, the Landau-Teller-Jeans model was used to account for the relaxation of
rotational energy [20]. For the translation temperature below 1400K in a nitrogen gas
which is of interest here, the use of a single rotational temperature and the Landau-Teller-
Jeans model for rotational relaxation is assumed to be adequate in the present study.
Then, the source term is defined as

S =

(
0, 0, 0,

3ρR

5ZRτ
(T t − T r)

)
, (2.10)

and the value ZR for a certain diatomic molecule depends on the temperature [19]. The
rotational collision time multiplied by a rotational collision number ZR models the relax-
ation process for the rotational energy to equilibrate with the translational energy. For the
nitrogen gas, absorption measurements of ultrasonic sound yielded a value of ZR equal to
5.26 [14] and 5.5 [2], while shock wave measurements using the electron-beam fluorescence
technique [27] have yielded ZR = 5 at the room temperature. Determining the value of
ZR by theoretical and experimental means is an active research area [26] and is beyond
the scope of the present work.

2.3 Generalization of constitutive relationships for translational non-

equilibrium

In the past two decades, the extended hydrodynamics approach for the non-equilibrium
flow consisted of the inclusion of higher-order terms resulting in the Burnett or Super-
Burnett equations, or regularizing the moment equations. Currently, however, the most
successful method to accurately match the experimental data for both monatomic and
diatomic gases is the DSMC method. The DSMC method primarily consists of two steps,
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i.e., free transport and collision within each computational cell. The determination of
the transport coefficients in the DSMC method is based on the particle collision model,
which is actually constructed from the well-defined theories developed for continuum flow
models. The collision models of the particle cross section and the probability for each
collision pair can be used for recovering the dissipative coefficients in the Navier-Stokes
limit. For example, the commonly used DSMC’s variable hard sphere (VHS) molecular
model can be used to recover the first-order Chapman-Enskog expansion with viscosity
coefficient µ = µref (T/Tref )ω. This is of the Navier-Stokes order. When DSMC method is
extended to highly non-equilibrium flow calculation, besides the intrinsic conservation of
mass, momentum, and energy, the relation between the collision model and the viscosity
coefficient adjusts itself to correspond to the physical processes occurring in the flow field
through the particle transport mechanism, thereby resulting in a shock structure more
accurate than that with the Navier-Stokes equations. Therefore, the capability for the

DSMC to simulate rarefied flow is due to the particle transport process, such as the

duration between collisions or the control of physical collision time, instead of collision

model inside each computational cell. Traditionally, it is noted that the concepts and
measurements of the dissipative coefficients are limited to the continuum flow regime.
A generalized mathematical formulation of the stress and heat flux under rarefied flow
conditions has not been developed so far. Similarly, when we extend the continuum models
to the non-equilibrium flow in the transition and rarefied regimes, we now face the need to
figure out the effect of translational non-equilibrium, such as the particle collision time, on
the viscosity and heat conduction coefficients in these flow regimes. This generalization
could be based on the kinetic equation that is valid for all flow regimes, and further,
it is preferable to have a closed solution of the kinetic equation instead of a truncated
expansion.

Our present model is based on the existence of the closed solution of the BGK model,
which is assumed to be

f = f eq − τ∗(∂f
eq/∂t+ u · ∂f eq/∂x), (2.11)

where τ∗ is the parameter to be determined. The difference between the above solution and
the first-order Chapman-Enskog expansion (2.4) and (2.8) is that a generalized collision
time τ∗ is introduced. Substituting the above equation into the BGK model (2.1), we can
obtain the relation between the generalized particle collision time τ∗ and the collision time
τ , which is well-defined in the continuum flow regime,

τ∗ =
τ(1 −Dτ∗)

1 + τ(D2f eq/Df eq)
, (2.12)

where D = ∂/∂t+ u · ∂/∂x. To the leading order, a simplified local collision time,

τ∗ =
τ

1 + τ(D2f eq/Df eq)
, (2.13)
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is used in the computation in this paper. Both Eq.(2.12) and (2.13) have been used in
a monatomic shock structure calculation and no difference in the simulation results has
been found. In the continuum flow regime, τD2f eq/Df eq ∼ Kn is expected to be small
and τ∗ reverts back to τ , determined from τ = µ/p. The dynamic viscosity coefficient µ
can be obtained experimentally or theoretically as in Sutherland’s law. In order to remove
the dependence of the collision time τ∗ on the individual molecular velocity, D2f eq/Df eq

can be evaluated by taking moment φ, as
∫
φD2f eqdudξ/

∫
φDf eqdudξ in our numerical

examples of shock structure calculations. Since the stress and heat conduction terms
are resulting from the moments of the gas distribution function, different from earlier
approaches [34], the value of τ∗ in the viscosity term τ∗p and heat conduction coefficient
τ∗pCp/Pr are obtained separately from different moments; φ1 = (u−U)2 for the viscosity
coefficient and

φ2 = (u− U)[(u − U)2 + ξ2]

for the heat conduction coefficient. Since both D2f eq and Df eq involve higher spatial
and temporal derivatives of an equilibrium gas distribution function, a nonlinear limiter
is imposed on the evaluation of τ∗,

τ∗ =
τ

1 + max[−0.5, τ min((D2f eq/Df eq), 0)]
. (2.14)

There are two ways to understand the function of the above limiter. Firstly, since there
are several terms involved in D2f eq/Df eq, the numerical evaluation of the ratio will be
sensitive to the numerical error and large fluctuations will be generated, especially close
to the upstream and downstream region, where both 1st and 2nd derivatives both tend to
vanish. Secondly, the linear relation between stress and strain and Fourier is physically
correct for the small distortion of fluid element or temperature gradients. As the strain
and temperature gradients become large, the linear relationship will need to be adjusted
dynamically. The dynamic limiter not only guarantees the positivity of the particle col-
lision time, but also imposes τ∗ ≥ τ everywhere. This generalization and the use of the
dynamical limiter is important to pass the test of Elliott [11] that the physical stress (∼ τ∗)
inside the shock layer should be larger than the stress (∼ τ) defined in the Navier-Stokes
equation. Since the Navier-Stokes relations are not globally valid even in the weakest of
shock waves [11], the above limited particle collision time presents a novel methodology
to develop nonlinear constitutive relations. One of the reasons for the success of modern
shock capturing scheme for the discontinuous solutions is the introduction of the nonlin-
ear limiter on the spatial gradients. Analogously, we introduce a dynamic limiter here
for the stress and Fourier terms. The above generalization of the viscosity and heat con-
duction coefficients to the rarefied regime is through kinetic equation and its solution is
supplied to the macroscopic flow evolution equations. Numerically, for the shock structure
calculations in this paper, the limiters will take place occasionally close to the upstream
and downstream regions. Most time, the limiter is not in action in the interesting non-
equilibrium part of the flow. Philosophically, this is a good example for the multi-scale
methodology, which has been studied extensively recently [10].
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3 Finite volume gas-kinetic method

The continuum model developed in the previous section is solved based on the gas-kinetic
BGK scheme [33]. It is a conservative finite volume method, and the numerical fluxes at
cell interfaces are evaluated based on the time-dependent gas distribution function,

f = f eq − τ∗(∂f
eq/∂t+ u · ∂f eq/∂x) + t

∂f eq

∂t
. (3.1)

The relation between τ∗ and τ is given in Eq.(2.13), where τ = µ/p and µ is given by the
Sutherland’s law.

In 1D case, for a diatomic gas the equilibrium state f eq with translational and rota-
tional temperature is

f eq = ρ(
λt

π
)3/2(

λr

π
) exp

(
−λt(u − U)2 − λrξ

2
)
. (3.2)

The expansion ∂f eq/∂x can be expressed as

∂f eq

∂x
= (a1 + a2u + a3u

2 + a4ξ
2)f eq = af eq.

Here, all the coefficients can be explicitly determined by relating the microscopic and
macroscopic variables at the cell interface, i.e., W=

∫
ψf eqdudξ and ∂W/∂x=

∫
ψaf eqdudξ,

where W = (ρ, ρU, ρE, ρEr)
T are the macroscopic flow variables. The temporal varia-

tion of ∂f eq/∂t can be expanded similarly as a spatial expansion and the corresponding
coefficients can be obtained from the compatibility condition for the Chapman-Enskog
expansion, i.e., ∫

ψ(∂f eq/∂t+ u · ∂f eq/∂x)dΞ = 0.

The numerical method developed for Eq.(2.9) is a finite volume method,

Wn+1
j = Wn

j +
1

∆x

∫ ∆t

0
(Fj−1/2(t) − Fj+1/2(t))dt + Sn

j ∆t, (3.3)

where Wn
j is the cell averaged mass, momentum, total energy, and rotational energy, and

Fj+1/2 are the corresponding fluxes at a cell interface, evaluated using the solution (3.1),

F =

∫
uψfdudξ.

Note that ∆t is the time step ∆t = tn+1 − tn, and Sn
j is the source term for the rotational

energy, given in Eq.(2.10). For a monatomic gas, a similar scheme based on the distribution
function without the rotational degrees of freedom can be constructed as well. In this
case, the source term in Eq.(2.10) is zero. For a diatomic gas, the main difference between
the current non-equilibrium kinetic method, the so-called extended NS solver, and the
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Figure 1: M = 1.2 argon shock structure for hard sphere gas. Boltzmann solution [24] vs. extended continuum
model.

equilibrium BGK-NS method in [33] is that two temperatures Tt and Tr are used with a
generalized particle collision time τ∗ in the current non-equilibrium kinetic method.

In order to simulate the flow with a realistic Prandtl number, a modification of the
heat flux in the energy transport, such as that used in [33], is also implemented in the
present study.

4 Non-equilibrium shock structure

One of the simplest and most fundamental gas dynamic phenomena that can be used
for the model validation is the internal structure of a normal shock wave. There are
mainly two reasons for this. Firstly, the shock wave represents a flow condition that is
far from thermodynamic equilibrium, and secondly shock wave phenomena is unique in
that it allows one to separate the continuum differential equations of fluid motion from
the boundary conditions that would be required to complete a well-posed problem. The
boundary conditions for a shock wave are simply determined by the Rankine-Hugoniot
relations. Thus, in the study of shock structure, one is able to isolate effects due to the
differential equations themselves.

To illustrate the performance of the generalized continuum formulation, henceforth
known as the extended NS method, we present some results in the shock structures from
the continuum cases to highly non-equilibrium cases. Besides the mass density and tem-
perature distributions, the stress and heat flux will also be presented in some cases. The
solutions based on the new formulation are compared for both monatomic and diatomic
gases, where applicable, with the exact solution of the Boltzmann equation [24], DSMC
results [6], and experimental measurements [1, 27].
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Figure 2: M = 2.0 argon shock structure for hard sphere gas. Boltzmann solution [24] vs. extended continuum
model.
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Figure 3: M = 3.0 argon shock structure for hard sphere gas. Boltzmann solution [24] vs. extended continuum
model.

4.1 Shock structure in monatomic gas

First we present test cases on the shock structure for a monatomic gas with the nonequi-
librium limited to the translational energy mode. Comparisons of our results are made
with DSMC solutions and the theoretical solution of the full Boltzmann equation obtained
by Ohwada for the hard sphere molecules up to Mach number 3 [24]. For the hard sphere
molecules, the viscosity coefficient τ ∼ µ ∼ T 0.5, where the x-coordinate is normalized
by

√
πl0/2 and l0 is the mean free path of the gas molecules at the upstream condition.

Figs. 1-3 show the density, temperature, stress and heat flux of an argon shock structure
for Mach numbers 1.2, 2.0, and 3. Comparisons of the current extended continuum model
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Figure 4: M = 8 argon shock structure for µ ∼ T 0.68 gas. DSMC solution [6] vs. extended continuum model.

are made with the solutions of the Boltzmann equation. For all the Mach numbers pre-
sented, the results from the direct Boltzmann solver and the current extended continuum
method have good agreement. It is noteworthy that the predicted stress from the dis-
cretized particle velocity Boltzmann solver of Beylich [5] (not shown in the figures) does
not have as good of a match with the Boltzmann solution. At Mach number 1.2, where
the local Knudsen numbers are less than 0.02, as expected, the standard Navier-Stokes
equations suffice.

For the Mach 8 argon shock structure, Bird’s [6] DSMC method using an inverse 11th

power repulsive potential, µ ∼ T 0.68, gave a good agreement with the experimental profile
of Schmidt [28]. Fig. 4 shows the solution of temperature, density, heat flux, and stresses
from the current extended continuum model compared with Bird’s DSMC solutions. For
this Mach 8 case, the shock thickness and the separation distance between the density and
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Figure 5: M = 8 argon shock structure for µ ∼ T 0.75and ∼ T 0.81 gas. DSMC solution [7] vs. extended
continuum model.
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Figure 6: M = 11 nitrogen shock structure.
DSMC solution vs. extended continuum model.

x/λ1

d
e

n
si

ty
a

n
d

te
m

p
e

ra
tu

re
s

-10 0 10

0

0.2

0.4

0.6

0.8

1

1.2

(ρ-ρ1)/(ρ2-ρ1) (Extended NS)

(Tr-T1)/(T2-T-1) (Extended NS)
(Tt-T1)/(T2-T1) (Extended NS)

(ρ-ρ1)/(ρ2-ρ1) (Experiment)

Figure 7: M = 1.53 nitrogen shock struc-
ture. Experiment measurements [1] vs. ex-
tended continuum model.

temperature profiles by the current model compare well with those of DSMC’s. The peak
values of the stress profile by the DSMC method are lower than the current Extended NS
solutions. The reason for this needs further investigation. For the same case, the direct
BGK solver with discretized particle velocity space [18] (not shown in the figures) predicts
a wider separation (∼ 4λ1) between the density and temperature.

Fig. 5 shows the shock structures for other viscosity coefficients of µ ∼ T 0.75 and T 0.81,
where the solution by the current continuum model and that of DSMC [7] have good
agreement as well. For the µ ∼ T 0.81 case, the current calculation gives the separation
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Figure 8: M = 6.1 nitrogen shock structure. Experiment measurements [1] vs. extended continuum model.

between the density and temperature of about 4.5λ1, whereas the discrete velocity BGK
model in [22] (not shown in the figures) has the separation around 2.7λ1; there is deviation
in the temperature profiles as well. In the current approach, τ∗ is from different moments
(φ) in the viscous and heat conduction fluxes. In an earlier work [34], the same φ was
used. It is noted that although the earlier work captures the density and temperature
profiles accurately inside the shock layer, the separation distance between the density and
temperature is smaller than the current one.

4.2 Shock structure in diatomic gas

The proper value of τ∗ can accurately capture the translational non-equilibrium, so one
can obtain the density and temperature profiles inside a shock layer. For diatomic gases,
besides the translational relaxation, the rotational relaxation is included as well. The
relaxation time between the rotational and translation energy exchange is determined by
the rotational collision number ZR. For the nitrogen shock wave, the DSMC method is
known to provide accurate separation distance between the translational and rotational
temperature profiles. With the same parameters as used in the DSMC computation [1]
and using the Sutherland’s law for viscosity, the shock structure for nitrogen gas at Mach
number 11 was simulated by the current method and the results are shown in Fig. 6. The
current extended NS continuum model reproduced the DSMC solution very accurately.

Figs. 7 and 8 show comparisons of present computations (using ZR = 3.5) and ex-
perimental data [1] for nitrogen gas at Mach numbers 1.53 and 6.1. Fig. 9 shows the
shock profiles at higher Mach numbers 7 and 12.9 [27]. Since the incoming gas in the
experiment had a temperature as low as 15K, a small value of ZR = 1.5 is used in the
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current computations. The measured rotational temperature and density are predicted
by the continuum model very well. As realized by many authors [31], Fig. 9 is a tough
test case even for the DSMC method. The results from the preceding test cases show that
the current continuum model can be used for a non-equilibrium shock wave simulation if
a gas kinetic theory can be used to properly generalize the viscosity and heat conduction
coefficients.
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5 Conclusion

In this paper, a continuum gas-kinetic formulation for the translational and rotational
non-equilibrium flow is constructed. Based on the generalized constitutive relationships
through the modification of particle collision time, the kinetic formulation truncated up
to the Navier-Stokes order has been used in the shock structure computations. The new
formulation is applied to both monatomic and diatomic shock structure calculations, i.e.,
argon and nitrogen gases, from a low Mach number 1.2 up to a strong shock wave with
M = 12.5. The extensive tests using the current continnum formulation and the compar-
isons with DSMC solutions, Boltzmann solutions, and experimental measurements provide
confidence that besides the DSMC method, the kinetic method provides another effective
tool for the study of flow motion in the rarefied flow regime. The study shows that it can
be possible to use a continuum model, particularly in the near-continuum flow regime,
where the DSMC method can be very expensive. Theoretically, the DSMC method is
an operator splitting steps of free particle transport and collision. It requires that the
numerical time step is smaller than the particle collision time, which cannot be tolerated
in the continuum regime, especially for high Reynolds number flow. However, the current
method can accurately and efficiently simulate the continuum flow at Kn ≪ 1 as well.
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The future of this method depends on its successful applications in multidimensional flow
problems.
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Appendix: Connection between BGK, Navier Stokes and

Euler equations for equilibrium polyatomic gases

The derivation of the Navier-Stokes equations from the Boltzmann equation can be found
in Kogan [17], Chapman and Cowling [9], and from the Bhatnagar-Gross-Krook equation
in Vincenti and Kruger [30] for the case of perfect monotonic gases. Here we reconsider
the derivation of the Navier-Stokes and Euler equations from the BGK equation, i.e.,
ft +uifxi

= (g−f)/τ with equilibrium state g, right from the outset for polyatomic gases.
To derive the Navier-Stokes equations, let τ = ǫτ̂ where ǫ is a small dimensionless

quantity, and suppose that g has a Taylor series expansion about some point xi, t. Since τ
depends on the local thermodynamic variables, and since these depend on the moments of
g, we may assume that τ and consequently τ̂ can be expanded about the point xi, t. Now
consider the formal solution of the BGK equation for f , supposing that g is known, and
suppose that t >> τ ; i.e. that the initial condition were imposed many relaxation times
ago. We can then ignore the initial value of f , and, with negligible error, the difference
between t′ = 0 and t′ = −∞ in the integral solution of the BGK model. It can be shown
from the integral solution that the Taylor series expansion of τ and g about xi, t may be
written as power series in ǫ, and therefore f has an expansion in powers of ǫ. We can find
the terms in this expansion from the formal solution for f , or, more easily, by putting

f = f0 + ǫf1 + ǫ2f2 + · · ·

and τ = ǫτ̂ into the BGK equation directly. Let

Du =
∂

∂t
+ ui

∂

∂xi
,

and write the BGK equation as ǫτ̂Duf + f − g = 0. An expansion of this equation in
powers of ǫ yields

f = g − ǫτ̂Dug + ǫ2τ̂Du(τ̂Dug) + · · · ,
and the compatibility condition, after dividing by ǫτ̂ , gives

∫
ψαDugdΞ = ǫ

∫
ψαDu(τ̂Dug)dΞ + O(ǫ2). (A.1)
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We define Lα to be the integral on the left side of this equation, and Rα to be the integral
on the right, so that Eq.(A.1) can be written as

Lα = ǫRα + O(ǫ2). (A.2)

We show that these equations give the Euler equations if we drop the term of O(ǫ), and
the Navier-Stokes equations if we drop terms of O(ǫ2). To simplify the notation, let

< ψα(...) >≡
∫
ψα(...)gdΞ,

and consider

Lα ≡
∫
ψαDugdΞ =

∫
ψα(g,t + ulg,l)dΞ

= < ψα >,t +< ψαul >,l,

since ψα is independent of xi and t. Now Eq.(A.2) shows that

< ψα >,t +< ψαul >,l = O(ǫ) (A.3)

for all α, and therefore, in reducing Rα on the right side of Eq.(A.2), which is already
O(ǫ), we can drop O(ǫ) quantities and their derivatives. Put differently, we first reduce
the Lα to find that Lα = 0 (α = 1, · · · , 5) is identical to the Euler equations; then we use
the fact that Lα is O(ǫ) to simplify Rα — the result is the Navier-Stokes equations.

The expression for Rα contains time derivatives which must be eliminated. We have,
from the definition of Rα,

Rα = τ̂ [< ψα >,tt + 2< ψαuk >,tk +< ψαukul >,lk]

+τ̂,t[< ψα >,t +< ψαul >,l] + τ̂,k[< ψαuk >,t +< ψαukul >,l]. (A.4)

According to Eq.(A.3) the coefficient of τ̂,t in this expression is O(ǫ), and can therefore be
neglected. As for the first term, consider

∂

∂t
[< ψα >,t +< ψαuk >,k]

= < ψα >,tt +< ψαuk >,kt = Lα,t = O(ǫ).

Then the first term in Eq.(A.4) is

τ̂
∂

∂xk
[< ψαuk >,t +< ψαukul >,l] + O(ǫ),

which can be combined with the third term to give

Rα =
∂

∂xk
{τ̂ [< ψαuk >,t +< ψαukul >,l]} + O(ǫ).
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This eliminates the second time derivatives from Rα; the first time derivatives will be
removed by using Lα ≃ 0.

The Euler equations follow from putting Lα = 0. To see this, consider

L1 = < ψ1 >,t +< ψ1uk >,k = ρ,t + (ρUk),k,

since ψ1 = 1; L1 = O(ǫ) is the continuity equation if we neglect O(ǫ). For α = 2, 3, 4, it
is convenient to define Li and Ri such that i = α− 1 and to let wi = ui − Ui. Then

Li = < ui >,t +< uiuk >,k = (ρUi),t + [ρUiUk+ < wiwk >],k,

since all moments of g odd in wl vanish. The pressure tensor is defined by

pik = < wiwk > ≡ pδik.

(The diagonal form of pik is obvious from the fact that g can be written as a function of
w2

k). Then
Li = (ρUi),t + (ρUiUk + pδik),k , (A.5)

and Li = 0 is the Euler equation for the conservation of momentum. For the energy
equation we have

L5 =
1

2
< un

2 + ξ2 >,t +
1

2
< ul(un

2 + ξ2) >,l

or

L5 =

(
1

2
ρUn

2 +
K + 3

2
p

)

,t

+

(
1

2
ρUkUn

2 +
K + 5

2
pUk

)

,k

.

Setting L5 = 0 gives the energy equation in the absence of dissipation.
We proceed to eliminate the time derivatives from Rα using the fact that Lα = O(ǫ).

For α = 1, we have
R1 = {τ̂ [< uk >,t +< ukul >,l]},k

.

The quantity in square brackets is Lk, which implies that R1 = O(ǫ), and L1 = ǫR1 =
O(ǫ2). Hence, to the order we have retained, R1 = 0 and L1 = 0, or

ρ,t + (ρUk),k = 0, (A.6)

which is the continuity equation. We can use the continuity equation to simplify the
momentum equations and the energy equation. Multiplying the continuity equation by Ui

and the subtracting the result from Li gives, according to Eq.(A.5),

Li = ρUi,t + ρUkUi,k + p,i + O(ǫ2). (A.7)

For L5, we group the terms as follows:

L5 =
1

2
Un

2[ρ,t + (ρUk),k] + ρUnUn,t + ρUkUnUn,k + Ukp,k

+
K + 3

2
[p,t + Ukp,k] +

K + 5

2
pUk,k .
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The first term is 1
2Un

2L1 which is O(ǫ2), and the next three are UnLn , and are therefore
O(ǫ). Then

L5 =
K + 3

2
[p,t + Ukp,k] +

K + 5

2
pUk,k + UnLn. (A.8)

We can drop the last term in the reduction of Rα, but the term UnLn must be retained
in the reduction of L5 when we finally write L5 = ǫR5 in detail. For the right sides of the
momentum equations, consider Rj = (τ̂Fjk),k, where

Fjk ≡ < ujuk >,t +< ujukul >,l

or

Fjk = Uj[(ρUk),t + (ρUkUl + pδkl),l] + ρUkUj,t + (ρUkUl + pδkl)Uj,l

+(pδjk),t + (Ulpδjk + Ukpδjl),l,

using the fact that all moments odd in wk vanish. The term in square brackets multiplying
Uj is Lk, i.e. it is O(ǫ), and can therefore be ignored. Then, after gathering terms with
coefficients Uk and p, we have

Fjk = Uk[ρUj,t + ρUlUj,l + p,j] + p[Uk,j + Uj,k + Ul,lδjk] + δjk[p,t + Ulp,l].

The coefficient of Uk is Lj, according to Eq.(A.7), and can therefore be neglected. To
eliminate p,t from the last term we use the Eq.(A.8) for L5; this gives

p,t + Ukp,k = −K + 5

K + 3
pUk,k + O(ǫ).

Finally, we decompose the tensor Uk,j into its dilation and shear parts in the usual way,
which gives

Fjk = p

[
Uk,j + Uj,k −

2

3
Ul,lδjk

]
+

2

3

(
K

K + 3

)
pUl,lδjk. (A.9)

The last term is due to bulk viscosity; it vanishes, as it should, for K = 0, since the
physical mechanism for bulk viscosity involves energy sharing between translational and
internal degrees of freedom of the molecules, and K = 0 corresponds to a monatomic
(γ = 5

3 ) gas.
For α = 5, we write

R5 = (τ̂Nk),k , (A.10)

where

Nk ≡< uk
(un

2 + ξ2)

2
>,t + < ukul

(un
2 + ξ2)

2
>,l .

This can be written as Nk = Nk
(1) +Nk

(2), where

Nk
(1) =

[
Uk
< un

2 + ξ2 >

2

]

,t

+

[
Uk < ul

(un
2 + ξ2)

2
>

]

,l

Nk
(2) =< wk

un
2 + ξ2

2
>,t + < wkul

(un
2 + ξ2)

2
>,l
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For Nk
(1) we have

Nk
(1) = Uk

[
< un

2 + ξ2 >,t

2
+
< ul(un

2 + ξ2) >,l

2

]

+

[
1

2
ρUn

2 +
K + 3

2
p

]
Uk,t +

1

2
ρUl

[
Un

2 +
(K + 5)p

ρ

]
Uk,l.

The coefficient of Uk in the equation above is L5, and can therefore be neglected, and the
remaining terms can be rewritten as

[
1

2
ρUn

2 +
K + 3

2
p

]
[Uk,t + UlUk,l] + pUlUk,l,

or, using the fact that Lk = O(ǫ), as

Nk
(1) = −

[
1

2
Un

2 +
K + 3

2

p

ρ

]
p,k + pUlUk,l.

For Nk
(2), remembering that moments odd in wk vanish, we have

Nk
(2) = < Unwnwk >,t +< UlUnwnwk >,l

+
1

2
< Un

2wkwl >,l +
1

2
< wkwl(wn

2 + ξ2) >,l,

or

Nk
(2) = (pUk),t + (pUkUl),l +

1

2
(Un

2p),k +
K + 5

2

(
p2

ρ

)

,k

.

This result can be rewritten as

Nk
(2) = p[Uk,t + UlUk,l + UkUl,l + UlUl,k]

+Uk(p,t + Ulp,l) +
1

2
Ul

2p,k +
K + 5

2

(
p2

ρ

)

,k

,

and the time derivatives can be removed by using Lk = O(ǫ), and L5 = O(ǫ), neglecting
O(ǫ), since we are evaluating R5. Finally, Nk

(1) +Nk
(2) can be combined to yield (after

some algebra)

Nk =
K + 5

2
p

(
p

ρ

)

,k

+ p

[
− 2

K + 3
UkUl,l + Ul(Uk,l + Ul,k)

]
. (A.11)

All time derivatives have now been removed from Rα (for all α). The remaining steps in
the derivation of the Navier-Stokes equations may be summarized briefly as follows:
• 1). Drop O(ǫ2) in Eq.(A.2).
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• 2). Combine ǫ and τ̂ to recover τ = ǫτ̂ .
• 3). Define the stress tensor

σ′jk = η

[
Uj,k + Uk,j −

2

3
Ul,lδjk

]
+ ςUl,lδjk,

where

η = τp, ς =
2

3

K

K + 3
τp

are the dynamic viscosity and second viscosity coefficients respectively.
• 4). From Eq.(A.7) for Lj and Eq.(A.9) for Fjk, it follows that Lj = ǫRj may now be
written as

ρUj,t + ρUkUj,k + p,j = σ′jk,k,

which is the Navier-Stokes equation.
• 5.) The energy equation follows from L5 = ǫR5 by using Eq.(A.8), (A.7) and (A.6) to
write L5 in detail, and using Eq.(A.10) and (A.11) for R5. The result is

K + 3

2
(p,t + Ukp,k) −

K + 5

2
p(ρ,t + Ukρ,k) = (κT,k),k + (Ulσ

′

lk),k,

where

κ =
K + 5

2

k

m
τp

is the thermal conductivity, k is the Boltzmann constant, m is the mass of a molecule and
T is the temperature. The equations can be written in terms of γ instead of K by using
K = (5 − 3γ)/(γ − 1) for 3-dimensional gas flow.
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