INTERNATIONAL JOURNAL OF (© 2008 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 5, Number 1, Pages 40-54

A NEW HIGH ORDER TWO LEVEL IMPLICIT
DISCRETIZATION FOR THE SOLUTION OF 3D NON-LINEAR
PARABOLIC EQUATIONS

R. K. MOHANTY AND SWARN SINGH

Abstract. We present a new two-level implicit difference method of O(k? +
kh2 + h4) for approximating the three space dimensional non-linear parabolic
differential equation uze+uyy+uz. = f(z,y, 2, t, U, Uz, Uy, Uz, ut),0 < x,y,2 <
1,t > 0 subject to appropriate initial and Dirichlet boundary conditions, where
h > 0 and k > 0 are mesh sizes in space and time directions, respectively. In
addition, we also propose some new two-level explicit stable methods of O(kh?4
h%) for the estimates of (9u/On). When grid lines are parallel to z—, y— and
z— coordinate axes, then (Ou/0n) at an internal grid point becomes (u/0z),
(Ou/0y) and (Ou/0z), respectively. In all cases, we require only 19-spatial grid
points and a single computational cell. The proposed methods are directly
applicable to singular problems and we do not require any special technique
to handle singular problems. We also discuss operator splitting method for
solving linear parabolic equation. This method permits multiple use of the one-
dimensional tri-diagonal solver. It is shown that the operator splitting method
is unconditionally stable. Numerical tests are conducted which demonstrate

the accuracy and effectiveness of the methods developed.

Key Words. non-linear parabolic equation, implicit scheme, high order method,

normal derivatives, singular problem, operator splitting, Burgers’ equation.

1. Introduction

Three space dimensional non-linear parabolic partial differential equations rep-
resent mathematical models of physical problems of great interest in physics and
applied mathematics. Numerical solution of three space dimensional parabolic
problems tends to be computationally intensive and may be prohibitive on con-
ventional computers due to the requirements on the memory and the CPU time to
obtain solutions of required accuracy. Traditional numerical methods are of lower
order and require extremely smaller grid lengths. The size of the resulting linear
or non-linear systems for 3-space dimensional problem is usually so large that even
present day computers may not be able to handle them. One approach to alle-
viate these difficulties is to use higher-order methods, which yield approximates
solutions with comparable accuracy using much coarser discretization, resulting in
linear or non-linear systems of smaller size. It has been repeatedly demonstrated on
model problems that even the simplest types of high-order methods should provide
tremendous practical advantages in terms of diminishing the required number of
storages and also the overall computing time for a desired solution (see Ciment et
al [1]). Several authors have discussed high order finite difference methods for the
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solution of three space dimensional linear parabolic equations (see Ciment et al [1],
Iyengar and Manohar [2] , Zhang and Zhao [3]). The solution requires the inversion
of a block banded matrix. Alternating direction implicit (ADI) methods originally
developed for a two-space dimensional diffusion equation have been extended to
three-space dimension by Douglas and Rochford [4] , Brian [5] and Fairweather
and Mitchell [6, 7]. Two-level implicit difference methods of order 2 in time and 4
in space for the numerical solution of three-space dimensional non-linear parabolic
equations have been discussed by Jain et al [8], Mohanty and Jain [9], Mohanty
[10] and Mohanty et al [11]. However, their methods are not directly applicable
to singular parabolic problems. A special technique is required to handle singular
parabolic problems.

In this paper, we consider the numerical solution of the non-linear parabolic
partial differential equation
@ Lu,2u, o
ox2  oy? 022
where u = u(x,y, z,t). Let Q = {(z,y,2,t)|0 < z,y,z < 1,¢t > 0} be our solution
domain with boundary 9f2.

The initial condition is given by

:f(l’,y,z,t,wuw,uy,uz,ut),()<a:,y,z< 1at>0

(2) u(x,y, z,0) = up(x,y, 2) 0<z,y,2<1

and the boundary conditions are given by

(3)  w(0,y,2,t) = go(y, 2z, 1), u(l,y, 2,t) = 91(y,2,1),0 < y,2 < 1,t = 0
(4)  wu(z,0,z,t) = ho(z, 2, t),u(z,1,2,t) = hy(z,2,t),0 < 2,2 < 1,t >0
(5)  u(x,y,0,t) =io(z,y,t),ulz,y,1,t) = i1(x,y,¢),0 < z,y < 1,t >0

where ug, 9o, 91, ho, b1, 70,71 are given functions of sufficient smoothness.

In this paper, using 19-spatial grid points and a single computational cell (see
Figure 1) we propose new formulas of order 2 in time and 4 in space coordi-
nates for the solution of non-linear parabolic equation (1) and the estimates of
(Ou/On). When grid lines are parallel to coordinate axes, (Ou/On) represents
(Ou/0z), (Ou/dy) and (Ou/dz), respectively. The proposed methods are directly
applicable to singular parabolic equations. We do not require any special technique
or modification to handle the singular problem. Recently, Mohanty and Singh [12]
have proposed a new fourth order finite difference method for the solution of three
dimensional singularly perturbed non-linear elliptic partial differential equation. In
next section, we give the description of new algorithms. The complete derivation
of numerical methods is given in Section 3. In section 4, we discuss operator split-
ting method for the solution of a linear three space dimensional parabolic equation
and its stability analysis. The operator splitting method requires the solution of
tri-diagonal system of equations parallel to coordinates axes, at each time step, in-
dependent of the order of the method. In section 5, computational results of some
test problems are provided to demonstrate the accuracy of the proposed numerical
methods and compared with the corresponding second order methods. It is shown
here that for a fixed mesh ratio parameter, the proposed methods are of fourth
order in space. Concluding remarks are given in section 6.

2. Description of numerical algorithms

As usual, let us assume that the solution domain € is covered by a set of cubic
grid with spacing h > 0 and £ > 0 in space and time coordinates, respectively.
The grid points (z;, Ym, 2n,t;) are given by x; = lh,y,, = mh, z, = nh,t; = jk,
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FIGURE 1. Nineteen Spatial Grid Points

with {,m,n = 0(1)N + 1, and j = 0,1,2,..., where N is a positive integer and
(N+1)h=1. Let Ul];m,n and u{mn be the exact and approximate solution values
of u(z,y, z,t) at the grid point (21, Ym, zn,t;) respectively and A\ = (k/h?) be the
mesh ratio parameter.

We require the following approximations

(6) ti=1t;+0k0<6<1

(7 Ulamn = OUL L+ (1= 0L,

(8) ﬁ{il,m,n = U/ o + (L= Oy

) Utmtrn = 00} ey + (L= OUF s

(10) Ulimns = O] i + (L= OV

(11) Ulitmtrn = 00U iy + (1= Oy i
(12) Uttt = 007 iy o+ (L= OUL
(13) Ulet i = OUL oy + (1= O)U] Pt m a1
(14) Ul Lmnar = 0U} 1mni1+(1 L CF e ——
(15) Ulmsrmts = 0U3 S+ (U= O 1



(32)
(33)
(34)
(35)
(36)

37)

(38)
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779 _ prritl J
Ul,m—l,nil - 9U17m—1,ni1 + (1 - G)Ul,m—l,nil
77 77 77

Uit mm = Uiztmm + Ulimn)/2

777 777 77

Ulymj:%,n = (Ul,m;tl,n + Ul,m,n)/2

U{,m,ni% = (v?,m,nil + Ui7m7n)/2

U = Ot = Ul-1.mn)/ (20)
Torsyron = 2Ottt = Tim )b
ﬁgc,’)mi%m = (U{-!—l,mil,n - U{—l,mil,n + ﬁ{-}—l,m,n - U{—l,m,n)/(4h)
w3 _ i i i

A (Uit1,mmnt1 = Uict,montr F Ulst,mon — Ulm1,m,n)/(4R)
ﬁ;z,m,n = (ﬁ{,val,n _ﬁ{,mfl,n)/(Qh)
737;&%,%" = (U{il,m-kl,n — U{:ﬁ:l,m—l,n + U{,m-kl,n — U{,m—l,n)/(‘lh)
Ty = EOtmssn = Tl)
7;,%“% = (U{,erl,n:tl - U{,mfl,nﬂ:l + U{,erl,n - U{,mfl,n)/(zlh)
T = Olainis = Uln1)/(20)
Uili%,m.n = (U{il,m,rH—l — U{il,m,n—l + U{,m,nﬂ - U{,m,n—l)/(élh)
7‘il,mi%,n = (ﬁ{,m:tl,n+l - U{,m:ﬁ:l,nfl + U{,m,n+1 - U{,m,nfl)/(élh’)
Ty iy = 2 Ohmnss =Tl /h

U, = UL~ U7 )k

ﬁ{lil,m,n =( lJ:z_llmn - Ulj:tl,m,n)/k
Uzl,m:{:l,n = ( lj:rnliln - Ulj,mil,n)/k
U{l,m,nil = (Ulj;:;l,ni1 - Ul{m,nil)/k

ﬁ‘zli%,m,n = (Uljzz_ll,m,n + Uj+1 - Ulj:i:l,m,n - Ul],m,n)/(2k)

l,m,n

Next we define

(39)

(41)

i — (itt j+1 j J
Utl,m:l:%,n - ( I,mEl,n + Ul,m,n - Ul,mil,n - Ul,m,n)/(2k)
(o — (it! j+1 j J
Utl,m,ni% - (Ul,m,nil + Ul,m,n - Ul,m,nil - Ul,m,n)/(Qk)
-7 _ 7. 777 77 77
Fiagmn = F @yt 2t Ui g Usiy o Uiy o
773 773
U U
zli%,rn,n7 tli%,wt,n)

77I

l,m,:t%,n7 yl,vn:t%,n’

- _ T 777 779

Fl,mi%,n - f(xhymi%’Z”’tj’ Ul,mi%,n’ UC‘?
773 779
U U

o i%,”n,’ tl,mi%,n)

77
U
mantl’ T Yimnxl’

- _ T 77 773
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Further, we consider the following approximations:

(42) Tlmn = UZ”"»n + alhz,@?}%«m’" +_F{-%’m«n Pt g
+ Pl T Flomniy + Flmn-y)

» T A

(44) ﬁf,l,m,n =Tt T 030 Pl = Flimo )

(45) Trn =T + W (F iy = Pl )

(46) ﬁ;,m,n = ﬁzz,m,n + as(UzHme + UZ’*““'” * Ugl’mﬂ’n

JrU‘Zl,m—l,n +U§l,m,,n+1 JrUil,m,n—l - 6U§l,7n,n)

_ 1 _ 1 R |
where 0 = 5,01 = =5,a2 = a3 = a4 = a5 = 13-

Next we define
=J =J =J =J

=J _ =J
(47) Fl,m,n = f(ﬂfz,ym,zmtijz,m,mU U U 7Utl,m,n’)

Ti,m,n’ Yi,m,n’ Zl,m,n

Then at each internal grid point (z;, Ym, 2n,t;), the proposed parabolic differential
equation (1) is discretized by

2 2 2 1o 252 22y | 777 h? [ -7
61’ + 6@/ + 52 + 6(6z6y + 6y62 + 526m) Ul,m,n = ? FH—%,m,n + Fl—%,m,n
(48)

- - i i =/ i
+ Fl,m—&-%,n + Fl,m—%,n + Fl,m,n+% + Fl,m,n—% - 3Fl,m,n:| + Tl,m,n

where 6;U; = (U1 — Up_1) and poUr = %(UH% + U,_1) are central and average

3 3/ ¢
difference operators with respect to z-direction etc. and Tf,m,n = O(k*h? + kh* +
hS).

For the estimates of (Qu/dx), (0u/dy) and (Ju/0z), we need the following ap-
proximations. Let

(49) U4 i = Ul o + UL /2

(50) Ol s = Ul + UL /2

(51) ﬁlj;%ni% = (Ulj;;tll,nil + Ul],:;Ll,n)/2

(52) ULl = E U o = UL /B

(53) Oy = Ul s = UTR s+ UER = UL ) (4R)
(54) ﬁg:;ni% = (Ulj;rll,m,nil - Uzjjll,m,nﬂ + Uzjjll,m,n - Uzj:r1l,m,n)/(4h)
(55) O35y o = Ul s = Ul s+ Ulilia = Ul )/ (40)
(56) Ol h ey = Ul = Ul /1

(57) U570 ey = Ol s = Ul s + ULl — Ul 1,0/ (4)
(58) UL = Ul s = Ul H UL = Ulitao0)/(4R)

i+ 5, m,n
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i1 _ j+1 j+1 Jj+1 Jj+1
(59) Uzl,mi%,n - ( I,m*lnt+l Ul,mil,n—l + Ul,m,n+1 - Ul,m,n—l)/(4h)
rri+1 — J+1 Jj+1
(60) Uzl montl i(le,vn,n:l:l - Ul,m,n)/h
ety
rri+1 _ J+1 Jj+1 J J
(61) Utlil mon (Ulil,m,n + Ul,m,n - Ulil,m,n - Ul,m,n)/(Qk)
3.,
rri+1 _ j+1 Jj+1 J J
(62) Utl mtla ( ly,m+1l,n + Ul,m,n - Ul,m:tl,n - Ul,m,n)/(2k)
) 5
rri+1 _ J+1 Jj+1 J J
(63) Utl 41 - (Ul,m,nil + Ul,m,n - Ul,m,nil - Ul,m,n)/(Qk)
sm,n¥t g
Then we define
i+l _ . rri+l rrit+l rrit+l
64 li%’m’" - f(xli%’ymy Zn; tj+1’ Uli%,m,n’ wlﬂ:%,m,n’ yli%vm,n’
(64) Uittt 7i+1
il mon’ fialimn
i+l _ . rri+l rrit+l rrit+l
65 F‘l,mi%,n - f(xl7 ymi% y Zn, tJ"rlv Ul,'mi%,n’ Uzl,mi%,n’ Uyl,mi%,n7
( ) fjj+1 rrit+l )
Zmkln’ tml o
» 3 ) 3
i+l _ . 77+l rrit+l rrit+l
- Fl,m,n:{:% - (xl’ Yms Z"i% LZESY Ul,m,n:t% ’ Uzl,m,ni% ’ yl,m,ni% ’
( ) fjj+ ﬁjJrl )
Flomont T m L

Following the techniques given by Stephenson [14], the estimates of (Ju/0x),
(Ou/dy) and (Ou/0z) for the differential equation (1) are given by

g+ _ L g j+1 j+1 41
Ul‘z,m,n - 12h I+1,m+1,n + Ul+1,m71,n - Ulfl,mjtl,n - Ulfl,mfl,n
Jj+1 Jj+1 Jj+1 j+1
(67) + Ul+1,m,n+1 + Ul+1,m,n71 - Ul*l,m,n+1 - Ulfl,m,nfl
j+1 1 b mita S+l Fit1
+ 2(Ul-',-l,m,n - Ul—l,m,n)] - E[FH—%,m,n - F‘l—%,m,n} + sz,myn
41 _ Lo j+1 41 j+1
Uyl,m,n - 12h [Ul+1,m+1,n - Ul+l,m—1,n + Ul—l,m+1,n - Ul—l,m—l,n
J+1 J+1 J+1 Jj+1
(68) + Ul,'m+1,n+l - Ul,mfl,n+l + Ul,m+1,n71 - Ul,mfl,nfl
j+1 j+1 b st B+l Fjt1
+ 2(Ul,m+1,n - Ul,m—l,n)] - E[F‘l,m+%,n - Fl,mfé,n] + Tyl,m,n
41 _ L g j+1 j+1 j+1
Uzl,m,n ~ 124 [Ul+1,m,n+1 - Ul+1,m,n—1 + Ul—l,m,n+1 - Ul—1,m,n—1
J+1 j+1 J+1 j+1
(69) + Ul,'m+1,n+1 + Ul,7n71,n+1 - Ul,m+1,n71 - Ul,mfl,nfl
i+1 i+ bzt Hi+1 Fi+1
+2(U} 1 — Ul )l — E[Fl,m,n+% - Fl,m,nfé] + T

where T9+! = O(kh? + h*), Tj*! = O(kh? + h*) and Ti+! = O(kh? + hY).

Zl,m,n Yi,m, Zl,m,

Note that, the matrices represented by the new formula (48) and (67)-(69) are tri-
block-block diagonal and diagonal respectively. The formulas are of O(k?+kh?+h?)
accuracy and free from the terms (1/x;41), (1/ym+1) and (1/z,41), hence very eas-
ily solved for I,m,n = 1(1)N in the region 0 < z,y,z < 1,¢ > 0. If the differential
equation is linear, we can solve the linear system by using operator splitting method,
whereas for non-linear case, we can use Newton-Raphson method. The proposed
numerical methods are directly applicable to singular parabolic problems in the
region 0 < z,y,z < 1,t > 0. It is mentioned here that in order to get O(kh? + h*)
numerical solution of (Ou/0x), (0u/0y) and (Ou/0z) from (67)-(69), it is essential
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to know the corresponding accurate difference solution of u, which can be obtained
using the formula (48).

3. Derivation of numerical methods

For the derivation of the new methods, we simply follow the techniques given by
Mohanty and Singh [12] and Chawla and Shivakumar [13].
At the grid point (z7, Ym, 2n,t;), we denote

8a+b+c+dU
. Vavea = Gya @y iom) (@0
of of of of of of
(1) ¢ ot’ ou’ 8um’J duy’ ou,’ Ouy

At the grid point (27, Ym, 2n,t;j), we denote

2777 2777 2777
d Ul,m,n 0 Ul,m,n 9 Ul,m,n

(72) ox? Oy? 072

72 . . ) _ )
— 17 J J J J
- f(:rl'y"l’ Zn; t] ’ Ul,m,n’ lenn,n’ Uyl,m,n7 Uzl,'m,n Utl,m,n)
= 1
= F‘l,m,n

By the help of the Taylor expansion, we obtain

524+ 83+ 62 4 (0207 + 0302 + 8282))U

l,m,n
2
73 _ M j j j j
( ) - g[‘Fl-‘r%,m,n + 'Fl—%,m,n + 'Fl,m-i-%,n + Fl,m—%,n + Fl,m,n—i—%
+ Fi'm,nf% —3F,, ]+ O(h°)

Now differentiating the differential equation (1) with respect to ¢ at the grid
point (21, Ym, 2n,t;), we obtain a relation of the form

—LUgo02 = G + HUpoo1 + IU1001 + JUpi01 + KUgor1
— (U2001 + Uo201 + Uono21)
By the help of the approximations (6)-(38), simplifying (39)-(41), we get

(74)

— ; k h?
(75) Flitmn = Flis ot 5T+ 57 T2 £ O(kh + h?)
¥l J k h? 3
(76) Fl,m:l:%,n = Fl,mj:%,n + §T1 + ﬂTB + O(kh +h )
) J k h? 3
(77) Flamey = F e + 5T+ 5T £ O(kh + 1)
where

Ty = 20(G + Ugoor H + Uroo1I + Upr01J + Uoo11 K) + Unoo2 L,

Ty = 3U2000H + Usooo! + (3U2100 + 4Uo300)J + (3U2010 + 4Uo030) K + 3U2001 L,
T3 = 3Uo200H + (4U3000 + 3U1200)1 + Uozoo + (3Uo210 + 4Uo030) K + 3Uon201 L,
Ty = 3Uoo20H + (4U3000 + 3U1020)1 + (3Uo120 + 4U0300)J + Unozo K + 3Uno21 L
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With the help of (75)-(77), from (42)-(46), we obtain

—j .
Ut = Ul + 0kUo001 + 6a1h” (Uz000 + Uo200 + Uoo20)

(78)
+ O(k* + kR* + h")
—j . h?
(79) Ui = Ul + 0kUro01 + f[(l + 6a2)Uso00 + 6a2(U1200 + U1020)]
+ O(kh* + h*)
=j , h?
(80) Urmn = Uy + 0kUo101 + E[(l + 6a3)Uos00 + 6a3(U2100 + Uo120)]
+ O(kh* + h")
—j - h?
(81) Uzlymyn = Uil‘m‘n + 0kUoo11 + F[(l + 6a4)Uoos0 + 6a4(Uz2010 + Uo210)]
+ O(kh® + ")
=i - k
(82) Uihnn = Ul §U0002 + ash®(Uao001 + Unz01 + Uoo21) + O(kh® + 1)

By the help of the approximations (78)-(82), from (47), we get
= , k h?
(83) Flon = Fio + 5T1+ 5 T+ O + kh® 4 ")
where
T = 36a1(Uz000 + Uoz200 + Uoo20) H + [(1 + 6a2)Usooo + 6a2(Ui200 + Uio20)]1

+ [(1 + 6a3)Upzoo + 6a3(Usz100 + Uo120)]S
+ [(1 4 6a4)Uooso + 6a4(Uz010 + Un210)] K
+ 6as5(Uz001 + Uo201 + Uoo21)L

Further, we may re-write
1 .
2 2 2 22 262 252 J

(84) _ 2 2 2 1 2¢2 252 252 j
= (82405 402 4 S (9257 + 6702 + 8202) | U]

l,m,n
+ 0kh* (Usgor + Uozo1 + Uoo21) + O(k*h* + kh* + h°)

Finally, by the help of the relations (74), (75)-(77), (83) and (84), from (48) and
(73) we obtain the local truncation error
(85)

— 1 h4
T{,m;ﬂ = —kh? (2 - 9) Uooo2 L — %(T2 + T3 + Ty — 6T5) + O(k*h* + kh* + h®)

The proposed difference method (48) to be of O(k? + kh? + h*), the coefficients of
kh? and h* in (85) must be zero, hence

1
86 Z_fp=
(86) 5—0=0

and Ty + T35+ T4 — 615 = 0 or,
(1 = 72a1)(Uz000 + Uo200 + Uoozo)H + (1 — 12a2)(Usooo + Ui200 + Uro20)1
(87) +(1 —12a3)(Uosoo + Ua100 + Uo120)J + (1 — 12a4)(Uoozo + Uz010 + Uo210) K
+(1 = 12a5)(Uz001 + U201 + Ugo21)L = 0
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Thus we obtain the values of parameters § = %, a
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_ 1 _ _ _ _ 1
1= 35,02 = a3 = a4 = a5 = 15 for

which the proposed method (48) becomes O(k? + kh? + h*) and T{,m,n = O(k?h% +

kh* + h®).
Next we discuss the methods of
and (Ou/0z). Once the solution

O(kh?+h?) for the estimates of (Qu/dx), (Ou/y)
u has been obtained at (j + 1) level, one may

compute these values using the central difference approximations

. g g

(88) if}n,wl = (ug:l,":l,m7n o girlvmvn)/(Qh)
j +1 +1

(89) “Z;rin = (ug,—751+1,n - ;,—75171,71)/(2}1)
i 1 g

(90) L = (g = W 1)/ (20)

It has been verified that the standard central difference approximations (88)-(90)
yield O(h?) accurate results irrespective of whether difference method (48), which
is of O(k% + kh? + h*) or difference method of O(k? + h?) is used to solve the
parabolic equation (1). New difference formulas of O(kh? + h*) for computing the
numerical values of u,, u, and u, are proposed. These new formulas are found to
yield O(h*)-accuracy for a fixed mesh ratio parameter A\, when used in conjunction

with the method (48).

By the help of Taylor series expansion, we obtain

j+1 1 [Uj+1 + Uj+1 i+l _ i+l
Tim,n 12h +1,m+1,n I+1,m—1,n l—1,m+1,n l—1,m—1,n
j+1 j+1 j+1 j+1
(91) + Ul+17m,n+1 + Ul+1,m,n—1 “Yi-1mmn+1~ Yi-1,mn—1
J+1 i+l . ﬁ j+1 g+l 4
+ Q(Ul-‘rl»mvn l—l,m,n)] 6 [Fl+%,m,n F‘lf%,m,n] + O(h )
g1 L it _ it L it _ it
Yi,m,n 12h I+1,m+1,n I+1,m—1n l—1,m+1,n l—1,m—1,n
Jj+1 Jj+1 Jj+1 j+1
(92) + Ul,m+1,n+1 - Ul,m—l,n+1 + Ul,m+1,n—1 ~ Yim—-1,n-1
41 j+1 homis j+1 4
+2(U] i = Ul 1)) — E[Fl,m-&-%,n - FLm_%,n] +O(h*)
STRE i+ it Lyt _ it
Zlomon 12h I+1,m,n+1 +1,m,n—1 l—1,m,n+1 I—1,m,n—1
G+1 G41 G41 G4+1
(93) + Ul,m+1,n+1 + Ul,mfl,nJrl “ Yim+1in—-1" YIim—-1n—-1
J+1 J+1 h J+1 J+1 4
+ 2(Ul,m,n—‘rl - l,m,n—l)] - E[F‘l,m,njt% - Fl,m,nf%] + O(h )
where
J+1 _ . J+1 7j+1 j+1
F}i%,m,n *f(xlj:%aynu Znytj+1; Uli%:m’”, mli%,m,n, yl:t%mm,n7
j+1 j+1 )
Zitdomon’ tli%,m,n
J+1 _ . j+1 j+1 j+1
Fby o =10ty Uy U O3
j+1 Jj+1 )
Zz,mj:%,n7 tl,'m.j:%,n
j+1 _ . Jj+1 Jj+1 Jj+1
l,m,ni% —f(-le Ym; Zni% ’ t]+1’ Ul,my’ﬂi% ’ Uml,m,nﬂ:% ’ Yimmntl ’
Jj+1 Jj+1 )
Zlmontd’ tl,'rn,ni%
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By the help of the approximations (49)-(63), from (64)-(66), we obtain
(94) ﬁljjj;m = Fl]ffm + O(k + h?)
(95) ﬁﬁ;ﬁlé,n =F Ly +O0k+ 1)
(96) ﬁl{;}”i% = Fl{;}ni% + O(k + h?)

With the help of the approximations (94)-(96) and using the relations (91)-(93),
from (67)-(69), it is easy to verify that T/"! = O(kh*+h*), T)H! = O(kh* +-1h*)
and T3+ = O(kh? + h*).

4. Operator Splitting method

Consider the three-space dimensional linear singular diffusion equation

2 2 2
(97) (gxgt—kg;;—l—g;;—kigq;):gq:-i—g(m,y,z,t), 0<z,y,2<1,t>0
subject to appropriate initial and Dirichlet boundary conditions of type (2)-(5)
are prescribed, where v > 0 is called the diffusivity and g(z,y, z,t) is the forcing
function.
An application of the new difference method (48) to the differential equation
(97) leads to a linear difference scheme

1 2 1 2 2
[1—1—12(1 61/)\+)\P1)5m+12(1 6vA) (6, + 07)

1/ h VAh o o

Av i+1
- 500+ 020+ 200,
(98) 1 1
2 2 2
1/ h VAL, 5
+ Q(m? + 0202 + 8262 |u  — fzg
19V &Y yYz zVx l,m,n 12
where

—J _ T\ A _ 7
Domn = g(mi, Ym» Z”’tj)’gl:t%,m,n = g(xli%J/mv Znatj) etc. and

1 1 h?
P = —uh( - ) -2
T+l Ti- 22}

1 1 1 R (1 1
o) )
Ty T Ty AR \Ey Sy

— Al =7 =J =J =7 =7 _ =]
Eg - 4<gl+é,m,n + gl—%,m,n + gl,m+%,n + gl,m—%-,n + gl,m,n—i—% + gl,m,n—% 3gl’m,n)

L o
x; gl+%,m,n gl—%,m,n :
Note that, the linear difference scheme (98) is of O(k? 4+ h*) accuracy and requires

solution of a system of equations with a large band width (19-diagonal) matrix at
each time level.
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We can rewrite (98) in product form as:

[1+ L[l + Ly][1 + LeJui .,
(99) ; k
= [L+ ML+ My][1 + MJuy = 7529 = [Rul
where
1/ h
L, = 12(1 — 6U\ + APy)02 + 5 (2 + )\P2> (20202),
1 1
- 1 _ 2 1 _ 2
L, B (1= 6vA)0,, L, = B — (1 = 6vA)dzZ,
1/ h
M, = 5 (1+6vA — AP)o2 + 5 <2 - )\P2> (20202,
1 2 _ 1 2
My = 5 (1+6vA)3, M. = (14 6v2)87

The additional terms added in (99) are of high orders and do not affect the accuracy
of the scheme but enables a factorization of the operators of the scheme (98) which
is of O(k? + h?).

Now we study the Von-Neumann linear stability of the method (99). Assume
that the solution of (99) at each grid point (2, Ym, #n,t;) is of the form
(100) T
where i = /=1, £ is the amplification factor and may be complex and «, 3, are
phase angles. For stability, the amplification factor ¢ has to satisfy the inequality
€] < 1 for —7 < o, 8,7 < 7. Substituting (100) into the homogeneous part of
equation (99), the amplification factor £ can be written as

A1A2A3 + iA2A3A4

101 =
(101) B1ByB3 + 1By B3 B,
where
1 1
A1:17§(1+61/)\—)\P1)sin2%, A2:1—§(1+6m)sm2§
1 1/ h
A3—1—§(1—|—61//\)s1n2g A4:6<2xl_>\P2> sin a,
1 e’ 1 .
31:1—5(1—61//\+/\P1)s1n2§, Bg:l—g(l—ﬁy)\)sng,
1 1/ h
B;),—1—§(1—61/)\)51n2,2y B, = 6(2l—|—)\P2) sin .

Since max (sin2 ;) = max (sin2 g) = max (sin2 ;) = 1 and imposing this con-

dition directly on (101), we found that the inequality |£|?> < 1 is satisfied for all
phase angles «, 3,y € [—m, m]. Thus the scheme (99) is stable for all choices of
h >0 and k > 0.

In order to facilitate the computation, we may write the scheme (99) in three-
step operator split form as (see [4-7])

(102) [+ LaJuj = [Ru
(103) [1+Ly]u7mn 7ulmn
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Note that left hand sides of (102)-(104) are factorizations into z—,y— and z—
differences which allows us to solve (102)-(104) by sweeping first in the z—, second
in the y— and then in x— direction by the help of a tri-diagonal solver. v, . and
U}y, , are intermediate values and the intermediate boundary conditions required
for sweeping can be computed from (104) and (103), respectively.

Combining (103) and (104), we obtain
(105) [+ Ly + LoJuf |l =i,

ul,m,n

Thus the intermediate boundary conditions from (104) and (105) are obtained as
follows:

+1 +1
(106)  wujo, =[1+ Lw]“g,o,m U Ny =1+ Lr}“{,Nﬂ,n

(107)  uiho =1+ Ly)[L+ Lalull o, uih nyr = [+ Ly)[1+ Laul ) vy

Further note that, the variable coefficients associated with (102)-(104) are free from
the terms (1/z11), (1/ym+1) and (1/z,41), thus very easily solved for I,m,n =
1(1)N in the solution region 2 and no fictitious points are required to calculate the
intermediate boundary conditions.

5. Computational Results

If we substitute the approximations (6), (7), (20), (24), (28) and (32) with 6 = %
into the differential equation (1) we get the difference scheme

(82 + 82+ 8207 1.0
(108) = h2f($l7ym, Zmfj’Ug,m,n’Uiz,m,n’Ui/z,m,n’Uiz,m,n’Uil,m,n)
+ O(K*h? + n*)

To provide some indication of the accuracy of the proposed numerical methods, we
have solved the following three problems, whose exact solutions are known. The
right hand side functions, initial and boundary conditions may be obtained using
the exact solution as a test procedure. The operator splitting method has solved the
linear equation, whereas the generalized Newton-Raphson method has solved the
non-linear equations (see Hageman and Young [15]). We have also compared the
proposed method, with the method (108) which is of O(k? + h?). All computations
were carried out using the double precision arithmetic.

Example 1: The problem is to solve (97) with the exact solution given by u =
e V! coshz coshy cosh z. The root mean square (RMS) errors for u, u,,u,,u, are
tabulated in Table 1 at t = 1.0 for » = 01,001,0001 and for a fixed mesh ratio
parameter A = 1.6.

Example 2: (Burgers’ Equation)
(109) V(Ugg + Uyy + Uzz) = U + u(ty +uy +u,),0 < z,y,2<1,t>0

2umsin(w(z +y + z))e*3’”2t

2+ cos(m(z +y + z))e3vrt’

where v = R_;! > 0. The RMS errors for u, u,, Uy, U, are tabulated in Table 2 at
t = 1.0 for various values of R, and for a fixed mesh ratio parameter A\ = 1.6.

The exact solution is given by u(z,y, z,t) =
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Example 3:
Uy + Uyy + Uzy = Uy + au(um + Uy + uz)—i—f(x,y, 2, t)’

110
(110) 0<z,y,2<1,t>0

The exact solution is given by u = e~ ! sin(nz) cos(my) sin(rz). The RMS errors
for u, ug, uy, u, are tabulated in Table 3 at ¢ = 1.0 for various values of a and for
a fixed mesh ratio parameter A = 1.6.

6. Concluding Remarks

In this article, we have developed a new three-level 19-spatial grid point implicit
finite difference method of O(k* 4+ kh? + h*) based on grid points @, Ym, zn, t;,
T1+1/2, Ym+1/2, Znt1/2, tj+1 for the solution of three space dimensional non-linear
parabolic partial differential equations and the estimates of first order derivatives
(Ou/0x), (Ou/dy) and (Ou/9dz). Although the proposed methods involve more alge-
bra, the developments of new methods yield direct application to singular problems
without any modification in the original scheme, which is an added advantage. The
operator splitting method, which is unconditionally stable, is really impressive, for
which we need only a tri-diagonal solver to solve the linear problem. Computational
results indicate that the proposed high order methods are computationally more
efficient than the corresponding difference methods of O(k? + h?). The numerical
results confirm that the proposed methods produce oscillation free solutions for
large values of R..

TABLE - 1 Example 1: The RMS errors

O(k% + kh% + h?) - ADI method O(k? 4+ h?) - ADI method
h v=.1 v =.01 v =.001 v=.1 v=.01 v =.001
i u  .6086(-5) .4884(-6) .1619(-7) .3618(-4) .4502(-5) .4684(-6)
uy .2965(-3) .2878(-3) .2868(-3) .7341(-2) .8032(-2) .8105(-2)
u, 4124(-3) .4147(-3) .4148(-3) .7341(-2) .8032(-2) .8105(-2)
u, .4124(-3) .4147(-3) .4148(-3) .7341(-2) .8032(-2) .8105(-2)
é u  .3860(-6) .2221(-7) .8688(-8) .7520(-5) .8615(-6) .8881(-7)
uy .1984(-4) .1927(-4) .1920(-4) A1971(-2)  .2157(-2)  .2176(-2)
u, 2751(-4) .2767(-4) .2767(-4)  .1971(-2) .2157(-2) .2176(-2)
u, .2751(-4) .2767(-4) .2767(-4) 1971(-2)  .2157(-2)  .2176(-2)
%6 w  .2007(-7) .1080(-8) .5550(-9) .1618(-5)  .2424(-6) .2819(-7)
u, .1133(-5) .1121(-5) .1119(-5) 4188(-3) .4280(-3) .4284(-3)
uy .2002(-5) .2088(-5) .2088(-5) A4188(-3) .4280(-3) .4284(-3)
u, .2002(-5) .2088(-5) .2088(-5) 4188(-3) .4280(-3) .4284(-3)
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TABLE -2 Example 2: The RMS errors

O(K% + kh? + h?) method O(k® + h?) method
h R.=10 R.=10> R,=103 R.=10 R.=10> R,=103
T w  3168(-4) 5551(-4) .6116(-5)  .1733(-2) .9990(-3) .2020(-4)
ug, .1704(-2) .2005(-2) .3420(-3) 2958(-2) .8159(-2) .1996(-2)
u, 1704(-2) .2005(-2) .3420(-3)  .2958(-2) .8159(-2) .1996(-2)
u, .1704(-2) .2005(-2) .3420(-3) 2958(-2) .8159(-2) .1996(-2)
L ow 1244(-5) .2664(-5) .3636(-6)  .3486(-3) .2289(-3) .6424(-5)
up, .1108(-3) .1074(-3) .2468(-4)  .7957(-3) .1933(-2) .5249(-3)
u, .1108(-3) .1074(-3) .2468(-4) 7957(-3) .1933(-2) .5249(-3)
u, .1108(-3) .1074(-3) .2468(-4) 7957(-3) .1933(-2) .5249(-3)
TABLE- 3 Example 3: The RMS errors
O(Kk% + kh? + h?) method O(k% + h?) method
h a=10 a=20 a =50 a=10 a = 20 and 50
T w  8163(-3) .4181(-2) .6318(-2)  .2892(-2) Over Flow
up AT29(-2) .1082(-1) .3466(-1)  .2594(-1)
u, .1650(-1) .2268(-1) .5018(-1)  .5740(-1)
w, A729(-2) .1082(-1) .3466(-1)  .2594(-1)
% w  .5115(-4) .2020(-3) .3615(-3) .6543(-3) Over Flow
ug .3043(-3) .8583(-3) .2409(-2) 7981(-2)
u, 9204(-3) .1332(-2) .3007(-2)  .1136(-1)
u, .3043(-3) .8583(-3) .2409(-2) 7981(-2)
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