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Abstract. Boundary conditions for molecular dynamics simulation of crystalline solids are
considered with the objective of eliminating the reflection of phonons. A variational formalism
is presented to construct boundary conditions that minimize total phonon reflection. Local
boundary conditions that involve a few neighbors of the boundary atoms and limited number
of time steps are found using the variational formalism. Their effects are studied and compared
with other boundary conditions such as truncated exact boundary conditions or by appending
border atoms where artificial damping forces are applied. In general it is found that, with the
same cost or complexity, the variational boundary conditions perform much better than the
truncated exact boundary conditions or by appending border atoms with empirical damping
profiles. Practical issues of implementation are discussed for real crystals. Application to
brittle fracture dynamics is illustrated.
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1 Introduction

The main purpose of this paper is to present a systematic study of the boundary conditions
for molecular dynamics (MD) simulation of crystalline solids at low temperature. We have in
mind two kinds of problems: either the MD is done in isolation with some experimental loading
conditions applied to the boundary of the MD domain, or it is coupled with a continuum model
outside the MD region. It has been realized that in both cases, at low temperature, the key issue
is to eliminate the reflection of phonons at the boundary of the MD region or the continuum-MD
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interface. Here we will present both the theoretical framework and the numerical procedure for
constructing boundary conditions that accomplish this.

The problem, as formulated above, closely resembles the problem of absorbing boundary
conditions for the numerical computation of wave propagation at the far field boundary where the
computational domain is truncated [14,15]. Indeed our work is very much inspired by the work in
that area. In the physical world, waves know of no boundaries as they propagate. But to compute
them numerically, one has to truncate the domain somewhere in order to have a computational
domain of finite size. At this artificially created boundary, some numerical boundary conditions
have to be used for any kind of numerical algorithms. Ideally the numerical boundary conditions
should be such that the computed solutions closely approximate the physical solutions in the
infinite medium. Since there are no sources of waves outside the computational domain, this
amounts to requiring that the waves are not reflected at the artificial boundary.

In principle, one can write down exact reflectionless boundary conditions. In section 2, we
include a concise derivation of such exact boundary conditions. In practice, however, these
exact boundary conditions are of little use since they are nonlocal both in space and in time.
Furthermore, the influence kernels (also known as response functions, influence matrices, time
history kernels etc) in these boundary conditions decay rather slowly. Therefore since the 70’s,
much effort has gone into finding approximate but local boundary conditions that eliminate
wave reflection to high order accuracy. Most well-known among such boundary conditions are
the absorbing boundary conditions proposed by Engquist and Majda [14,15], which were based
on approximating the Fourier symbols associated with the exact boundary conditions, by either
Taylor expansion or Padé approximation in the regime of near normal incidence.

Our problem for MD is very similar in spirit. The main issue is again the formulation
of boundary conditions so that phonons, the discrete lattice waves, are not reflected at the
boundary. Indeed one can also write down exact boundary conditions that accomplish this. This
was first done by Adelman and Doll for the simple one-dimensional discrete wave equation [1].
W. Cai et al. discussed how one can in principle obtain such exact boundary conditions in the
general case via numerical computations. This amounts to computing the response functions for
the boundary [6]. Karpov, Liu, Park, Wagner and co-workers continued with the path suggested
by Adelman and Doll, and extended that formalism to general crystal structures [22, 27,32].

Even though one can in principle obtain such exact boundary conditions, they have the same
difficulty as for the wave equation: they are nonlocal in space and time, and the influence kernels
decay rather slowly. Experience with the wave equations suggests that these exact boundary
conditions may not be the most efficient tools for numerical computations. This is particularly
an issue in coupled continuum-MD simulations where we expect the MD region to change as the
computation proceeds. Therefore as for wave equations, it is of considerable practical interest to
find approximate boundary conditions which are local. This idea was first pursued in the work
of E and Huang [11,12] for simplified models, and the present paper continues on that path.

At this point, it is important to note a crucial difference between the wave equation and MD:
the wave equation is continuous and for that reason, as long as the waves are fully resolved by the
numerical grid, we can use small wavenumber approximations. In contrast, MD is discrete and
the phonon spectrum spreads over all wavenumbers. The boundary conditions that we devise
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have to take into account phonons at all wavenumbers. Based on this consideration, [11, 12]
proposed to design MD boundary conditions in such a way that some integrated quantities
representing total phonon reflection are minimized. This idea was applied to some one and two
dimensional examples, and the results were quite promising.

The present paper presents a systematic exploration of such variational boundary conditions
for general lattices. First we formulate a variational principle for the minimization of total
phonon reflection. Local boundary conditions are then derived based on this variational prin-
ciple. These boundary conditions are compared with the exact boundary condition, and it is
demonstrated that one can achieve almost the same effect as the exact boundary conditions,
but at much less cost. As we increase the number of time steps involved in the local boundary
conditions, we can recover the exact boundary condition in the limit of infinite number of time
steps. Next we discuss various practical aspects of these local boundary conditions, including
applications to complex crystal structure, three dimensional problems, efficient integration over
the Brillouin zone, maintaining external loading etc. Finally we apply these boundary conditions
to the simulation of crack propagation in solids.

A main issue that we are concerned with is the compactness of the boundary conditions.
One idea that we explore is the use of a larger stencil in space (i.e. more atoms in space), and
in turn we use much fewer number of time steps in the boundary conditions. To illustrate this
point, we will derive alternative exact boundary conditions that involve more atoms. We show
that by doing so, we achieve faster decay of the kernels in time.

A popular technique used by many people is to employ a border region where phonons are
damped by adding damping terms to the equations of motion. While this technique is quite
convenient to use, there does not seem to exist any theory for selecting the optimal profile for
the damping coefficient, or assessing the effect of such a procedure. We will present an example
to show that in the absence of such a theory, this technique may not be very reliable.

Since there is a close analogy between the issues addressed here and the absorbing boundary
conditions for the wave equation, we begin in the next section by reviewing briefly the situation
for wave equation. We then turn our attention to MD in section 3, discussing how the reflection
matrix can be computed for a given boundary condition, and how local boundary conditions
can be derived that minimize phonon reflection. In section 4 several implementation issues are
discussed. Finally we test these local boundary condition in simulations of brittle fracture in
section 5.

2 Boundary conditions for the wave equation

In order to understand the general formulation of the boundary conditions, we first discuss a
continuous case: the wave equation. We assume that the sources of the waves, in the initial
data, are contained in the right half space x > 0. Of course the waves will then propagate over
the whole space. But we are only going to compute them in the right half space. For that
purpose, we will have to impose artificial boundary conditions at x = 0. Ideally the boundary
condition has to be such that the computed solution coincides with the exact solution when the
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wave equation is solved over the whole space.

2.1 Exact boundary condition

There does exist boundary conditions that fulfill the requirement stated above. These are called
exact boundary conditions. To derive the exact boundary condition, we solve the wave equation
in the left half-space,

utt = c2∆u, x < 0,
u(x, y, 0) = 0,
ut(x, y, 0) = 0,
u(0, y, t) = u0(y, t).

(2.1)

Taking the Fourier transform in y and Laplace transform in t, and letting

û(x, k, s) = Fy→kLt→s[u].

we then have,

ûxx = (s2/c2 + k2)û,

and so

û(x, k, s) = ex
√

(s/c)2+k2

û0(k, s).

This implies that for any x < 0,

u(x, y, t) =

∫ t

0

∫

R

G(x, y − η, t − τ)u0(η, τ)dηdτ, (2.2)

where,

Fy→kLt→s[G] = ex
√

(s/c)2+k2

.

The kernel G(x, y, t) is computed numerically and plotted in Fig. 1 for c ≡ 1, and x = −1.
Similar boundary conditions have been derived for discrete wave equations [3, 13,18].

2.2 Absorbing boundary condition

The exact boundary condition (2.2) is non-local in both space and time, which makes it imprac-
tical for numerical implementations. Therefore effort has been made to derive approximations
of (2.2) that are local in character. One class of local boundary conditions, known as absorbing
boundary condition (ABC), has been developed in [14, 15]. ABC aims at absorbing waves that
move toward the boundary so that they are not reflected. To derive such boundary condition,
one first considers left-moving wave packets expressed as a Fourier integral,

u(x, y, t) =

∫ ∫
ei(

√
ω2−ξ2 x+ξy+ωt)û0(ξ, ω)dξdω. (2.3)
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Figure 1: The kernel G(x, y, t) in the exact boundary condition (2.2).

In this case one can easily find the exact boundary condition,

∂
∂xu(0, y, t) =

∫ ∫
ei(ξy+ωt)i

√
ω2 − ξ2 û0(ξ, ω)dξdω

=

√
∂2

∂t2
− ∂2

∂y2
u0(y, t),

(2.4)

through a non-local operator.
The next step is to approximate the operator by a local one. For ξ/ω small, namely near

normal incidence, one can approximate,

i
√

ω2 − ξ2 = iω
√

1 − (ξ/ω)2,

by a Taylor or Padé expansion. For instance, the first order approximation yields,

i
√

ω2 − ξ2 = iω
(
1 + O(ξ2/ω2)

)
,

which corresponds to the first order time derivative, and gives

( ∂

∂x
− ∂

∂t

)
u
∣∣∣
x=0

= 0.

The next order expansion,

i
√

ω2 − ξ2 = iω
(
1 − 1

2
ξ2/ω2 + O(ξ4/ω4)

)
,
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leads to,
( ∂2

∂t∂x
− ∂2

∂t2
+

1

2

∂2

∂y2

)
u |x=0 = 0.

Following the same procedure, a hierarchy of boundary conditions are derived in [14,15].

Given a boundary condition defined through an operator B(ξ, ω), namely

∂

∂x
u(0, y, t) =

∫ ∫
B(ξ, ω)û0(ξ, ω)ei(ξy+ωt)dξdω, (2.5)

one can calculate the amount of wave reflection due to the applied boundary condition. To see
this, we consider solutions of the form:

u(x, y, t) = ei(
√

ω2−ξ2 x+ξy+ωt) + R(ξ, ω)ei(−
√

ω2−ξ2 x+ξy+ωt). (2.6)

Substituting (2.6) into (2.5), we get

R(ξ, ω) = −B − i
√

ω2 − ξ2

B + i
√

ω2 − ξ2
. (2.7)

3 Boundary conditions for molecular dynamics

Now we turn to boundary conditions for molecular dynamics (MD). In MD, the system is
described by the position and momentum of each individual atom in the system. The dynamics
of the atoms obey Newton’s law:

miR̈i = −∇Ri
V, (3.1)

where mi denotes the mass of the ith atom, and V (R1,R2, · · · ,RN ) is the interatomic potential.

We will set up the problem in the same way as we did for the continuous case. Let n

be the inward normal vector of the boundary, pointing into the computational domain. A two
dimensional example is shown in Fig. 2 for triangular lattice with n = (1, 0). We will assume that
the boundary coincides with a plane of major symmetry, including mirror symmetry. Without
loss of generality, we designate the atom with index 0 as a boundary atom, and r0 = 0. We will
assume that the lattice has a basis consisting of basis vectors {ti, i = 1, 2, · · · , d} with d being
the dimension. The corresponding basis in the wavenumber space is {kj , j = 1, 2, · · · , d} with
standard normalization [4],

ti · kj = 2πδij .

Throughout the paper, we will use f̂ to represent the Fourier transform of f and f̃ for the
Laplace transform of f .
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n

Figure 2: Boundary condition for molecular dynamics on a triangular lattice: the filled circles indicate

atoms inside the computational domain; the open circles represent boundary atoms, the displacement

of which is needed in the force calculation of the inside atoms. In the case when only nearest neighbor

interaction is present, boundary conditions are needed for the two layers of boundary atoms next to the

boundary, as shown in the picture.

3.1 Exact boundary condition

In the case when the atomic interaction is linear, it is possible to find the exact boundary
condition, which expresses the displacement of the boundary atom in terms of the trajectory of
the atoms inside of the computational domain. In [1,2,18] it was found that for one dimensional
models, the boundary condition takes the form

u0(t) =
∑

j≥1

∫ t

0
βj(t − τ)uj(τ)dτ. (3.2)

The time history kernel βj(t) describes the response of the boundary atom to the displacement
of the jth atoms.

We now show for multi-dimensional lattices, the exact boundary condition can also be found.
The procedure, which will be illustrated for the 3D case, d = 3, is very similar to that presented
in the previous section. We first switch the indices of an atom from i to a triple index (i, j, k)
which label the components in the selected basis vectors of the lattice. Without loss of generality,
we assume that the normal vector coincides with the basis vector t1. In the case when the
interatomic force is linear, the equation of motion can be written as,

M üi,j,k = −
∑

l,m,n

Di−l,j−m,k−nul,m,n, (3.3)

with u being the displacement and M being the mass matrix. One can reduce the summation
over the first index to −Ne ≤ l ≤ Ne for some integer Ne which represents the effective range of
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the interatomic potential. To set up such equations for a complex lattice with na atoms in each
primitive cell, the atoms in each cell are grouped together and an extended displacement vector
is defined. The length of the extended vector is S = 3na. For simple lattice, S is equal to the
dimension.

Taking Fourier transform in the t2 and t3 directions, we arrive at,

MÜi(η, ζ, t) =
∑

l

D̂i−l(η, ζ)Ul(η, ζ), (3.4)

where

U = Fj→η,k→ζ [u], D̂ = Fj→η,k→ζ [D],

are the Fourier transform of the displacement and the force constant respectively.

Since we are only interested in what happens in the computational domain, e.g. i > Ne, we
may assume that

ui,j,k(0) = u̇i,j,k(0) = 0, for i ≤ Ne.

Namely outside of the computational domain, the system is at zero temperature.

By taking the Laplace transform in time, and letting

Ũ(η, ζ, s) = Lt→sU(η, ζ, t).

we get the following difference equations,

s2MŨi =
∑

l

D̂i−lŨl, i ≤ Ne. (3.5)

In order to find the general solution of the difference equation, we follow the standard procedure
and seek solutions with the form of,

Ũi = λiε.

This leads us to considering the algebraic equation,

det
∣∣∣

Ne∑

l=−Ne

D̂lλ
l + s2MI

∣∣∣ = 0. (3.6)

Assuming that detD̂Ne 6= 0, we get a polynomial with degree 2 × S × Ne.

Consider first the case when |λ| = 1, and let λ = eiξ. The above equation (3.6) implies that
the matrix

D(ξ) =
∑

l

D̂le
ilξ,

has a negative eigenvalue. This matrix, which will be defined later, is known as the dynamic
matrix. In order for the crystal to be stable, this matrix has to be positive definite. Hence this
case is ruled out.
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Because of the mirror symmetry of the crystal with respect to the boundary, we have

D̂l = D̂∗
−l.

The symbol ∗ here indicates the conjugate transpose. This shows that if λ is a solution, then
the conjugate reciprocal, 1/λ̄, is also a solution. Therefore the number of solutions with |λ| < 1
is exactly SNe. These modes shall be excluded to avoid exponential growth toward −∞. We
choose the modes

{λl, |λl| > 1, l = 1, 2, · · · , SNe},

with the corresponding linearly independent eigenvectors,

{εl, l = 1, 2, · · · , SNe}.

The general solution to the difference equation can now be written as,

Ũi =
∑

l

clλ
i
lεl. (3.7)

with the constants cl. In particular, for the boundary atom,

Ũ0 =
∑

l

clεl.

It remains to find the coefficients cl. Given Ũl, l = 1, 2, · · · , Ne, substitutions can be made to
(3.7), which leads to a linear system for these coefficients. As a result, Ũ0 is expressed in terms
of these prescribed values,

Ũ0 =
∑

l

ΘlŨl, (3.8)

where Θl’s are some S-by-S matrices.

Now applying an inverse Laplace transform in s and inverse Fourier transform in (η, ζ), and
we obtain the exact boundary condition in the following form,

u0,j,k(t) =
∑

m

∑

n

∫ t

0
θl,j−m,k−n(t − τ)ul,m,n(τ)dτ, (3.9)

where,

Lt→sFm→η,n→ζ [θl,m,n] = Θl(η, ζ, s).

This procedure is quite general. Another systematic procedure has been developed in [22, 32]
to derive the kernels θ. From (3.7) it is possible to represent any other atom outside of the
computational domain using different time history kernels. It is also noteworthy that in multi-
dimension the exact boundary condition is nonlocal in both time and space; it requires that the
displacement of the atoms on the next Ne layers be given for all previous time.
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As an example, we consider a 1D chain of atoms connected by springs. After linearizing the
Newton’s equation at the equilibrium configuration, one gets the equation,

müj = K
(
uj+1 − 2uj + uj−1

)
/a2. (3.10)

for the displacement. Using {K, m, a} as unit for energy, mass and length, we nondimensionalize
the equation (3.10) to,

üj = uj+1 − 2uj + uj−1.

With the help of Laplace transform, the following difference equation,

s2ũj = ũj+1 − 2ũj + ũj−1,

is obtained, with two modes given by,

λ± = 1 +
s2

2
± s

2

√
s2 + 4.

By choosing λ+, we have
ũj = Cλj

+, (3.11)

for some C depending only on s. In particular,

ũ1 = λ+ũ0.

Therefore,

Θ(s) = λ+ = 1 +
s2

2
− s

2

√
s2 + 4.

An inverse Laplace transform yields,

θ(t) =
2J2(2t)

t
, (3.12)

and

u0(t) =

∫ t

0
θ(τ)u1(t − τ)dτ.

The function J2 is the Bessel function of the first kind. For large t these Bessel functions have
the following asymptotic approximation,

Jn(t) ∼
√

2

πt
cos(t − n

2
− π

4
).

Hence the kernel decays like t−3/2 as t approaches to infinity.
Exact boundary conditions are not unique. For instance one may choose the following form

of the exact boundary condition,

u0(t) =

∫ t

0
θj(τ)uj(t − τ)dτ, (3.13)
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for any j > 1. Since ũ0 = θ̃ũ1 = θ̃2ũ2 = · · · from (3.11), we have,

θ̃j = θ̃j .

The kernel θj(t), which reflects the influence of the jth atom on the boundary atom, has the
same decay rate as θ(t). However, if we include more atoms and consider boundary conditions
of a more general form:

u0(t) =
J∑

j=1

∫ t

0
αj(τ)uj(t − τ)dτ, (3.14)

we may be able to obtain history kernels that have faster decay rates. Next we will explain how
this can be done.

We begin the derivation by extending the functions αj(t) to (−∞,∞) by taking αj(t) = 0
for t < 0. With this extension, we have α̂j(ω) = α̃j(−iω). Note that

dnφ̂

dωn
=

∫ ∞

0
e−iωt(−it)nφ(t)dt.

Hence, if the nth derivative of the Fourier transform φ̂ exists, then φ decays no slower than
t−(n+1). For instance, the slow decay of β can also be seen from its Fourier transform

β̂(ω) = 1 − ω2

2
− iω

2

√
4 − ω2,

which contains a term
√

4 − ω2 that has infinite derivative at ω = ±2.

Based on this observation, we will continue the calculation in Fourier space. Taking Laplace
transform of (3.14), we get

J∑

j=1

α̃j θ̃
−j = 1, (3.15)

in the Laplace/Fourier space. The idea is for J > 1, one can reduce the singularity in θ̂ by
properly choosing the α̂j ’s. For that purpose we introduce the following functions,

Rn(s) = Pn(s2) − s(s2 + 4)n− 1

2 .

Here Pn is a polynomial with degree n. It is chosen in such a way that,

lim
s→+∞

Rn(s) = 0.

This guarantees that the inverse Laplace transform can be applied. For example, P1(s
2) =

1 + s2/2 and R1(s) = θ̃(s).

With the substitution s = −iω, we can see that Rn(−iω) ∈ Cn−1. So the corresponding
inverse Fourier transform decays no slower than t−n.
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Next we rewrite (3.15) as,

α̂J = θ̂J −
J−1∑

j=1

θ̂jα̂J−j , (3.16)

and we pick,

α̃j(s) = CjR2J−j+1, 0 < j < J. (3.17)

With this choice, all the kernels except αJ decay no slower than t−J . Notice that the right hand
side of the equation (3.16) contains singular terms like (4−ω2)k− 1

2 . The key idea is that in order
for αJ to have decay rate J , we select the coefficient Cj in such a way that the singular terms
for 1 ≤ k ≤ J − 1 are eliminated. This can be done by substituting (3.17) into (3.16), collecting
the singular terms of the same order and setting up a linear system. Therefore the problem of
finding αJ is reduced to solving the linear system of equations for Cjs.

Following this procedure, for J = 2, we find,

α1 =
J0(2t)

t3
(
− 360 + 1440t−2

)
+

J1(2t)

t2
(
− 60 + 1080t−2 − 1440t−4

)
,

α2 =
−48J0(2t)

t3
+

J1(2t)

t2
(
− 24 + 48t−2

)
,

and for J = 3 we find,

α1 =
J0(2t)

t3
(
− 420 + 332640t−2 − 6400800t−4 + 19051200t−6

)

+
J1(2t)

t4
(
30240 − 1945440t−2 + 15926400t−4 − 19051200t−6

)
,

α2 =
J0(2t)

t5
(
20160 − 80640t−2

)
+

J1(2t)

t4
(
3360 − 60480t−2 + 80640t−4

)
,

α3 =
J0(2t)

t3
(
240 − 1440t−2

)
+

J1(2t)

t4
(
− 960 + 1440t−2

)
.

Similar results have been obtained for the case J = 4. These results suggest that in general, the
kernels in (3.14) decay like O(tJ+1/2). Hence by extending the stencil in space, one makes the
boundary condition less history-dependent.

Numerically computing the exact time history kernels can be costly [6,27,32], especially for
3D crystals. Since they are nonlocal in both space and time, they are not the most efficient in
actual simulations. It is therefore of practical interest to look for local boundary conditions.
This becomes even more of an issue in multi-scale methods such as those in [10, 24], which
bridge MD with continuum models, because in these methods the MD region can change in
time. The main objective of this paper is to develop a systematic way of constructing local

boundary conditions that are as effective as the exact boundary conditions, but more suitable
for actual MD simulations.
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3.2 Analysis of phonon reflection

We begin with a brief discussion on the discrete lattice waves – phonons. More detailed discussion
can be found in standard solid state physics textbooks, for example [4]. The procedure is as
follows. We first linearize the equations of motion (3.1) around the equilibrium state. We then
apply normal mode analysis to obtain the phonon spectrum.

Let ri and Ri be the equilibrium and deformed position of the i-th atom, respectively, and
let ui = Ri − ri be the displacement vector. To study the phonon spectrum, we approximate
the interatomic potential by its second order Taylor expansion,

V (R1,R2, · · · ,RN ) = V0 +
1

2

∑

i6=j

uT
i Di−juj . (3.18)

This is known as harmonic approximation. The force constants {Dj} are related to the second
order derivatives of the potential. For example, for potentials with only pairwise interaction,

V =
1

2

∑

i6=j

φ(rij), rij = |ri − rj |

then (see [4])

Dj =

{ ∑
k ∇2φ(rjk), j = 0,
−∇2φ(rj), j 6= 0.

(3.19)

Here rj = |rj |.
This approximation leads to the linearized Newton’s equation,

M üi = −
∑

j

Di−juj . (3.20)

We now introduce the dynamic matrix:

D(k) =
∑

j

Dje
−ik·rj , (3.21)

In order for the crystal structure to be stable, the eigenvalues, λs, of the matrix M−1D have to
be nonnegative. The corresponding eigenvectors εs(k) are called the polarization vectors. We
will use the standard normalization,

εs · εs′ = δss′ . (3.22)

Substituting the time harmonic function

uj = ei(k·rj−ωst)εs(k),

into (3.20), one finds the dispersion relation,

ω2
s = λs.
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We will take ωs =
√

λs. The index 1 ≤ s ≤ S designates the different phonon branch, and S
is the number of branches in the spectrum. For simple lattice, S = d. To carry out the same
analysis for a complex lattice with na atoms in each primitive cell, one can put together the
displacement of all the atoms within each cell, and define an extended displacement vector,

uj = (u
(1)
j ,u

(2)
j , · · · ,u

(na)
j ),

where the superscript indicates the order of the atoms in a primitive cell. This way the size of
the dynamic matrix is nad × nad, and S = nad.

The phonon spectrum inherits some symmetry properties from the original lattice. To see
this, let P be a transformation in the space symmetry group of the lattice, and

det(P ) = ±1, P T P = I.

Since the lattice is invariant under the transformation P , from (3.20) one has

PD(k)P T = D(Pk). (3.23)

Using (3.23), one gets,

λs(k) = λs(Pk), εs(Pk) = Pεs(k). (3.24)

This shows that the polarization is altered by the transformation, while the phonon frequency
remains unchanged.

We will use a wavenumber k to indicate a phonon mode. Due to the periodic structure of the
lattice, some of the phonon modes are equivalent. For this reason, we restrict the wavenumber
to the first Brillouin zone, denoted by B. Among the equivalent modes, the set B selects the
one with smallest magnitude.

Now we study phonon reflection due to the applied boundary conditions. In particular we
discuss how to find all the possible reflected phonons given an incident wave. In the context
of elastodynamics, this issue has been previously studied both experimentally and theoretically
[26, 29]. In order for the displacement and strain to be continuous before and after the phonon
reflection, the frequency and the component of the wave vector parallel to the boundary have
to be conserved. To be more specific, let kI and kR be the wavenumber corresponding to the
incident and reflected phonon mode respectively, and kI ∈ B. Then kR must satisfy,

kI − (kI · n)n = kR − (kR · n)n, ωs(k) = ωs′(k
R), (3.25)

for some 1 ≤ s, s′ ≤ S. This is schematically shown in Fig. 3. Also plotted are the level sets
of the frequency, and the plane expressed by the first equation in (3.25). The intersections will
determine the wavenumber of the reflected phonons.

A special case is when the reflected wave is on the same phonon branch as the incident wave,
namely s = s′, then,

kR = kI − 2(kI · n)n, (3.26)
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Figure 3: Schematics of incident and reflected waves. The case of one incident wave kI and three resulting

reflected waves is shown. We also drew the level sets of the phonon branches ωs(k) = ω(kI), s = 1, 2, 3, as

well as the plane k− (k ·n)n = kI − (kI ·n)n (dashed line). The intersections determine the wavenumber

of the reflected waves.

satisfies (3.25) owing to the mirror symmetry of the phonon frequency with respect to the
boundary.

Although equations (3.25) provide sufficient information for finding the reflected phonons,
they are numerically difficult to solve. Here we provide an alternative procedure: we first make
the following decomposition along the tangential and the normal directions of the boundary

k = kt + (k · n)n, kt · n = 0.

In addition we let,

λ = e−ik·nan , (3.27)

where an is the lattice spacing along the normal direction. For instance in Fig. 2, an = a0/2
is half of the lattice parameter. Next we make the observation that along the normal direction,
the crystal consists of layers. Therefore to compute the dynamic matrix, we can group all the
terms that come from the same layer. In fact, we can define,

D̂l(kt) =
∑

rj ·n=lan

Dje
−ikt·rj , (3.28)

and after a Fourier transform along the normal direction, we have

D(k) =

Ne∑

l=−Ne

D̂lλ
l, (3.29)
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n 

ω 

Figure 4: Selection of the wavenumbers that correspond to the reflected wave. For some fixed kt, we can

plot the dispersion relation along the normal direction. In this example S = 1, Ne = 4. For low frequency

ω, one finds two real and two complex solutions to (3.30). At high frequency, four real solutions can be

found, two of which have positive group velocity, providing the wavenumber for the reflected phonons.

where Ne is the number of layers that have direct interactions with the outer-most layer.
This provides an alternative way of finding the reflected phonons: given an incident wave,

we first compute the matrices (3.28) since kR
t = kI

t is known. Next, to match the frequency of
the incident and reflected phonons, we must have,

det
∣∣∣D(kR) − ω2

s(k
I)I

∣∣∣ = 0. (3.30)

Clearly this leads to a polynomial with degree 2Ne × S. Meanwhile notice that Dj = DT
−j . The

transpose is only necessary for complex lattices. This, along with (3.28) implies that D̂−l = D̂∗
l .

Therefore the roots of (3.30) come in pairs: if λ is a solution, then 1/λ is also a solution. Once
all the roots are found, we obtain the normal components of the reflected phonon mode from
(3.27).

Equation (3.30) should be satisfied by both the reflected and transmitted phonons. The
selection of the wavenumbers that correspond to the reflected phonons is done in the following
way: if the wavenumber is complex, then from the discussion above and from (3.30) and (3.27),
we have a pair of wavenumbers k · n = a ± bi. In this case we choose the one with positive
imaginary part which leads to a wave mode with exponentially decaying amplitude. On the
other hand if the wavenumber is real, then because of crystal symmetry, we have a pair of
wavenumbers k · n = ±ξ. In this case we choose the one with positive group velocity ∇nω > 0.
This corresponds to a wave packet that re-enters the domain after the reflection. This selection
procedure is shown in Fig. 4.

We will denote these wave vectors as

{kR
ss′

l
, l = 1, 2, · · · , NR}, NR = Ne × S,
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with s and s′l indicating the branch of the incident and reflected phonon mode respectively.

Remark 3.1. It is likely that the wavenumber becomes complex. This happens, for instance,
when the incident angle is large. It will be shown that the energy flux corresponding to these
phonon mode vanishes along the normal direction. Therefore the energy will be trapped at the
boundary and will not re-enter the domain.

Remark 3.2. There has been studies on phonon reflection in the context of linear elastodynam-
ics [26,29]. In that case, the number of reflected waves is equal to the dimension. In the case of
MD, the number of reflected phonons depends on the effective range of the atomic interaction
and the number of phonon branches.

The wavenumber of the reflected phonon does not depend on the particular boundary condi-
tion. But the magnitude of the reflected wave does. In this paper we will focus on the following
class of boundary conditions,

u0(t) =
∑

rj∈J

∫ t0

0
αj(τ)uj(t − τ)dτ, (3.31)

with the matrices
(
αj

)
d×d

to be determined. The set J is a set of lattice points that correspond
to some neighbors of atom 0 located inside the MD domain, namely rj · n ≥ 0,∀rj ∈ J . This
is called the stencil in numerical analysis. We will use |J | to indicate the number of atoms in
this set.

These boundary conditions are clearly more general than those in (3.9). It offers the flexibility
of choosing the stencil: the number of the neighboring atoms |J | and the number of previous
time steps involved. Our hope is that by using more atoms in space, we might get away with
using less previous time steps.

To compute the reflection produced by the boundary condition (3.31), we consider linear
superposition of an incident and the resulting reflected waves,

uj(t) = cI
se

i(k·rj−ωst)εs(k) +

NR∑

l=1

cR
ss′

l
e
i(kR

ss′
l

·rj−ωst)
εs′

l
(kR

ss′
l
). (3.32)

After substitution into (3.31), we find,

cI
s

(
I −A(k)

)
εs(k) +

∑

l

cR
ss′

l

(
I −A(kR

ss′
l
)
)
εs′

l
(kR

ss′
l
) = 0,

where,

A(k) =
∑

j

eik·rj

∫ t0

0
αj(τ)eiωsτdτ,

is reminiscent of a mixed Fourier and Laplace transform.
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Next let Rs = (Rss′
1
, Rss′

2
, · · · , Rss′

NR

) be the solution of the linear system,

MR
s Rs + M I

s = 0, (3.33)

where the s′l-th column of the matrix MR
s is

(
I −A(kR

ss′)(k)
)
εs′

l
(kR

ss′
l
),

and,

M I
s =

(
I −AI

s(k)
)
εs(k).

Then the amplitudes of the reflected waves are given in terms of the amplitude of the incident
wave by

cR
ss′

l
= Rss′

l
cI
s,

for 1 ≤ s ≤ S.
In the calculations above the boundary condition (3.31) for atom 0 has been used. For any

other atom ri on the same layer, since ri ·n = r0 ·n, the same results will follow if the following
boundary condition is applied,

ui(t) =
∑

rj−ri∈J

∫ t0

0
αj(τ)uj(t − τ)dτ. (3.34)

The stencil for any other atom is obtained with a simple translation. As discussed before, there
are Ne layers of boundary atoms for which boundary conditions have to be supplied. Similar
boundary conditions can be sought for other layers. For practical purposes, we will apply the
same boundary condition (3.34) to atoms on all other layers: l = 0, 1, · · · , Ne − 1. This reduces
the number of history kernels involved and makes the implementation easier. Different equations
will be obtained from different layers following the same analysis and they will be added to (3.33).
Since for each layer the matrix MR

s has NR columns and S rows, in total we obtain a NR by
NR linear system, which can be solved for the reflection matrix Rs.

In practical implementations, we use a discrete version of (3.31):

un+1
0 =

∑

j∈J

M∑

m=1

αm
j un−m+1

j ∆t, (3.35)

where un
j approximates uj(n∆t), and ∆t is the time step in the MD simulation. M here indicates

the number of time steps involved in the boundary condition. One can follow the same procedure
and carry out similar analysis on the phonon reflection. The only major difference that enters
the analysis is that the dispersion relation depends on the time step ∆t. For example with
velocity Verlet discretization,

üj ≈
un+1

j − 2un
j + un−1

j

∆t 2
,
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the dispersion relation for the discrete MD equation,

un+1
j − 2un

j + un−1
j

∆t 2
= − ∂V

∂Rj
, (3.36)

is given by,

ωs =
2

∆t
arcsin

(∆t

2

√
λs

)
. (3.37)

3.3 Variational absorbing boundary conditions

Physically phonons are the carriers of thermal energy, and the propagation of phonons will result
in energy transport. Phonon reflection is often observed with the increase of local temperature.
It is therefore natural to formulate the boundary condition by minimizing the thermal flux,
especially the component normal to the boundary. Starting from molecular dynamics at the
atomic scale, we will express the energy flux due to phonon reflection in terms of the reflection
coefficients Rs. For simplicity we will assume that the crystal is a simple lattice. Similar
calculations, however, can be done for complex lattices.

In the harmonic approximation, the energy flux is expressed by,

J = −1

2

∑

i6=j

(u̇ri
+ u̇j)

T Di−j(ui − uj)rij . (3.38)

The formula was derived from the energy balance at the atomic scale [21, 24]. The energy flux
normal to the boundary, J · n, is directly responsible for the energy change in the system.

The double summation can be rewritten in terms of the position of all atoms ri and their
neighbors ri + rj ,

J = −1

2

∑

i

∑

j

(u̇i + u̇i−j)
T Dj(ui − ui−j)rj . (3.39)

Now notice that the summation over i and j can be interchanged. We will transform the
summation over ri to Fourier space and keep the summation over rj . Meanwhile we will take
the Fourier representation (3.32) of ui and proceed with the calculation for the energy flux on
each phonon branch, denoted by Js for the sth branch.

Using Plancherel’s theorem, we obtain

Js = −1

2

∑

j

∫
iωsu

∗(k)Dju(k)
(
1 + eirj ·k)(

1 − e−irj ·k)
dk rj .

Substituting (3.32) into the integral, and noticing that the wavenumber of the incident and
reflected phonons have different normal components, we can split the integral,

Js = JI
s + JR

s ,
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with,

JI
s =

∑

j

∫
|cI

s|2ωsε
∗
s(k)Djεs(k) sin(k · rj)dk rj ,

JR
s =

∑

j

∑

l

∫
|cR

s |2ωsε
∗
s′
l
(kR

ss′
l
)Djεs(k

R
ss′

l
) sin(kss′

l
· rj)dk rj ,

representing respectively the energy flux due to the incident and reflected waves. The Sine
function comes from the calculation of,

(1 + eik·r)(1 − e−ik·r).

We first discuss the case where the wavenumber k of a reflected phonon has a complex normal
component. Using the identity,

sin(a + bi) + sin(a + bi) = 2 cosh(b) sin(a),

we find that
φj(k) + φj(k) + φ−j(k) + φ−j(k) = 0,

where the function φ,
φj(k) = sin(k · rj)rj · n.

Therefore these waves do not contribute to normal component of the energy flux. They are
surface waves. In the following calculation we will assume that the wavenumber is always real.

Next let kα and rα
j be the αth components of the vectors k and rj respectively. Notice that,

D(k) =
∑

rj

Dj

(
2 − 2 cos(k · rj)

)
,

therefore,

2
∑

rj

Dj sin(k · rj)r
α
j = ∇kα

D(k),

gives the directional derivative. On the other hand,

d

dkα
D(k)εs(k) =

d

dkα
λs(k)εs(k) −

(
D(k) − λ

) d

dkα
εs(k).

The last term drops out when multiplied by εs(k)∗ from the left.
Finally using equation (3.22), we have,

JI
s · n =

∫
|cI

s|2ω2
s∇ωs(k) · n dk.

Similarly,

JR
s · n =

∑

l

∫
|cR

ss′
l
|2ω2

s∇ωs′
l
(kR

ss′
l
) · n dkR

ss′ .
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This is consistent with the observation that the energy is transported at group velocity.

To simplify the second integral, we switch the variables kR
ss′

l
to k and change the integral to

half of the Brillouin zone where k · n ≤ 0. The Jacobian is obtained from (3.25),

∂k̃R
ss′

l

∂k
=

∂nωs

∂nωs′
.

Therefore the energy flux due to phonon reflection can be expressed as,

JR · n =
∑

s

∫

k∈B, k·n≤0
|
∑

l

cI
sRss′

l
|2ω2

s |∇ωs · n|dk. (3.40)

Absolute value is used for the group velocity because the reflected phonon mode has positive
group velocity along the normal direction.

This calculation clearly shows the role of the reflection matrix in the energy flux. It also
suggests that in order to minimize phonon reflection, it is natural to choose the coefficients such
that JR · n, the energy flux due to phonon reflection off the boundary, is minimized.

Equations (3.33), (3.34) and (3.40) constitute the basis for constructing a boundary condition
for MD. Specifically, we will choose the time history kernels by minimizing the total reflection.
We first define the objective function,

I
[
{αj};n

]
=

∑

s

∫

k∈B, k·n≤0

∑

l

|R2
ss′

l
| |∇ωs · n|dk. (3.41)

The term |cI |2ω2 has been replaced by a constant, which represents the case with uniform phonon
distributions. We then consider the variational problem,

min I
[
{αj};n

]
, (3.42)

subject to certain constraints. The boundary condition (hereafter referred to as VBC) is optimal
in that it leads to minimal phonon reflection given a stencil.

It is also possible to choose the total reflection [11,12] as the objective function,

∫

k∈B, k·n≤0

∑

s

∑

l

|Rss′
l
|2dk. (3.43)

One concern here is that the reflection may have finite values at points where the group velocity
vanishes [11, 12].

Constraints. The above formalism uses the group velocity as weight for different wavenum-
bers. In order to guarantee the desired accuracy at large scale, we can impose as explicit con-
straints that phonon reflection vanishes at small k. For example, for the acoustic branches for
which ωs(0) = 0, we require that

lim
k→0

M I
s (k) = 0.
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This gives,
∑

j

∫ t0

0
αj(τ)dτ = I, (3.44)

which can also be viewed as the condition of Galilean invariance. In addition we may require
that the directional derivative,

∂

∂ξ
M I

s ,

along certain direction ξ go to zero. For example we can take ξ = −n, the normal incidence.
This leads to,

∑

j

∫ t0

0
αj(τ)τdτ ∂ξωs(0)εs +

∑

j

∫ t0

0
αj(τ)dτrj · ξεs = 0. (3.45)

One may impose certain additional constraints in order to respect the symmetry of the
crystal. This will be explained in section 4.2.

Finally we discuss the numerical implementation. First we need to discretize the first Bril-
louin zone to compute the total reflection. We have used the traditional K-point method [16,25].
In this method, we first generate the grid points in the wavenumber space by,

ξl,m,n =
2l − nq + 1

2nq
k1 +

2m − nq + 1

2nq
k2 +

2n − nq + 1

2nq
k3,

where nq is the number of grid points in each direction. We then move these grid points into the
first Brillouin zone. Using the point-group symmetry of the grid points, one can significantly
reduce the summation over the first Brillouin zone [25].

The optimization is done using the BFGS method [33]. To initiate the BFGS subroutine, we
start with the kernels,

αm
j =

{
δm1/∆t, if j = 0,

0, otherwise.

This amounts to fixing the displacement of the boundary atoms.

Here is a summary of the proposed procedure for finding the kernels of VBC:

1. Generate grid points in the first Brillouin zone.

2. Compute the dispersion relation and the polarization vectors at each grid point.

3. For each grid point k, such that k·n ≤ 0, find all the possible wavenumbers for the reflected
phonon: {kR

ss′
l
, l = 1, 2, · · · , NR}, as well as the corresponding polarization vectors.

4. Select the stencil, i.e. the set J and the number of time steps M .

5. Initialize the time history kernels {αm
j }.

6. Compute the reflection coefficients Rss′
l

from equation (3.33) and the objective function
from (3.41).

7. Use the BFGS subroutines to obtain new values for the time history kernels.
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8. Go to step 6 unless certain convergence criterion is met.

To implement these boundary conditions in a MD simulation, one first needs to identify the
boundary atoms, and for each boundary atom i, one finds the stencil such that rj − ri ∈ J . At
each step of the time integration, the boundary condition (3.34) supplies the displacement of
each boundary atom, and the forces exerted on the atoms inside are then computed which can
be used by a time integrator to evolve the system to the next time step.

3.4 Examples

Here we provide a few examples to illustrate how VBC might be obtained. Clearly the compu-
tational cost of applying these boundary conditions depend on the size of the stencil |J | and the
number of time steps M . We will look at the total reflection and the time history kernels for
different choice of J and M . For most the numerical tests we will choose the boundary atom
itself as the first element in the set J .

3.4.1 1D linear chain

Our first example is the one dimensional chain considered earlier (3.10). The dispersion relation
is given by

ω2 = 4 sin2 k

2
, k ∈ [−π, π). (3.46)

We will consider the time-continuous case, and we will restrict our attention to boundary con-
ditions of the form:

u0 =
∑

j

∫ t0

0
αj(τ)uj(t − τ)dτ. (3.47)

The reflection coefficient can be found easily as (also see [11, 12]),

R(k) =
1 − ∑

j eijk
∫ t0
0 αj(τ)eiωτdτ

1 − ∑
j e−ijk

∫ t0
0 αj(τ)eiωτdτ

(3.48)

for k in the interval [−π, 0], the left half of the first Brillouin zone. In particular, if we restrict
the stencil to {j = 1, t0 = +∞} and enforce zero reflection, we have

α̂1 = e−ik = 1 − ω2

2
− iω

2

√
4 − ω2,

using (3.46). Taking the inverse Laplace transform, the exact boundary condition (3.12) is
recovered.

Next we turn to the VBC. We will choose J = {1} and compute the history kernels for
M = 500, 1000, 2000 with constraints (3.44) and (3.45). In Fig. 5, we show the kernels computed
from the variational problem in comparison with the exact kernel (3.12). One can clearly see
that as we increase t0, the computed kernel for VBC converges to the one for the exact boundary
condition.
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Figure 5: Exact kernel and the kernel obtained from the variational model. The x axis indicates time.

Despite the fact that the exact boundary condition can be found analytically, in actual
computations they have to be truncated at some cut-off value, tc [6, 32]. The slow decay of
these kernels means that one has to choose rather large values of tc. A premature truncation
can lead to large reflection, as shown in Fig. 6 where reflection coefficients for the case tc = 4.0
is shown. One can see large reflections near k = 0 and k = π. In comparison, the variational
boundary condition using the same amount of history data gives much less reflection. More
examples can be found in the work of E and Huang [11, 12] in which a simplified boundary
conditions were developed that maximize the accuracy at the large scale and minimize the total
reflection of phonon at the small scale. These boundary conditions have been used in a coupled
atomistic-continuum scheme and applied successfully to model dislocation dynamics [12].

3.4.2 2D triangular lattice

Our second example is a 2D triangular lattice with the Lennard-Jones potential,

V =
∑

i6=j

φ(rij),

where

φ(r) = 4ε
((σ

r

)12 −
(σ

r

)6
)
,

with a cut-off radius rc = 1.7σ. Since σ and ε can be used as the length and energy unit, they
are taken to be unity in our computation. Meanwhile let m be the mass unit, then the unit for
time is σ

√
m/ε, the reciprocal of which gives the unit for the frequency. In our calculations, we

have taken the time step ∆t = 0.01, and nq = 32 for the Brillouin zone integration. Experiments
have been done which confirms that this is a stable time discretization for this MD system.
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Figure 6: Reflection coefficients due to the applied boundary conditions. Dashed line: using the kernel

(3.12) truncated at tc = 4.0; solid line: using a kernel obtained from the variational boundary condition

with the same time interval.
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Figure 7: 2D triangular lattice for Lennard-Jones crystal.

The triangular lattice is generated from a primitive cell as indicated in Fig. 7. The basis for
the primitive cell is,

t1 = (a0, 0), t2 = (
a0

2
,

√
3a0

2
), (3.49)

where a0 = 1.122462σ is the lattice constant obtained by relaxing the crystal to equilibrium.
The corresponding basis in the reciprocal space is,

k1 =
2π

V0
(

√
3a0

2
,−a0

2
), k2 =

2π

V0
(0, a0), (3.50)
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Figure 8: The first Brillouin zone and one particular unit cell for the 2D triangular lattice.

boundary atom

nearest neighbors

2nd nearest neighbors

3rd and 4th nearest neighbors

Figure 9: The neighboring atoms for a boundary atom. We plotted some neighboring lattice points which

can be chosen to set up the stencil J .

where V0 =
√

3a2

0

2 is the volume of the primitive cell. With this choice the first Brillouin zone is
a hexagon as shown in Fig. 8. Also plotted is a particular unit cell of the reciprocal lattice in
the wavenumber space.

This lattice has been considered in [27], in which the exact boundary condition was found
and expressed in terms of the displacement of the first two layers of atoms next to the boundary
for all previous time. The great advantage of our boundary conditions is that it offers the
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Figure 10: The total energy flux produced from the variational boundary conditions on various stencils.

flexibility of choosing the stencils, which are not necessarily within the first two layers. The
way we select the stencil J is shown in Fig. 9: we plot the neighbors of a boundary atom in
the case of n = (1, 0). For example we can choose the lattice points that correspond to the
nearest neighbors, which gives four atoms including itself, or we may include both the first and
the second nearest neighbors, which adds four more atoms in the stencil. In this case the stencil
has been extended to some lattice points on the third layer.

To see the performance of different stencils, we conduct three sets of experiments for |J | = 4
|J | = 8, and |J | = 17 which corresponds to selecting the third and fourth nearest neighbors.
This is again shown in Fig. 9. In each case the number of time steps M used in the boundary
condition ranges from M = 10 to M = 100. The results are displayed in Fig. 10, where we plot
the energy flux JR · n. Clearly a larger stencil leads to less reflected energy flux. Fig. 10 also
suggests that larger stencil in space is more efficient in absorbing the phonons than using longer
time interval, for the same amount of data used. For example the stencil {|J | = 17, M = 30}
produces less reflection than the stencil {|J | = 8, M = 100}.

Fig. 10 also shows that the total reflection decays as the number of time steps is increased.
Close inspection reveals that the decay rate for the three cases is approximately 0.5, 1.0 and
2.0 respectively. The suggests that as one extends the stencil, the corresponding total reflection
tends to decay faster.

In Fig. 11, we show the surface plot of the reflection coefficient as a function of the wavenum-
bers on the left half of the Brillouin zone for the case {|J | = 8, M = 30} and for the top branch
s = 1. One can see that for most wavenumbers, the reflection is quite small. But two peaks are
observed along the edges. This is because at these locations, the normal derivatives ∇nω of the
frequency are small, which give small weight to the objective function.

Finally, to see how the kernels in VBC look like, we plot the (1, 1) component in α1(t) in
Fig. 12 with the lattice point r1 = (a0/2, a0

√
3/2) for the case |J | = 4. Even with M = 200,

no substantial decay is observed. Now we extend the stencil to |J | = 11 to include the second
and third nearest neighbors, and plot the same memory kernel in the figure. Clearly with this
choice the kernel has smaller amplitude at large time.
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Figure 11: The total reflection |Rs(k1, k2)|2 plotted on the left half of the Brillouin zone for the lower
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Figure 12: The time history kernel for α1(t) in the cases |J | = 4,M = 200 and |J | = 11,M = 200.

3.4.3 3D BCC lattice

For the body-centered cubic (BCC) lattice, we choose the standard basis,

t1 = (
a0

2
,
a0

2
,−a0

2
), t2 = (−a0

2
,
a0

2
,
a0

2
), t3 = (

a0

2
,−a0

2
,
a0

2
).

The reciprocal lattice has the structure of a face-centered cubic (FCC) lattice. Again we consider
the boundary with normal vector n = (1, 0, 0) and focus on the particular boundary atom placed
at the origin. For the stencil, one may choose to include the lattice points,

(
a0

2
,±a0

2
,±a0

2
),
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for the nearest neighbors. In this case |J | = 5. Clearly the stencil is invariant under ±π/2 and π
rotation around the normal direction. From the discussion in section 4.2, it is then only necessary
to obtain the kernel in the VBC for one of the four atoms. The second nearest neighbors would
include lattice points at (0,±a0,±a0) and (a0, 0, 0), and this adds five more atoms in the stencil.
The atomistic model being used here is the Embedded Atom Model (EAM) developed in [28].
The lattice parameter predicted by this model is a0 = 2.8663Å with cut-off radius rc = 4.0954Å.
In this case Ne = 4 because a0 < rc < 3a0

2 . Force constants have been analytically computed
from this potential to determine the phonon spectrum. The length and energy unit in this model
is Angstrom and Kelvin (multiplied by the Boltzmann constant) respectively. We will rescale
the mass of an atom to unity, so the mass unit is 55.85 amu. This determines the time unit of
the system, which is about 8.196ps. In all of our calculations, we take ∆t = 0.002 which gives
a stable time discretization. For the integration over the first Brillouin zone, nq = 16.

In Fig. 14 we plot the kernels in the VBC for the 5th point in the stencil r5 = a0

2 (1, 1, 1) for
the case |J | = 10 and M = 50. In addition, we show in Fig. 15 the total reflection along the
cross section (001). The overall behavior resembles what we found for the previous example.

3.4.4 2D graphene sheet

Our last example is the graphene sheet in the zigzag orientation shown in Fig. 16. This is a
very interesting case: the displacement of each atom is a three dimensional vector. However
the lattice is a two dimensional complex lattice consisting of two triangular lattices with lattice
parameter a0 and basis vectors (

√
3a0/2,±a0/2). In each primitive cell there are two atoms, and

the coordinate of the second atom relative to the first one is (
√

3a0/6, a0/2). The first Brillouin
zone is again a hexagon but with vertices located at π/6, π/2, · · · , 11π/6 angles. The exact
boundary condition for graphene has been derived by Wagner, Karpov and Liu [32]. One major
difference here is that the boundary condition (3.31) is not expressed in terms of the extended
displacement vector. Therefore the history kernels are 3-by-3 matrices, while in [32] they are
6-by-6.

The force constants have been computed numerically from the Tersoff potential [30]. The
lattice parameter predicted by this model is a0 = 2.5288Å. The energy unit is electron volt. The
time unit is about 0.03527ps. We choose the time step ∆t = 0.05 and nq = 32. Because there
are two atoms in each primitive cell, the size of the dynamic matrix is 6-by-6, and in the phonon
spectrum, there are 3 acoustic and 3 optical branches. Since only nearest neighbor interaction
is present in the Tersoff’s model, Ne = 2 and we only need to find boundary conditions for one
layer of atoms. Again we focus on the boundary atom at the origin.

We first select points in the lattice corresponding to the nearest neighbors to form the set J .

In this case |J | = 3 with r1, r2 = (
√

3
6 ,±1

2)a0. We first plot the total reflection for the top optical
branch s = 1 with the number of time steps M = 50. Peaks are observed at the two vertices
along the vertical axis. Again this is because the normal derivatives ∇nω are small at these
points. Finally we plot the diagonal entries in the kernel α1 in Fig. 18 for the case |J | = 5 and

M = 50. In this case we extended the stencil to include the lattice points r3, r4 = (
√

3
2 ,±1

2)a0.
One can see that the (3, 3) entry of α1 is much smaller the other two entries.
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Figure 13: The stencil for BCC lattice. Open circles: the boundary atom and its nearest neighbors; filled

circles: second nearest neighbors. The boundary coincides with the (100) plane: n = (1, 0, 0).
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Figure 14: The time history kernels in the VBC for the BCC lattice: n = (1, 0, 0), |J | = 10, and M = 50.
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t
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t
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Figure 16: The lattice structure of graphene in the zigzag orientation. The boundary coincides with a

plane shown in the figure with a dashed line. The arrows indicate the basis vectors. In our calculations,

we took the first column of atoms from the left as the boundary atoms.
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Figure 17: The reflection matrix plotted on the left half of the first Brillouin zone. x axis: k = (1, 0); y

axis: k = (0, 1).

4 Implementations

Here we explain in more detail some of the steps in the numerical procedure for finding the
kernels in the VBC.

4.1 Calculation of force constants

As input parameters, we need to obtain the force constants

Di−j =
∂2V

∂xj∂xi
,
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Figure 18: Some components of the kernel α1(t) for |J | = 5 and M = 50 .

which are involved in the calculation of the dynamic matrix (3.21). Obtaining these force
constants is a standard procedure used in computing phonon spectrum. For some models,
such as pair potentials, and embedded atom models (EAM) [9], these matrices can be obtained
analytically. In general, one has to rely on finite difference approximation. We will briefly
illustrate the procedure below.

We start with a uniform state with all atoms at their equilibrium positions:

uj = 0, and fj = − ∂V

∂xj
= 0.

Now we displace the jth atom by δu, which induces force δf on a selected atom, called the
zeroth atom. Then we approximate the (α, β) entry of the matrix Dj by,

D
(α,β)
j ≈ − δf (β)

δu(α)
.

This procedure will be conducted for all the atoms that have direct interaction with the zeroth
atom. Additional symmetry can be used to further reduce the number of matrices that need to
be computed if the force calculation, e.g. in ab initio methods, is expensive [23].

4.2 Symmetry property of the history kernels

It is of practical convenience to transfer the kernels in (3.31) to a boundary on another equivalent
plane. For example in the 2D lattice in Fig. 2, lines that differ by a rotation of multiples of
π/3 are equivalent. Let n′ be the normal to the new boundary, and P be the corresponding
transformation within the symmetry group, Pn = n′. Let r′j = Prj . We now look at the
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reflection coefficient: R
(
k; {αj}

)
. From (3.24), we have,

AI
s(P

Tk)εs(P
Tk)

=
∑

j

∫
αj(τ)ei(rj ·P T k+ωsτ)dτP T εs(k),

=
∑

j′

∫
αj(τ)ei(rj′ ·k+ωsτ)dτP T εs(k).

This suggests that if we take,
αj′ = PαjP

T , (4.1)

we would have,
P T M I

s (k; {αj′}) = M I
s (P Tk; {αj}).

Similarly we find,
P T MR

s (k; {αj′}) = MR
s (P Tk; {αj}),

which leads to,
Rs

(
k; {αj′}

)
= Rs

(
P Tk; {αj}

)
. (4.2)

This implies that
I[{αj′};n′] = I[{αj};n].

Meanwhile the relation (4.1) preserves the constraints (3.44) and (3.45). This shows that if the
set of kernels {αj} is optimal for the plane with normal n, {αj′} is optimal for the new plane.

In particular if P maps the set of neighboring atoms to themselves, the above calculation
shows that the special choice (4.1) leads to the symmetry of the reflection matrix in the first
Brillouin zone. This is of some practical interest: on one hand, using the symmetry (4.1)
as additional constraints, one can reduce the number of variables in the variational problem;
numerous experiments have suggested that the symmetry constrains substantially speed up the
iterations in the optimization procedure. On the other hand, with the additional symmetry of
the reflection matrix, the cost of numerical integration over the Brillouin zone can be greatly
reduced [16].

4.3 External loading

The boundary conditions we have discussed so far can be viewed as free boundary condition, i.e.
with no external loading. Here we will consider the situation when external loading is added.
Similar issues arise when designing hybrid atomistic-continuum methods. At the atomistic-
continuum interface, one must supply boundary conditions for the atomistic system using in-
formation from the continuum calculations, in order to mimic the effect of the atoms that have
been removed from the system. The information from the continuum region is often in the form
of constraints on the displacement, strain or the stress for the boundary atoms. The issue is
how to maintain external loading, and at the same time, suppress phonon reflection using the
method that we have presented in the previous sections.
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The general idea is the following: we express the quantities specified in the boundary con-
ditions, such as the strain, the stress, and the velocity, at the atomic scale. We subtract off the
mean values of these quantities and only control the remainder that represent the small scale
components. Then we make use of the harmonic approximation to find the Fourier representa-
tion of these quantities, i.e. the remainder, which should be related to the Fourier coefficients
of the displacement, û(k). This allows us to compute the energy flux (3.40) using the Fourier
coefficients of these quantities. After that we follow the same procedure as before to obtain the
boundary condition. Next we discuss these cases in more detail.

4.3.1 Displacement boundary condition

In this case, the mean displacement ū(r, t) is given. Assuming that ū has small variation at the
atomic scale, we can decompose the displacement of the boundary atoms into the mean part
and the small scale component,

ui = ū(ri, t) + u′
i. (4.3)

Using
∑

j Dj = 0, one finds that u′
i also satisfies the linearized Newton’s equation (3.20). Now

we apply the boundary conditions (3.31) on u′
i. After obtaining u′

i for the boundary atoms, we
use (4.3) to update the displacement ui.

4.3.2 Imposing an applied deformation gradient

We next discuss how to maintain a specified deformation at the boundary. More precisely, we
would like to impose,

ε =
∂u

∂n
, (4.4)

at the boundary with normal vector n.
As suggested by (4.4) we choose the new variables

εj = (uj − ujn)/dn − ε̄, (4.5)

where jn designates the next atom in the normal direction, dn is the distance of this atom from
the jth atom, and ε̄ is the deformation applied at the boundary. The Fourier coefficients of {εj}
is related to that of {uj}

ε̂(k) = û(k)(1 − eidnk·n).

Hence one may express the energy flux in terms of ε̂(k).
Boundary conditions can now be formulated for εj : we will seek boundary conditions in the

form,

ε0 =
∑

j

∫ t0

0
αj(τ)εj(t − τ)dτ.

After the local deformation εj is obtained from the boundary condition, we obtain the
displacement using

uj =
(
εj + ε̄

)
dn + ujn ,

which will be used for the force calculation.
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4.3.3 Imposing an applied stress

Suppose that the material is subject to dead loading, namely we specify the traction:

t = Pn,

where P is the first Piola-Kirchhoff stress. At the atomic scale, the traction is equal to the net
interatomic force (per unit area) across the boundary,

ti =
1

Ωn

∑

rj ·n<0

fij .

Here Ωn denotes the average area per atom on the plane of the boundary. With harmonic
approximation, this will be reduced to,

ti =
1

Ωn

∑

rj ·n<0

Di−juj ,

which has Fourier coefficient

t̂(k) =
1

Ωn

−1∑

l=−Ne

D̂le
−ilan û(k),

with D̂l defined in (3.28).

Therefore the boundary condition can be reformulated for ti in the same way as before. The
ti obtained from the boundary condition will be added to the force fi to advance the system. It
is not necessary to compute the displacement of the boundary atoms in this case.

4.4 Boundary conditions at the corners

We have discussed the boundary conditions for the case where the boundary coincide with a
major symmetry plane. In practice, the boundary consists of a number of planes. Problems
arise at the corners where two different planes intersect: the stencils will overlap or extends to
the outside of the system. In this case, we create an artificial boundary for the corner atoms,
and use different stencils. Similar techniques have been used in [15].

We illustrate this idea using the triangular lattice as an example. In Fig. 19 we plot the
atoms of the triangular lattice near the lower left corner. For the boundary atoms away from
the corner, the stencil is within the system and we can apply boundary conditions discussed
above. The atoms at the corner are separated from the rest of the system by a plane with
normal direction of 30 degrees. Now one can view this plane as a boundary and choose a stencil
which stays in the system.



Li and E / Commun. Comput. Phys., 1 (2006), pp. 135-175 170

Figure 19: Classify the atoms at the corner: circles: the atoms in the interior of the system; triangles:

the atoms at the horizonal and the vertical boundary; squares: atoms at the lower left corner. Different

stencils |J | = 8 are used for different kind of atoms. In each case, one boundary atom is chosen and

the atoms involved in its boundary condition are surrounded by dotted lines. The dashed line is the

’boundary’ for the atoms at the corner.

5 An applications: fracture simulations

In this section, we apply the boundary conditions to molecular dynamic simulation of crack
propagation in a 2D Lennard-Jones crystal. The difficulty due to phonon reflection for simulating
crack propagation in such a system has been very well illustrated in the work of Holian and his
co-workers [17,19]. Our simulations are conducted with a similar setup: we start with a system
consisting of about 20,000 atoms. A crack is formed at the left boundary by removing atoms
within an elliptical notch. A uniform uniaxial strain rate is imposed along the y direction to
open up the crack. The strain rate is ε0 = 0.0004 initially and is gradually reduced,

ε̇ =
ε̇0

1 + ε̇0t
. (5.1)

The displacement at the boundary ū will be computed from (5.1) and imposed at the boundaries.

To be readily compared to the results from [17, 19], we use the same techniques for the
boundaries on the top and bottom: we first subtract ū from the actual displacement, and then
apply periodic boundary condition on the remaining displacement. This is an effective technique
for maintaining constant uniaxial strain.

In the first experiment fixed boundary condition is applied on the right, i.e. uj = ū(rj , t),
while in the second experiment, we apply VBC with |J | = 8 and M = 10. The results are shown
at the instant t = 51.0 in Fig. 20 and Fig. 21 respectively. The units are the same as those
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Figure 20: Simulation of crack propagation using fixed boundary condition: the color scheme was selected

according to the vertical component of the velocity.

Figure 21: Simulation of crack propagation using variational boundary condition (3.35) with {J = 8,M =

20}. The color scheme was selected according to the vertical component of the velocity.

in section 3.4.2. Both experiments show the propagation of a brittle crack. As the crack opens
up, a large amount of phonons are being emitted. These phonons will propagate to the right
and soon reach the boundary. Fig. 20 for the results with the fixed boundary condition clearly
shows phonon reflection at the right boundary. In contrast, one sees from Fig. 21 that VBC is
quite effective in suppressing the reflection.

In [17,19] extensive numerical simulations with different size and boundary conditions have
been conducted. It was found that the reflection of phonons can completely change the crack
tip behavior. Therefore boundary conditions become a crucial component in these kind of
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numerical studies. Currently our variational boundary conditions are being implemented to
study the dynamics of brittle cracks.

6 Comparison with adding border atoms

Another alternative for preventing wave reflection is to append an additional border region to the
computational domain. The principal idea is to create an absorbing layer of finite thickness to
annihilate outgoing waves. A common technique is to add damping in the layer with a damping
coefficient d, which is often chosen to be zero at the boundary between the original system and
the border region, and positive away from the boundary to damp out the waves. Choosing
appropriate damping coefficient is the key to the effectiveness of these methods. For continuum
wave equation, the border region and the computational domain can be matched perfectly, i.e.
with no reflection [5]. This is known as perfect matched layers method (PML), which has been
very successful.

The perfect matching cannot be achieved, however, for the discrete case as pointed out
in [8]. But similar ideas have been explored by various people for MD simulations [19, 20, 31].
For example in [31], the authors considered a one dimensional MD model and adopted the
PML method for elastodynamics [8]. In particular they proposed the following equations for the
border region,

müj = − ∂V

∂uj
− md(rj)

2uj − 2md(rj)u̇j . (6.1)

In principle, one can also use the variational formalism proposed in this paper to find the
optimal damping coefficients. In practice, however, it is not known how to compute the reflection
matrix in this case.

Here we will make a quantitative comparison between the damping method and the VBC by
computing the reflection coefficients for the two methods. As an example, the 1D chain model
(3.10) is considered. For the variational boundary condition, the reflection coefficient is obtained
from (3.48), while for the damping method, it is computed numerically. Specifically, we conduct
a series of simulations, and in each simulation, we start with a wave packet,

uj(0) =

∫ π

−π
A(k)eik(j−j0)dk, vj(0) = −i

∫ π

−π
A(k)ω(k)eik(j−j0)dk. (6.2)

Initially the center of the wave packet is located at j = j0 > 0. The function A(k) =
e−(k−k0)2/2ε/

√
2πε has the shape of a Gaussian. By choosing small ε, one can focus the wavenum-

ber in the wave packet around k0. Numerous values of k0 ∈ (−π, 0) are chosen. Since ω′(k0) < 0
the wave packet will propagate to the left until it arrives at the boundary. Due to the applied
boundary condition, a reflected wave packet with the opposite group velocity will emerge from
the boundary and reenter the domain. We will define the reflection coefficient R(k0) to be the
ratio between the maximal amplitude of the reflected and the incident wave. The damping
coefficient is chosen according to the one used in [8, 31],

d(x) = −3V

2
log(R)

x2

δ3
. (6.3)
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Figure 22: The reflection coefficients resulting from a damping boundary condition and a variational

boundary condition for the one dimensional chain model (3.10).

Here δ is the width of the border region. V = 1 is the elastic wave speed and R < 1 is a free
parameter.

In Fig. 22, the reflection coefficients corresponding to the two methods are plotted. In the
case shown there are ten atoms in the damping region for the damping boundary condition,
δ = 10, and the variational boundary condition involves ten atoms and two time steps, |J | = 10
and M = 2. One can see that the variational boundary condition suppresses phonon reflection
for most wavenumbers, while the damping boundary condition leads to considerable reflection
for k0 < −2.5 and k0 > −0.5. The performance can be improved by increasing the thickness of
the layer. However in a 3D simulation, this may dramatically increase the size of the system as
well as the computational cost.

7 Conclusion

To put things in perspective, let us go back to the analogy with the wave equations. There
are two main approaches in suppressing wave reflection at the boundary. One is the absorbing
boundary condition (ABC) [14, 15]. The other is to use perfectly matched layers (PML) [5],
which is analogous to the popular MD technique of padding with border regions in order to
damp out the phonons. In general, PML is more accurate and has become more popular. But
for discrete cases, perfect matching can not be achieved as indicated in [8] and it is not clear how
the damping coefficients can be chosen to optimize the performance of the method. Furthermore,
if a domain decomposition approach is used where wave equation is solved in conjunction with
continuum equations in the neighboring domain, ABC is still a more convenient choice.
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The variational boundary condition (VBC) presented here represents a compromise. In
principle, it can be used in either an ABC or PML setting, except that the coefficients are
numerically computed using a variational formalism that minimizes phonon reflection. This is
necessary for MD since in that case the waves are too complicated and as a result, not many
analytical formulas are available. However, even for the continuous problem, VBC might be a
viable alternative to the existing techniques of ABC and PML.

Another important issue is temperature. Here we focused on low temperature systems where
the main objective is to absorb the phonons coming to the boundary. At finite temperature, the
system absorbs energy from phonons provided by the environment. This issue remains open.

At a technical level, the technicalities involved in finding the VBC are very similar to that
of phonon analysis. Even though for realistic systems, they are far from being trivial, they are
not worse than finding the exact boundary conditions as suggested in [1,2,22,32], or computing
them numerically as suggested in [6]. The main input parameters are the force constants. Aside
from the phonon analysis step, there is the step of minimization of the total reflected energy
flux. Both steps can be standardized. Once the VBCs are found, the are much more efficient
than the exact boundary conditions.
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