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Abstract. A deterministic model of an age-structured population with genetics anal-
ogous to the discrete time Penna model [1, 2] of genetic evolution is constructed on
the basis of the Lotka-Volterra scheme. It is shown that if, as in the Penna model, ge-
netic information is represented by the fraction of defective genes in the population,
the population numbers for each specific individual’s age are represented by exactly
the same functions of age in both models. This gives us a new possibility to consider
multi-species evolution without using detailed microscopic Penna model. We discuss
a particular case of the predator-prey system representing an ecosystem consisting of
a limited amount of energy resources consumed by the age-structured species living
in this ecosystem. Then, the increase in number of the individuals in the population
under consideration depends on the available energy resources, the shape of the dis-
tribution function of defective genes in the population and the fertility age. We show
that these parameters determine the trend toward equilibrium of the whole ecosystem.
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1 Introduction

Thousands of papers have been published on the Lotka-Volterra equations [3, 4] describ-
ing population growth, competition or speciation. In real populations the reproduction
rate of individuals depends on their age and therefore it is necessary to include age struc-
ture into these equations. One example of how this can be achieved can be found in [5].
It is also possible to introduce a time delay between cause and effect (see, e.g., [6]). How-
ever, the majority of the Lotka-Volterra equations do not usually include genetic informa-
tion and the question arises how to include it directly into the Lotka-Volterra equations.
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The age-specific equations for population growth seem to be a good candidate to
represent genetic information because the age structure introduces some analogy to the
Penna model [1, 2] of genetic evolution. It is a model of genetic evolution although all
details concerning the genes are skipped except of the state of their functionality - is the
gene under consideration correct or it is mutated. This simple model has turned out
to be very successful in interpreting the demographers data of real populations even as
complex as human populations [2, 7–9].

In the original asexual version of the Penna model [1], the population under consid-
eration consists of individuals represented by genomes defined as a string of n bits. The
bits represent states of genes where 0 denotes its functional allele and 1 its bad allele.
It is assumed that if an individual possesses T bad alleles switched on, it dies. In the
model all genes are switched on chronologically - each bit corresponds to one ”year” -
and maximum life span of an individual is aD ”years”. After reaching the fertility age
aF an individual gives birth to B offsprings whose genomes are mutated versions of the
parental genome. The mutation rate M is constant. After the mutation the affected gene
is represented by a bit with a value opposite to the value before the mutation. The re-
sults of the Monte Carlo simulations of three different haploid populations for the Penna
model in the case when back mutations from 1 to zero are not allowed have been shown
in Fig. 1. In the figure, there have been plotted fraction of defective chronological genes
in each population and age distribution of individuals.

In the diploid version of the Penna model the individual’s genome is represented by
two bitstrings and then each locus possesses two alleles. The diploid individuals can
reproduce sexually [2]. Both the haploid model of the equilibrium population and its
diploid version are uniquely described by the fraction of defective genes in the popula-
tion specific for each individual’s age. A short review of Monte Carlo simulation results
for the Penna model with some additional details, like the presence of the housekeeping
genes or the recombination frequency, can be found in [9].

Although the age distribution curves obtained in the Penna model coincide very well
with demographers data for real populations, the model is not so “interdisciplinary” as
the Lotka-Volterra population model. The reason could be that it is very difficult to ob-
tain analytical results for the general Penna model and therefore one has to use the Monte
Carlo method. However Monte Carlo simulations of the Penna model need large pop-
ulations and the simulation time is very long. Hence, the typical multi-species problem
exceeds the computing capability of a single PC-computer. Another problem is how to
avoid the correlations arising from parallel computing if one tries to distribute the simula-
tions to many processors. On the other side hand, it is relatively easy to solve numerically
even a large set of the differential equations describing the Lotka-Volterra populations.
Below we show how to include the fraction of defective genes into the equation for pop-
ulation growth so that the age distribution curves for these two models coincide.

In the following sections we discuss the behavior of the Lotka-Volterra ecosystem in
which the age-specific species has been determined by the form of the fraction of defec-
tive genes.
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Figure 1: Monte Carlo simulation results of the Penna model of genetic evolution after 5×107 MC steps. The
upper panel shows the age-specific fraction of defective genes in three haploid populations with different values
of the individual’s fertility age aF = 15,30,40. The remaining parameters of the Penna model are the same,
T=1, M=1, bit-string length n=100. The resulting limit age of individuals in these populations aD =29,45,55
is the age where the fraction of defective genes is equal to 1. The lower panel shows the age distribution in
these populations.

2 Population growth of a single species

In this section we restrict ourselves to the haploid version of the Penna model but the
results could be generalized to diploid populations. All we need from the Penna model
is the distribution of defective genes in an equilibrium population and the corresponding
age distribution. Such data could be taken from a real population as well. In the case of
the Penna model we have performed a series of simulations of genetic evolution of the
bitstring populations for different parameters like the fertility age aF, genome length and
the number of offsprings born each year. We considered the simplified case when the
parameter T =1. The Verhulst factor was used to control the population size.

In the right panel of Fig. 2 in the semi-log scale there have been plotted separately
the fractions εa of the age-specific defective genes in the whole equilibrium population
and in the part of it which is consisting of the individuals with the age a≥ aF . Fraction
εa of the age-specific defective genes in the whole equilibrium population and in the part
consisting of individuals with a≥ aF are plotted in Fig. 2 on semilog axes. In the latter
case all individuals should posses good genes specific for a≤ aF (εa = 0) because T = 1.
Otherwise they should have died.

Our deterministic model for population growth is constructed in such a way that the
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Figure 2: The dependence of the population number on the individual’s age in the case of the equilibrium Penna
model of the bit-string evolution (T=1,aF=15, M=1) and the age-structured Lotka-Volterra equations (the left
panel of the figure). The right panel shows the distribution of defective genes in the equilibrium Penna model
for the whole population and for individuals of age ≥aF. The solid lines represent an approximation of the data
εa (fraction of defective genes in the population) which is power-like for the ages a≤ aF and exponential-like
for a> aF.

values of the fractions εa for each age a =0,1,··· ,aD are inserted into the following set of
the age-specific differential equations describing the change in number of individuals of
age a:

dNa(t)

dt
=αa−1V(t)(1−εa−1)Na−1(t)−γaNa(t), (2.1)

where Na is the number of individuals specific for the age a=1,··· ,aD

N0 = ∑
a≥aF

Na(t), (2.2)

and V represents the Verhulst saturation factor

V(t)=1−
1

Ω

aD

∑
a=1

Na(t), (2.3)

with Ω being the saturation level. The first term is the graduation term from the age a−1
to the age a whereas the other part of the equation describes the graduation to the age
a+1 and the individual’s mortality at age a. These terms are controlled by the age-specific
rate coefficients αa and γa, respectively. If we restrict the above to genetic evolution only,
as in the case of the Penna model, we would have to choose the values γa =1 for all ages
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a, the reproduction rate α0 should be chosen as in the computer simulations of the Penna
model (e.g., we set it to 1.1) but αa = 1 for all ages a > 0. The Verhulst factor (the same
as in the Penna model) ensures that the solution of the equations Eq. (2.1) saturates at
long times and then the age profile in the population coincides with the one from the
equilibrium Penna population. An example of this can be observed in the left part of
Fig. 2, where an analytical approximation of the simulation data {εa}

aD
1 has been applied.

Eq. (2.1) seems to possess many parameters. However, the simulations of the simple
haploid version of the Penna model for different values of aF suggest that in the case
of T = 1 the fraction of the age-specific defective genes in the population which can be
activated, i.e. after which the individuals die, consists of two parts (Fig. 2), one part
relates to individuals of age a≥ aF and another one relates to individuals of age a< aF. In
this simple case we can approximate them as follows:

εa ∼Cad (2.4)

for a≤ aF and
εa∼Aeba (2.5)

for a> aF , with constants A, b, C, d. From the normalization condition, εaD
=1, we obtain

A= e−baD . (2.6)

Then, the number of parameters describing the fractions of defective genes drops down.
It can be even smaller if we continue the left branch of the function εa to a = aF +1 and
merge it with the right branch at a = aF +1 in such a way that individuals of age a≥ aF

did not contributed into the left branch also at a= aF +1, i.e.

C(1+aF)
d−Ae1+aF = Ae1+aF. (2.7)

Then we could estimate the value of the parameter C:

C=2Aeb(1+aF)/(1+aF)d. (2.8)

In this way we have got an approximate distribution of defective genes controlled by
four parameters, b, d, aF and aD. In Eq. (2.1) there is also the parameter α0, but it was kept
constant and its value was the same as in the computer simulations of the Penna model.

The small number of parameters in the deterministic model makes it possible to con-
sider multi-species evolution where the species differ in the values of aF, aD , b, d and α0.
In this case the numerical solutions do not require a high computational effort as in the
Penna model. We should add that if the distribution function of the defective genes is an
unknown function of a and only the empirical values εa are available, then these values
could be used in the same way as in the discussed example, i.e., we do not need the ana-
lytical form of the distribution function for defective genes. We have considered only the
case of the genetic evolution in Eq. (2.1) but there is a rich possibility to use other values
of the coefficients αa and γa if one wants to describe real populations.
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3 Predator-prey system

We consider an ecosystem in which a limited amount of the self-regenerating energy
resources, S(t), are consumed by the age-structured species living in this ecosystem. In
this case, the increase in number of the individuals in the species depends on the available
energy resources necessary for life processes. We will restrict ourselves to one species
only. The species will carry genetic information represented by the fraction of defective
genes in the population, the fertility age and the longevity aD . We will show that the
change of these genetic parameters can change the trend toward equilibrium of the whole
ecosystem.

In the case of one species the ecosystem can be described by the following predator-
prey set of equations

dS(t)

dt
=αSS(t)(1−

S(t)

ΩS
)−γSN(t)S(t),

dNa(t)

dt
=αa−1S(t)(1−εa−1)Na−1(t)−Na(t),

(3.1)

where a=1,··· ,aD, N0 is the same as in Eq. (2.2), N(t) is the total number of individuals

N(t)=
aD

∑
a=1

Na(t), (3.2)

S(t) represents energy units consumed by the species, ΩS represents the saturation level
for the energy resources, the coefficient αS is the regeneration rate of the ecosystem re-
sources, γS is the damping coefficient due to the species using the energy resources. In
order to follow the Penna model of genetic evolution the species evolves according to
Eq. (2.1) (γa = 1 for all values of a) but the species’ growth is controlled by the amount
S(t) of the available energy resources instead of the Verhulst factor, V(t). However, a
Verhulst term is assumed for the self-regeneration of the ecosystem with respect to the
energy resources. The energy resources represent prey and the species plays the role of
predator. One could easily generalize the above set of equations to include many species.

We could expect that Eq. (3.1) have solutions which change in time in a similar way as
the microscopic Penna model evolution in a limited ecosystem. We have recently studied
an analogous predator-prey problem in [10], where a variable surrounding and its effect
on the Penna model was considered. One of the findings of the computer simulations was
that small changes in the inherited genetic information could lead to spontaneous bursts
of evolutionary activity. The predator-prey dynamics with genetics could be as complex
as discussed by Ray et al. [11] who showed that the system passes from the oscillatory
solution of the Lotka-Volterra equations into a steady-state regime, which exhibits some
features of self-organized criticality (SOC).

In our model, we can always expect saturation of the energy resources if there is no
species (N(t)=0) because the Verhulst term is present in Eq. (3.1). However, if N(t) > 0
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Figure 3: Both panels show the variation of the energy resources S(t) and the total number of individuals N(t)
of the age structured species starting from the same initial conditions. The difference is that on the left aF =15
and on the right aF =20. The remaining parameters are the same, aD =29 and α0 =1.1.

then depending on the shape of the distribution function of defective genes the solution
of Eq. (3.1) saturates as in the example in the left part of Fig. 3 or it oscillates as in the
right part of the figure. This means that an ecosystem with a few species can exhibit very
complex evolution in which the solutions representing some species will spiral towards
an equilibrium fixed point and some of them will try to converge to the limit cycle. The
smaller the value of aF is, the larger the oscillations are, and the species may become
extinct.

It is important that not only genetic parameters can change the type of the asymptotic
solutions of Eq. (3.1). Consider a species similar to the one represented in the left hand
side of Fig. 3 for which the Lotka-Volterra solutions spiral to a fixed point. Let us increase
the value of the fertility age from aF to a′F >aF after some period of time but let the genetic
information represented by the values {εa}

aD
1 remain the same as before. For example,

according to some social regulations since a specific time moment the individuals start to
reproduce at older ages a≥ aF ′=20. The consequences of this shift in the reproduction
age is that the solutions of Eq. (3.1) change qualitatively from the trend approaching the
fixed point as in the left part of Fig. 3 to oscillations as in the case of the species from the
right hand part of Fig. 3. It could happen that such a transition between these two types
of solutions of the Lotka-Volterra equations could cause the species to become extinct.

In [12] it has been shown that the Lotka-Volterra systems have a self-regulatory char-
acter and there exist threshold values for the fraction of destroyed population above
which the system returns to its previous state. We observe a similar behavior in our
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Figure 4: The effect of three catastrophes, where 30% of the population under consideration has been eliminated
at two time moments t=300 and 400 and 10% of the population at t=500. On the left there is a species with
aF = 15 and aD = 29 and on the right the species has aF = 20 and aD = 29. In both cases the catastrophe at
t=500 decreased the population number fluctuations.

model. In particular, in Fig. 4 an effect of three such catastrophes on two different species
represented by two different types of solutions of the Lotka-Volterra equations is shown.
It is interesting that for some solutions the introduction of a perturbation decreases the
amplitude of their oscillations. This could be observed in Fig. 4. The trace of this catas-
trophe in the (S(t),N(t)) representation has been shown in Fig. 5.

Thus, we could expect that in the ecosystem consisting of many species a rapid change
like the extinction of a species or a sudden increase in their number can cause discontin-
uous changes of the fluctuations of the population numbers of the existing species, simi-
larly as in Fig. 5 or Fig. 6 (discussed below). The age-specific structure of the competing
populations seems to be an important factor in their survival.

It is easy to generalize the Lotka-Volterra equations (3.1) to the case of many species
competing for the resources. If the index k runs through M different species, then the
age-structured growth equations should be changed to the following:

dNk
a (t)

dt
=α

k
a−1S(t)(1−ε

k
a−1)Nk

a−1(t)−Nk
a (t), (3.3)

where k =1,2,··· ,M. Even in the case of two species M =2 the ecosystem under consid-
eration can exhibit complex behaviour. For example, Fig. 6 shows the time dependence
of the population number N(t) for two competing species (a) and (b) in two cases which
differ for species (a) by one parameter only, aD =23 (left) and aD =24 (right). In this case,
the shift in the value of aD decides which species may become extinct.
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Figure 5: The effect of catastrophe from Fig. 4 on the variation of S(t) and N(t) in the population with aF =20
and aD =29.
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Figure 6: Dependence of population number N(t) on time t in the case of two species (a) and (b) competing
for the same energy resources. In both figures, the species (a) has the same fertility age aF =15 but aD =23 on
the left and aD =24 on the right. The species (b) (aF =20 and aD =29) is the same in both cases. The same
initial condition has been applied.



M. R. Dudek / Commun. Comput. Phys., 2 (2007), pp. 1174-1183 1183

4 Conclusions

It has been shown how to construct age-structured Lotka-Volterra equations in order to
describe some features of genetic evolution. This could be helpful in modeling real pop-
ulations where many parameters are typically used. In the considered model all species
were competing for the same energy resources.

Acknowledgment

The author thanks D. Stauffer for discussion and helpful suggestions.

References

[1] T. J. P. Penna, A bit-string model for biological aging, J. Stat. Phys., 78 (1995), 1629-1633.
[2] S. Moss de Oliveira, P. M. C. de Oliveira and D. Stauffer, Evolution, Money, War, and Com-

puters, Teubner, Stuttgart-Leipzig, 1999.
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