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Abstract. A modern approach to model reduction in chemical kinetics is often based
on the notion of slow invariant manifold. The goal of this paper is to give a com-
parison of various methods of construction of slow invariant manifolds using a sim-
ple Michaelis-Menten catalytic reaction. We explore a recently introduced Method of
Invariant Grids (MIG) for iteratively solving the invariance equation. Various initial
approximations for the grid are considered such as Quasi Equilibrium Manifold, Spec-
tral Quasi Equilibrium Manifold, Intrinsic Low Dimensional Manifold and Symmetric
Entropic Intrinsic Low Dimensional Manifold. Slow invariant manifold was also com-
puted using the Computational Singular Perturbation (CSP) method. A comparison
between MIG and CSP is also reported.
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1 Introduction

The idea that dissipative systems of chemical kinetics can have a simplified description
in terms of fast and slow motions derives from some evidences found out when such
systems are integrated numerically. Indeed, a typical behavior of trajectories in the phase
space during the relaxation reveals that they quickly move toward a lower dimension
manifold and then, when it is reached, do not leave it anymore, proceeding slowly along
it toward the equilibrium. Now it is straightforward to understand why, if such a man-
ifold exists, it can be termed the Slow Invariant Manifold (SIM), and that it provides a
simplification to the original system. Several methods were proposed to find the SIM:
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Method of Invariant Manifolds (MIM), Method of Invariant Grids (MIG), Computational
Singular Perturbation (CSP), as well as constructive approximations to SIM such as the
Intrinsic Low Dimensional Manifold (ILDM). In this paper, we want to compare various
methods aimed at constructing the SIM for a simple yet non-trivial test-case. In particu-
lar, we deal with three essentially different iterative algorithms:

1. MIG-approach (based on the Newton method) [2, 3, 5],

2. MIG-approach (based on the relaxation method) [2, 3, 5],

3. CSP-approach [11, 12].

Every iterative procedure needs an initial approximation from which it starts a refine-
ment. In general, the quality of this initial step is important for both the convergence
toward the solution and for the method efficiency; that is why different initial approxi-
mations are considered, too. For our test-case, the following approximations were used:

1. Quasi-Equilibrium-Manifold (QEM) [2, 3],

2. Spectral-Quasi-Equilibrium-Manifold (SQEM),

3. Intrinsic-Low-Dimensional-Manifold (ILDM) [8, 9],

4. Symmetric-Entropic-Intrinsic-Low-Dimensional-Manifold (SEILDM) [2, 3].

The paper is organized as follows. In Section 2, for the sake of completeness, we out-
line the basic notions: invariant manifold, slow manifold and invariant grid, equations
of chemical kinetics and the methods of model reduction. In particular, in Section 2.2, the
general equations of dissipative reaction kinetics are reviewed and cast in a form which is
used throughout the paper. The Method of Invariant Grid (MIG) and thermodynamic projec-
tor concepts are discussed, providing a way to implement the MIG iteratively according
to both the Newton method with incomplete linearization and the relaxation method (Section
2.1, for a general setting, and Section 2.3 for chemical kinetics). Here we also describe the
CSP method (Section 2.4) and some possible initial approximations of SIM (Section 2.5). In
Section 3, we consider a two-step four-component catalytic reaction (Michaelis-Menten
mechanism) as a test case. Various initial approximations for that case are found (Sec-
tions 3.1, 3.2, 3.3). Starting from these initial approximations, MIG iterations are carried
out and compared on the base of both Hausdorff norm and a measure of the invariance
defect (Sections 3.4, 3.5). In Section 3.6, the CSP method is used to construct the SIM in
this example, and a comparison with MIG is presented. Finally, results are discussed in
Section 4.

2 Theoretical background

2.1 Slow invariant manifold (SIM)

In this section, we introduce the notions of (positively) invariant manifold, slow invariant
manifold, invariant grid, and slow invariant grid, for a general system of autonomous
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ordinary differential equations in a domain D in Rn,

ċ= J(c). (2.1)

2.1.1 Invariant manifold and invariance equation

A submanifold Ω⊂D is a positively invariant manifold for the system (2.1) if, for any solu-
tion c(t), inclusion c(t0)∈Ω implies that c(t)∈Ω for t> t0. With some abuse of language,
one often calls such a set Ω an invariant manifold.

For each point c∈Ω, the tangent space TcΩ is defined. If Ω is positively invariant due
to system (2.1), then vector J(c) belongs to this tangent space. This gives us a necessary
differential condition of invariance

J(c)∈TcΩ. (2.2)

In order to transform the inclusion condition (2.2) into an equation, we need to execute
the following steps:

• to take a complement to Tc in Rn, Rn =Tc⊕Ec,

• to split J(c) into two components: J(c)= J‖(c)+ J⊥(c), J‖(c)∈Tc, J⊥(c)∈Ec,

• to write down an equation, J⊥(c)=0.

These operations are conveniently described by means of projector operators. Let for any
subspace Tc a projector P on Tc be defined with image imP = Tc and kernel kerP = Ec.
Then the necessary differential condition of invariance takes the following form

(1−P)J =0. (2.3)

The left hand side of this equation is important for many constructions and has its own
name, the defect of invariance: ∆=J⊥=(1−P)J. In this invariance equation (2.3) an unknown
function is the manifold Ω. This manifold has to be represented in a parametric form, as
an immersion F :W→D of a domain W in the parameter space into the domain D; Ω is
the image of this immersion: Ω= F(W).

The tangent space at the point F(y) is the image of the differential of F at the point y.
Hence, Eq. (2.3) is a differential equation for F. The theory of analytic solutions of this
equation with analytic vector field J near an equilibrium was developed by Lyapunov
[13] (the Lyapunov auxiliary theorem). Applications of this theorem to model reduction
were developed recently [14].

Projector P depends on the point c and the space Tc. Invariance equations for different
choice of this projector field P are equivalent, the only requirement is imP = Tc. But the
convergence properties of computational methods significantly depend on the projector
choice. The definition of slowness can also be sensitive to this choice.

At a first glance, there exists a natural method for projector field P construction: if for
any c a positive definite inner product 〈x,y〉c (a Riemannian structure) is defined, then
we can choose P as 〈 , 〉c-orthogonal projector, and J(c)= J‖(c)+ J⊥(c) is 〈 , 〉c-orthogonal
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Figure 1: Fast–slow decomposition. Bold dashed line – slow invariant manifold; bold line – approximate invariant
manifold; several trajectories and correspondent directions of fast motion are presented schematically.

splitting. A more careful analysis shows that this idea is “almost true”, and after some
modifications leads to the thermodynamic projector [1, 21] (see Section 2.3.3 below). The
relevant Riemannian structure is generated by the second differential of the entropy.

In a majority of applications, we are looking not for an approximation to an invari-
ant manifold that definitely exists, but rather for an approximate invariant manifold with
sufficiently small defect of invariance ∆ (‖∆‖≪‖J‖, for example).

2.1.2 Slow manifold

Reduction of description for dissipative kinetics assumes (explicitly or implicitly) the fol-
lowing picture (Fig. 1): There exists a manifold of slow motions Ωslow in the space of dis-
tributions. From the initial conditions the system goes quickly in a small neighborhood of
the manifold, and after that moves slowly along it. The manifold of slow motions (slow
manifold, for short) must be positively invariant: if a solution starts on the manifold at
t0, then it stays on the manifold at t> t0. In some neighborhood of the slow manifold the
directions of fast motion can be defined. Of course, we always do not deal with the in-
variant slow manifold, but with some approximate slow manifold Ω. Thermodynamics
is useful for model reduction in dissipative systems. The governing idea of these ap-
plications is [1]: during the fast motion the entropy should increase, hence, the point of
entropy maximum on the plane of rapid motion is not far from the slow manifold, in
the area where fast and slow motion have comparable velocities (Fig. 1, inside dashed
circles). This implies that differential of the entropy at points near the slow manifold almost an-
nuls the planes of fast motions (i.e. entropy gradient is almost orthogonal to these planes).
For sufficiently strong fast–slow time separation the fast invariant subspace of a Jaco-
bian near the slow manifold approximates the plane of fast motions, hence, this invariant
subspace is also nearly orthogonal to the entropy gradient.

All the definitions of slow manifold for a given system are based on the comparison
of motion to the manifold with motion along the manifold. There should be relatively
fast contraction in selected transversal directions (in directions of projector kernel) and
relatively slow change of vector field tangent component along manifold. In this paper,
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we do not review all these approaches (the spectral gap condition, the cone condition,
various stability conditions), the details and further references are in Refs. [16–20].

For our approach, the slow invariant manifold is the stable fixed point of one of the
following processes:

1. Relaxation due to a film extension of dynamics [5], that is defined by the equation
for immersed manifold motion with velocity J⊥(c):

dF(y)

dt
=(1−P)J; (2.4)

2. Iterations of the Newton method with incomplete linearization for invariance equation
(2.3), that is the Newton process without linearization of P: we take J in the first
approximation, while for P use the zero one (for details see below and [5]).

If the Newton method with incomplete linearization converges, then it leads to slow
manifold in the usual sense while the standard Newton method does not. (This is very
convenient because the standard method is also much more complicated.) For suffi-
ciently strong fast-slow time separation, most of the numerous definitions of slow in-
variant manifold give the same result (exactly the same, or up to higher order terms, it
depends on the required regularity of manifolds).

Remark 2.1. Fast–slow motion separation in a vicinity of a wandering point† is not in-
variant with respect to smooth or analytical coordinate transformations. In vicinity of
attractors (equilibria, closed orbits, or more complicated attractors) Lyapunov exponents
exist, they are invariant with respect to smooth coordinate transformation. It is possible
to perform invariant fast-slow separation on the base of these exponent values, and then
continue the slow manifold to the areas of wandering points, in a spirit of the Lyapunov
auxiliary theorem that is proved for a fixed point vicinity. For dissipative systems, most
part of phase space consists of wandering points.

If we have found an approximate slow invariant manifold Ω, then the correspondent
slow reduced system is the system on the manifold Ω defined by the projected vector field:

ċ=PJ(c), (2.5)

where c∈Ω and projector P : Rn →TcΩ depends on the point c and on the tangent space
TcΩ, both.

Because F is immersion, differential F(y), DF(y), is reversible on its image, TF(y)Ω.
Hence, reduced system (2.5) defines dynamics in the parameter space:

ẏ=(DF(y))−1(PJ(F(y))). (2.6)

†c0 is a wandering point of system (2.1) if it has such a vicinity U that for some T > 0 any motion c(t) that
starts in U (c(0)∈U ) does not return in U after time T (c(t) /∈U for t> T).
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2.1.3 Uniqueness, stability and analyticity

Usually, there exist many solutions to invariance equation which could be considered
as “slow manifolds”. For example, any semi-trajectory {c(t)|t > 0} is positively invari-
ant. In a vicinity of a stable fixed point, almost all solutions have the slowest Lyapunov
exponent. Hence, almost all semi-trajectories could be considered as slow invariant 1D
manifolds, because they meet intuitive expectations asymptotically, at t→∞. Neverthe-
less, it remains desirable to select a slow manifold that is the best, in some sense. As it
was demonstrated in Ref. [5], definition of slow manifold as a stable point of relaxation
or iteration process reduces the set of solutions, and, for example, near a typical stable
fixed point of an analytical system guarantees uniqueness of analytical slow invariant
manifold. For such systems, our approach gives the same analytical manifolds as the
Lyapunov auxiliary theorem [13]. In this theorem, the selection principle is analyticity
of manifolds near a fixed point. For a system with analytical right-hand side there exists
(generically) a unique analytical invariant manifold (solution of 2.3) which is tangent to
a subspace of slow solutions of linearized system. Exact statements and details could be
found in Refs. [5, 13, 14, 23]. The stability based approach could be applied wider, for ex-
ample, to manifolds with violation of analyticity and not only near fixed points. The well
known “cone condition” and “strong squeezing property” [15–17] are, in their essence,
stability conditions. The invariance of a manifold does not depend on the choice of pro-
jector P, but the stability properties could depend: this projector provides the separation
of motion onto motion to the manifold (with velocity in kerP) and along the manifold
(with velocity in imP).

2.1.4 Slow invariant grids

For computational purposes, the discrete analogue of the problem of slow invariant man-
ifold was developed in Refs. [2, 3].

We are looking for SIM as an immersion F of the parameter domain W into D, F :W→
D. Now we consider a discrete subset G ⊂W . All functions are given on G, and their
smooth continuation on W could be constructed by various approximation technique.
We use notation F |G for restriction a function on grid. Approximation technique gives
a smooth function F[F |G ]. Let the transformation of discrete set of values into a smooth
function,

F |G 7→F[F |G ],

be chosen. For each y ∈ G image of the differential DyF[F |G ](y) is a “tangent plain” to
discrete set F |G (G at point F |G (y): Ty = imDyF[F |G ](y). We call F |G (G) an invariant grid,
if it satisfies the grid version of invariance equation:

(1−P)J(F(y))=0 for y∈G, P : Rn →Ty. (2.7)

The grid version of the film equation (2.4) is also a motion in the defect of invariance
direction (1−P)J(F(y)), the Newton method with incomplete linearization has the same
form as for continuous manifolds. Hence, we can define the slow invariant grid as a stable



970 E. Chiavazzo, A. N. Gorban and I. V. Karlin / Commun. Comput. Phys., 2 (2007), pp. 964-992

fixed point of (one of) these processes. Formula (2.6) gives a velocity vector field on G and
the approximation methods continue this vector field on the parameter space W . This is
the reduced model.

In this paper, we shall focus our attention solely on the construction of invariant grids.

2.2 Dissipative reaction kinetics

In a closed system with n chemical species Ã1,··· , Ãn, participating in a complex reaction,
a generic reaction step can be written as a stoichiometric equation:

αs1Ã1+···+αsn Ãn ⇋βs1 Ã1+···+βsn Ãn, (2.8)

where s is the reaction index, s = 1,··· ,r (r steps in total), and the integers αsi and βsi

are stoichiometric coefficients of the step s. For each reaction step, we can introduce n-
component vectors αs and βs, with components αsi and βsi, and the stoichiometric vector
γs=βs-αs. For every Ãi the extensive variable Ni describes the number of particles of that
species. If V is the volume, then the concentration of Ãi is ci = Ni/V. Dynamics of the
species concentration according to the stoichiometric mechanism (2.8) reads:

Ṅ=VJ(c), J(c)=∑
r
s=1γsWs(c), (2.9)

where dot denotes the time derivative and Ws(c) is the reaction rate function of the step
s. In particular, the polynomial form of the reaction rate function is provided by the mass
action law:

Ws(c)=W+
s (c)−W−

s (c)= k+
s (T)

n

∏
i=1

cαi
i −k−s (T)

n

∏
i=1

c
βi

i , (2.10)

where k+
s (T) and k−s (T) are the constants of the direct and of the inverse reactions rates

of the step s respectively. A most popular form of their dependence is given by the Ar-
rhenius equation:

k±s (T)= a±s Tb±s exp(S±
s /kB)exp(−H±

s /kBT).

In the latter equation, a±s ,b±s are constants and H±
s , S±

s activation enthalpies and entropies
respectively. The rate constants are not independent. Indeed, the principle of detail balance
gives a relation between these quantities:

W+
s (ceq)=W−

s (ceq), ∀s=1,··· ,r, (2.11)

where the positive vector ceq(T) is the equilibrium of the system (2.9). In order to obtain
a closed system of equations, one should supply an equation for the volume V. For an
isolated system the extra-equations are U,V= const (where U is the internal energy), for
an isochoric isothermal system we get V,T= const, and so forth. For example, Eq. (2.9) in
the latter case simply takes the form:

ċ=
r

∑
s=1

γsWs(c)= J(c). (2.12)
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Finally, also other linear constraints, related to the conservation of atoms, must be con-
sidered. In general such conservation laws can have the following form:

Dc=Const., (2.13)

where l fixed and linearly independent vectors di are the rows of the l×n matrix D,
and Const. is a constant vector. Equations (2.9) and (2.13), once that the thermodynamic
features of the system have been defined, constitute the kind of dissipative systems which
we are interested in.

2.3 Outline of the method of invariant grids

2.3.1 Thermodynamic potential

In this section, we give an outline of the MIG for chemical kinetics. For details see Refs.
[1–3, 5].

If we turn our attention to perfectly stirred closed chemically active mixtures, then
dissipative properties of such systems can be characterized with a thermodynamic po-
tential which is the Lyapunov function of Eq. (2.9). That function implements Second
Law of thermodynamics: it means that during the concentrations evolution in time, from
the initial condition to the equilibrium state, the Lyapunov function must decrease mono-
tonically. Therefore if G(c) is the Lyapunov function, ceq (equilibrium state) is its point
of global minimum in the phase space. A simple example of a function G is given by the
free energy of perfect gas in a constant volume and under a constant temperature:

G=
n

∑
i=1

ci[ln(ci/c
eq
i )−1]. (2.14)

When the function G is known, also its gradient ∇G and the second derivatives matrix
H =‖∂2G/∂ci∂cj ‖ can be evaluated, so that it is possible to introduce the thermodynamic
scalar product as follows:

〈x,y〉=(x,Hy), (2.15)

where the notation (,) is the usual Euclidean scalar product.

2.3.2 The starting point: the invariance condition

Let us consider Ω as a manifold of a reduced description. The invariance requirement
reads:

c(0)∈Ω⇒ c(t)∈Ω, ∀t≥0. (2.16)

Let P be a projector on the tangent bundle of the manifold Ω. The manifold Ω is invariant
with respect to the system (2.9) if and only if the following invariance equation (IE) holds:

[1−P]J(c)=0, ∀c∈Ω. (2.17)
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When the manifold is not invariant, it is not able to satisfy the invariance condition so
that:

∃c0 : ∆0 =[1−P]J(c0) 6=0, (2.18)

where ∆0 is the defect of invariance. One way to find the SIM is to solve the IE iteratively
starting from an appropriate initial manifold.

2.3.3 Thermodynamic projector

Let us now discuss further the projector appearing in the invariance equation. It is an
operator which for each point c∈Ω projects the vectors J(c) onto the tangent subspace
of the manifold producing, in this way, the induced vector field PJ(c). In general, con-
dition (2.17) does not require any special constraint for the projector P (see Section 2.1.1).
However, the thermodynamic properties of the kinetic equations (2.9) define the projector
unambiguously [5]. To this end, let us define a differential of G, that is linear functional:

DG(x)=(∇G(c),x). (2.19)

A special class of projectors is the thermodynamic one. If a projector belongs to this class
then the induced vector field respects the dissipation inequality:

DG(PJ)≤0, ∀c∈Ω. (2.20)

It has been shown that a projector P respects the (2.20) if and only if [1]:

kerP⊆kerDG, ∀c∈Ω, (2.21)

where ker denotes the null space of an operator. It is clear now that if one wants to solve
Eq. (2.17), then a projector must be specified. Here we remind the way to construct the
thermodynamic projector which will be used in MIG procedure. This projector depends
on the concentration point c and on the tangent space to the manifold Ω.

We are looking for a grid approximation of a q-dimensional SIM. Let G be a discrete
subset of q dimensional parameter space Rq and let F |G be a mapping of G into the
concentration space. If we select an approximation procedure to restore the smooth map
F from the discrete map F |G (we need a very small part of F, derivatives of F in the grid
points only), then the derivatives f i = ∂F/∂yi are available, and for each grid point the
tangent space is:

Ty = Lin{ f i}, i=1,··· ,n. (2.22)

We assume that one of points y∈G maps into equilibrium, and at other points intersection
of manifold with G levels is transversal (i.e. (DG)F(y)(x) 6=0 for some x∈Ty). Let us con-
sider the subspace T0y =(Ty∩kerDG). In order to define the thermodynamic projector, it
is required, if T0y 6=Ty, to introduce the vector ey which satisfies the following conditions:







ey∈Ty,
〈

ey,x
〉

=0, ∀x∈T0y,
DG(ey)=1.
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Let P0 be the orthogonal projector on T0y with respect to the entropic scalar product (2.15),
then the thermodynamic projection of vector x is defined as:

{

T0y 6=Ty⇒Px=P0x+eyDG(x),
T0y =Ty⇒Px=P0x.

(2.23)

2.3.4 Iterative procedures: the Newton method with incomplete linearization

When MIG method is applied, not a manifold is searched as a solution, but a set of con-
centration points whose defect of invariance is sufficiently small: let Ω denote that so-
lution (invariant grid). MIG is an iterative procedure: this means that, at the beginning,
only an initial approximation Ω0 of Ω is available. In general, Ω0 does not respect the
invariance condition (2.17) satisfactorily so the (2.18) holds: for this reason the position of
c0∈Ω0 must be changed. We can think to correct its position and get a new point (c0+δc)
with a lower defect of invariance ∆=[1−P]J(c0+δc). If the initial node is “not far” from
the invariant manifold, a reasonable way to get the node correction δc is to solve the lin-
earized invariance equation where the vector field J is expanded to the first order and
the projector P to the zeroth order:

[1−P(c)][J(c)+L(c)δc]=0. (2.24)

L is the matrix of first derivatives of J (Jacobian matrix). The Newton method with in-
complete linearization consists of Eq. (2.24) supplied by the extra condition [1]:

Pδc=0. (2.25)

The additional condition (2.25) and the atoms balances (2.13) automatically can be taken
into account choosing a basis {bi} in the subspace S = (kerP∩kerD). Let h = dim(S),
then the correction can be cast in the form δc=∑

h
i=1δibi, so that the linearized invariance

equation (2.24) becomes the linear algebraic system in terms of δi:

h

∑
i=1

δi ((1−P)Lbi,bk)=−((1−P)J,bk), k=1,··· ,h. (2.26)

Remark 2.2. Here the usual scalar product (,) was used to get the components of the
left-hand side of (2.24) in the basis vectors {bi}. Nevertheless, a different scalar product
can be also used without losing generality.

In the case of the thermodynamic projector, it proves convenient to choose the basis
{bi} orthonormal with respect to the entropic scalar product (2.15) and write the (2.26)
as:

h

∑
i=1

δi〈(1−P)Lbi,bk〉=−〈(1−P)J,bk〉, k=1,··· ,h. (2.27)

The projector (2.23) is “almost” 〈,〉−orthogonal (〈imP,kerP〉 ∼= 0) close to the SIM (see
Section 2.1.1). Because of that special feature, Eq. (2.27) can be approximated and simpli-
fied as follows:

h

∑
i=1

δi〈Lbi,bk〉=−〈J,bk〉 , k=1,··· ,h. (2.28)
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Note that, in general, a refinement carried out by Eq. (2.28) leaves a residual defect (2.18)
in the grid nodes which cannot be annihilated although the refinement procedure con-
tinues. Therefore, when an higher accuracy in the SIM description is required, Eq. (2.26)
is recommended.

2.3.5 Iterative procedures: the relaxation method

An alternative approach to solve Eq. (2.24) is the relaxation method. According to that
method the correction is written as c = c0+τ(c)∆(c), and the quantity τ(c) is obtained
from the condition:

〈∆,[1−P][J+τ(c)L∆]〉=0,

and solving with respect to τ:

τ(c)=− 〈∆,∆〉
〈∆,L∆〉 . (2.29)

Eq. (2.29) shows straightforwardly that the relaxation method is explicit, but as it adjusts
the node position acting only along the direction of the defect ∆, typically we expect it to
be less efficient in comparison with the Newton method. On the other hand, this method
is particularly easy to implement.

2.3.6 Discussion of the method of invariant grids

The invariant grid is not just a discrete approximation of the invariant manifold, but a
self-standing object which can be introduced independently of that manifold. It appears
to be a convenient way to represent an invariant manifold [3, 5], because, during the
method implementation, only a set of concentration vectors needs to be stored instead of
dealing with some complicated analytic expressions. Moreover, the Grid is a very flexible
object which can be extended (by adding some more nodes, see e.g. the growing lump
and invariant flags strategies [3]), contracted and refined. The method of invariant grids
does not require any global parametrization, since the thermodynamic projector P in the
equations (2.26-2.27) is locally constructed. The problem of the grid correction is fully
decomposed into the problems of the grid’s node correction. The latter feature and the
locality of the projector P make MIG particularly suitable for parallel realizations.

On the other hand, as it was first pointed out in Ref. [3, 4], when one reduces the grid
spacing in order to refine the grid, then, once the grid spacing becomes small enough,
one can face the problem of the Courant instability [7]. Instead of converging, at every it-
eration the grid becomes more and more entangled. This situation is illustrated in Fig. 2a.
A way to avoid such instability is well known. This is decreasing the time step. In our
problem, instead of a true time step, we have a shift in the Newtonian direction. For-
mally, we can assign the value h̃ = 1 for one complete step in the Newtonian direction.
Let us extend now the Newton method to arbitrary h̃. For this, let us find δi from (2.26),
but update δc proportionally to h̃; the new value of cn+1 is equal to

cn+1 = cn+ h̃nδcn, (2.30)
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Figure 2: Invariant grid construction for a three-species, four-steps mechanism: A↔B, B↔C, C↔A, A+B↔2C,
with k+

1 = k+
2 = k+

3 =1, k+
4 =50, C

eq
A =0.1, C

eq
B =0.5, C

eq
C =0.4. CB was chosen as a reduced variable. a) In the

range CB =[0.1,0.6], the grid spacing on the initial approximation was uniformly chosen (∆CB =0.01) and h̃=1.
Newton iterations diverge. b) Grid spacing ∆CB was increased to 0.02 and stability was recovered.

where n denotes the number of iteration. One way to choose the step value h̃ is to make it
adaptive, by controlling the average of the invariance defect ‖∆‖ at every step. Another
way is the convergence control: then ∑ h̃n plays a role of time. Elimination of the Courant
instability for the relaxation method can be done quite analogously. Everywhere the step
h̃ is maintained as large as it is possible without running into convergence problems. Fi-
nally, the rate of convergence of the invariant grid iterative construction will be accessed
below through considering examples (see Section 3.5 and Fig. 8).

2.4 Outline of the computational singular perturbation algorithm

The Computational Singular Perturbation (CSP) method [11, 12] looks for a decomposition

into fast and slow modes of the right-hand side of the system (2.12). If a
f
i , i=1,··· ,(n−q)

are fast and as
i , i=1,··· ,q slow directions (assumed linearly independent), and if the dual

basis bi is fixed by the orthogonality relations,

biaj =δi
j, i, j=1,··· ,n, (2.31)

where δi
j is Kronecker’s delta, then the vector field of the n-dimensional system (2.12) is

written as

J = A f (B f J)+As(Bs J). (2.32)
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A f , As are n×(n−q) and n×q column matrices respectively formed by the fast and slow

ai vectors, while B f , Bs are (n−q)×n and q×n matrices formed by bi vectors. Two
refinement algorithms are utilized [11, 12]. The first one regards B f :

B f (k1+1,m1)=τ(k1,m1)[B
f (k1,m1)L+ Ḃ

f
(k1,m1)],

A f (k1+1,m1)= A f (k1,m1),

Bs(k1+1,m1)= Bs(k1,m1),

As(k1+1,m1)= [I−A f (k1+1,m1)B f (k1+1,m1)]As(k1,m1),

(2.33)

while the second one is an A f -refinement:

B f (k2,m2+1)= B f (k2,m2),

A f (k2,m2+1)= [LA f (k2,m2)− Ȧ f (k2,m2)]τ(k2,m2),

Bs(k2,m2+1)= Bs(k2,m2)[I−A f (k2,m2+1)B f (k2,m2+1)],

As(k2,m2+1)= As(k2,m2),

(2.34)

where

τ(ki,mi)={[B f (ki,mi)L+ Ḃ
f
(ki,mi)]A f (ki,mi)}−1,

Ḃ
f
(k1,m1)=

n

∑
i=1

∂B f (k1,m1)

∂ci
Ji,

Ȧ f (k2,m2)=
n

∑
i=1

∂A f (k2,m2)

∂ci
Ji.

Here L and J = {Ji} denote again the Jacobian matrix and the vector field of the system
(2.12).

After a sufficient number of CSP refinements, the approximate SIM equations and the
simplified system are written

B f J =0, (2.35)

ċ= As(Bs J). (2.36)

The two refinement procedures described above are defined independent because each in-
dex (k or m) can be increased independently. In particular, iterations on k aim to improve
the accuracy in the description of the SIM, while it is expected that the other ones makes
the simplified system (2.36) less and less stiff (cf. Refs. [10–12]). The orthogonality of the
CSP vectors (2.31) always holds. In this paper, we are solely interest in the convergence
of (2.35) to the SIM, and do not address the dynamics of the reduced system.
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2.5 Initial approximation

2.5.1 Quasi equilibrium manifold

Eq. (2.13) define the polytope Q of all concentration vectors which satisfy the balance
constraints. On Q, we can choose the points which minimize the Lyapunov function G of
the system that we are dealing with: such a manifold is called Quasi-Equilibrium-Manifold
(QEM). It attempts to do a motions decomposition in fast - toward the QEM - and slow
- along the QEM - inasmuch as G must decrease during the fast motions. In order to
be more specific, let us consider a system of n species, it has (n−l) degrees of freedom
because of the (2.13). If q < (n−l) is the dimension of the QEM, then the variables of
reduced description are ξ1,··· ,ξq so that:

(m1,c)= ξ1, ··· , (mq,c)= ξq, (2.37)

where mi is an n-dimensional vector. The solution of the variational problem G 7→min,
under constraints (2.13) and (2.37), represents the QEM.

2.5.2 Spectral quasi equilibrium manifold

Different QE-manifolds can be obtained choosing different sets of vectors {mi}. On the
other hand, QEM is constructed just on the base of G and mass balance constraints: there-
fore considering the eigenvectors of Jacobian L could be a way to take into account some
information about the vector field J. In order to do that, let us discuss further the Jaco-
bian matrix calculated at the equilibrium point L(ceq). In general L can be regarded as
the sum of L′ and L′′, where the first matrix L′ is symmetric with respect to the entropic
scalar product (2.15), but it also respects the following equality: L′(ceq)= L(ceq) [3]. So if
we take q left eigenvectors of L(ceq), which correspond to the q smallest absolute eigen-
values (slowest motions), then we construct that particular QEM called Spectral-Quasi-
Equilibrium-Manifold (SQEM). Same result is obtained by taking mi =Hxi, where xi is one
of the q slowest right eigenvector of L(ceq), while H is the matrix of second derivatives
of the Lyapunov function G at equilibrium. Indeed, if we let y= Hx be a left eigenvector
of L′(ceq), then

L′T(ceq)Hx=λHx,

where the superscript T denotes the usual transposition. So x must be a right eigenvector
of matrix H−1L′T(ceq)H = L(ceq).

2.5.3 Intrinsic low dimensional manifold (ILDM)

The way to construct the ILDM (Maas & Pope et al. [8]- [9]) is based on the following
separation of eigenvalues of Jacobi matrix L:

max{Re[λi], i=1,··· ,(n−q)}≪η <min{Re[λi], i=(n−q+1),··· ,n}, (2.38)

η <0.
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In that way it is possible to know, in each point, the fast subspace Ec (spanned by eigen-
vectors which correspond to the first eigenvalues set of (2.38)), and the slow one Tc. Let
us define the transition matrix Q as a column vectors matrix:

Q=(v1,··· ,vn−q,vn−q+1,,··· ,vn), (2.39)

where v1,··· ,vn−q are the fast eigenvectors of L, while vn−q+1,··· ,vn the slow ones. If we

consider the inverse matrix Q−1 as a row vectors matrix:

Q−1 =

















ṽ1

···
ṽn−q

ṽn−q+1

···
ṽn

















=

(

Q̃ f

Q̃s

)

, (2.40)

with Q̃ f collecting the first n−q rows of Q−1, then the equation of ILDM reads:

Q̃ f J =0. (2.41)

It is important to note that operator Q̃ f is nothing but a spectral projector which can be
constructed efficiently using, e.g. Schur decomposition [8,9]. In the illustrative examples
below we shall not use this, because all eigenvectors will be evaluated explicitly. It is also
worth to compare equations (2.35) and (2.41) and to note that they are very similar. The
ILDM projector Q̃ f can be considered an approximation for the CSP-projector B f . In that

case B f is a matrix whose rows are the fast left eigenvectors of Jacobian L.

2.5.4 Symmetric entropic intrinsic low dimensional manifold (SEILDM)

From the geometrical standpoint, the ILDM approach attempts to provide fast and slow
directions approximation on the base of information of Jacobian matrix L eigenvectors.
This becomes computationally intensive in large dimensions. In order to obtain a con-
siderable simplification, it was suggested [2] to use the spectral decomposition of the
symmetrized part of L, rather than L itself:

Lsym =
1

2
(L+H−1LTH), (2.42)

where LT denotes the usual transposed matrix. By definition Lsym results symmetric with
respect to the entropic scalar product (2.15): the ILDM constructed considering it, instead
of L, is termed Symmetric Entropic Intrinsic Low Dimensional Manifold. It is well known that
spectral decomposition is much more viable for symmetric operators.
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3 MIG and CSP method at work: a simple example

In the following, a constant volume and pressure system with three components Ã1, Ã3,
Ã4 and one catalyst Ã2 will be taken as a test-case. Let us consider the two-step reaction:

Ã1+ Ã2 ⇋ Ã3, (3.1)

Ã3 ⇋ Ã2+ Ã4, (3.2)

so that function (2.14) can be utilized as the global potential, while (2.12) is the form of
the kinetic equation for the four-component vector of concentrations c=(c1,c2,c3,c4)

T, in
particular we have:

ċ= J(c)=γ1W1+γ2W2. (3.3)

Here subscripts 1,2 denote the steps (3.1) and (3.2). Therefore stoichiometric vectors and
Ws functions read:

γ1 =(−1,−1,1,0), W1 =W+
1 −W−

1 = k+
1 c1c2−k−1 c3,

γ2 =(0,1,−1,1), W2 =W+
2 −W−

2 = k+
2 c3−k−2 c2c4.

(3.4)

The system (3.3) has a 2×4 conservation law matrix D (see Eq. (2.13)):

Dc=Const.⇒
[

1 0 1 1
0 1 1 0

]









c1

c2

c3

c4









=

[

const1

const2

]

. (3.5)

Thus, the dimension of the phase space is two and we aim at attaining an one-dimensional
reduced description. A more extended notation of (3.3) is:









ċ1

ċ2

ċ3

ċ4









=









J1

J2

J3

J4









=









k−1 c3−k+
1 c1c2

k−1 c3−k+
1 c1c2+k+

2 c3−k−2 c2c4

k+
1 c1c2−k−1 c3+k−2 c2c4−k+

2 c3

k+
2 c3−k−2 c2c4









, (3.6)

so in that case the Jacobian matrix takes the form:

L=

{

∂Ji

∂cj

}

=









−k+
1 c2 −k+

1 c1 k−1 0
−k+

1 c2 −k+
1 c1−k−2 c4 k−1 +k+

2 −k−2 c2

k+
1 c2 k+

1 c1+k−2 c4 −k−1 −k+
2 k−2 c2

0 −k−2 c4 k+
2 −k−2 c2









, (3.7)

while the gradient and second derivatives matrix of Lyapunov function G can be written
as:

∇G=









lnc1−lnc
eq
1

lnc2−lnc
eq
2

lnc3−lnc
eq
3

lnc4−lnc
eq
4









, H =









1/c1 0 0 0
0 1/c2 0 0
0 0 1/c3 0
0 0 0 1/c4









. (3.8)
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Figure 3: Solutions trajectories with different initial conditions (circles) in c1−c3 plane. The square denotes the
equilibrium point.

For our calculations the following set of parameters will be used:

k+
1 =1, k−1 =0.5, k+

2 =0.4, k−2 =1,

c
eq
1 =0.5, c

eq
2 =0.1, c

eq
3 =0.1, c

eq
4 =0.4,

const1 =1, const2 =0.2.

After that choice, the direct numerical integration of the system (3.3) supplies the solution
trajectories shown in Fig. 3. Now it is straightforward to find out that the SIM projection
onto c1−c3 plane simply results in the line segment c3 = c

eq
3 = 0.1. So we expect that, in

this example, methods of reduced description provide this manifold.

3.1 QEM on the example

In order to extract the invariant manifold of Fig. 3, we can think to construct an initial
manifold, with no special effort, and then to refine it thanks to MIG procedure: that is the
case when QEM is taken as first approximation. In our example q = 1 (one-dimensional
reduced description, see Section 2.5.1). Thus, we need a 4-dimensional vector m which
gives the reduced description variable ξ. It is chosen m=(1,0,0,0), so that the QEM must
respect the following conditions:



















G=
4

∑
i=1

ci[ln(ci

/

c
eq
i )−1]→min

(m,c)= ξ

Dc=(const1,const2)
T.

(3.9)
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Figure 4: (a) QEM, SQEM and SEILDM as initial approximations of SIM for the system (3.3). (b) Ratio
between the second smallest and the smallest by absolute value nonzero eigenvalue of the Jacobian: in that
case λ f /λs depends only on c3 (see (3.15)).

Note that the macroscopic parameter ξ in this example is the concentration of the com-
ponent Ã1 (ξ = c1). Let c0 be the solution of the problem (3.9), and let φ be the relation
between c3 and c1 on the QE-manifold, so that c03 = φ(ξ). The problem (3.9) takes the
following more explicit form:















c01 = ξ, c02 = const2−φ(ξ)
c03 =φ(ξ), c04 = const1−ξ−φ(ξ)
∂G(φ,ξ)

∂φ
=0,

∂2G(φ,ξ)

∂φ2
>0.

(3.10)

The solution of the system (3.10) delivers a quadratic expression for φ(ξ):

φ(ξ)=Ψ(ξ)−
√

Ψ2(ξ)−const2(const1−ξ),

where Ψ(ξ)=(const2(const1−c
eq
1 )+c

eq
3 (c

eq
1 +c

eq
3 −ξ))/(2c

eq
3 ) (see Fig. 4(a)). That manifold

results ”quite far” from the invariant one, so the QEM decomposition of fast and slow
motions cannot be considered good, and must be corrected by MIG procedure.
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3.2 SQEM on the example

We can attempt to have a better accordance between the initial approximation and the
SIM at least in a neighborhood of the equilibrium point. That is what the SQEM aims at
when m is taken, not blindly, but choosing the slowest left eigenvector xs

l of matrix (3.7)
calculated in ceq. In the following, subscripts l and r and superscripts f and s will denote
left, right, fast and slow eigenvectors, respectively. Spectral analysis of the Jacobian (3.7)
in the equilibrium state provides two non-zero eigenvalues:

λ f =−1.9, x
f
l =(1,9,−9,1),

λs =−0.1, xs
l =(1,0,0,−1.25).

This time the choice of the reduced description variable is unambiguous (m = xs
l ⇒ ξ =

c1−1.25c4), so the problem (3.9) becomes:































c01 =1.25φ(ξ)+ξ
c02 = const2−const1+ξ+2.25φ(ξ)
c03 = const1−ξ−2.25φ(ξ)
c04 =φ(ξ)
∂G(φ,ξ)

∂φ
=0,

∂2G(φ,ξ)

∂2φ
>0,

(3.11)

and the relation between φ and ξ on the SQE-manifold reads:

(

ξ+1.25φ

c
eq
1

)1.25(

c
eq
3

c
eq
2

ξ+2.25φ−0.8

−ξ−2.25φ+1

)2.25
φ

c
eq
4

−1=0. (3.12)

As expected, the SQEM provides a much better SIM approximation close to the equilib-
rium point (see Fig. 4(a)).

3.3 ILDM and SEILDM

An easier way to study the system (3.6) is to reduce the dimension from four to two by
adding the two conservation laws (3.5). The ODE system of c3 and c1 time evolution
becomes:

{

ċ3 = c2
3−2.1c3+0.2

ċ1 =0.5c3+c1c3−0.2c1.
(3.13)

Here the Jacobian matrix takes the simple form:

L(c3,c1)=

[

2c3−2.1 0
0.5+c1 c3−0.2

]

, (3.14)

so the spectral analysis of that operator gives the following eigenvalues:

λ f =2c3−2.1, λs = c3−0.2. (3.15)
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Their ratio, which can be regarded as an estimation of time scales separation, is reported
in Fig. 4(b) for the domain of the phase space of interest. The right and left eigenvectors
are:

x
f
r =(c3−1.9,0.5+c1)

T, xs
r =(0,1)T , (3.16)

x
f
l =(1,0), xs

l =(0.5+c1,1.9−c3). (3.17)

According to the procedure described in Section 2.5.3, being (n−q)=1, v1=x
f
r and v2=xs

r,
we obtain:

Q=

[

c3−1.9 0
0.5+c1 1

]

⇒Q−1 =
1

c3−1.9

[

1 0
−0.5−c1 c3−1.9

]

(3.18)

and one of the solutions of ILDM equation (2.41) for that case (c2
3−2.1c3+0.2= 0) meets

exactly the SIM.

Let us consider here the symmetrized part Lsym of Jacobian (3.7) calculated according
to (2.42):

Lsym =0.5

















−2k+
1 c2 −2k+

1 c1

(

k−1 +
k+

1 c1c2

c3

)

0

−2k+
1 c2 −2k+

1 c1−2k−2 c4

(

k−1 +
(k+

1 c1+k−2 c4)c2

c3
+k+

2

)

−2k−2 c2
(

k−1 c3

c1
+k+

1 c2

) (

k+
1 c1+k−2 c4+

(k−1 +k+
2 )c3

c2

)

−2k−1 −2k+
2

(

k−2 c2+
k+

2 c3

c4

)

0 −2k−2 c4

(

k−2 c2c4

c3
+k+

2

)

−2k−2 c2

















.

Note that Lsym is symmetric with respect to the entropic scalar product (2.15). The ILDM
procedure, carried out with Lsym instead of L, delivers the SEILDM approximation. The
1D-grid in Fig. 4(a) was found by solving Eq. (2.41), node by node, as described in the
following. Let cj and ξ(j) be a generic node of the SEILDM grid and its correspondent
reduced description variable (in our case ξ = c1), respectively. Eq. (2.41) takes the form:

x
f
l J =0, (3.19)

where x
f
l is the fastest left eigenvector of Lsym(cj). Once the discretization step on the grid

(∆ξ) is defined, the grid node cj±1 can be evaluated by solving Eq. (3.19) and imposing
that the macroscopic parameter ξ(j±1) = ξ(j)±∆ξ. That algorithm, starting from the
equilibrium point (c1 = ceq), was performed twice choosing ∆ξ = 0.03: the first time to
compute the upper branch of the SEILDM grid, the second time to get the other one.

3.4 MIG iterations

Let us write the thermodynamic projector (2.23) for the case (3.6). Here the tangent
subspace Ty is a line spanned by the vector ey. If f is a vector parallel to Ty and z =
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Figure 5: Newton method with incomplete linearization: (a) Two iterations starting from the QEM approxima-
tion; (b) Two iterations starting from the SQEM approximation.

(z1,z2,z3,z4) a generic four-dimensional vector which must be projected onto it, we can
write:







ey =ω f , ω =
1

DG( f )
,

Pz= DG(z)ey =(∇G,z)ey,
(3.20)

so that the null space of P has the following equation:

(∇G,z)= g1z1+g2z2+g3z3+g4z4 =0, (3.21)

where ∇G = (g1,g2,g3,g4). The dimension of S = (kerP∩kerD) is 1; let b1 be a vector
which spans S.

When a set of concentration points is available (initial approximation of SIM), in each
point c0, the Newton method must provide a correction (c = c0+δc : δc = δ1b1). Here,
Eq. (2.26) takes the simple form:

δ1 =− ((1−P)J,b1)

((1−P)Lb1,b1)
. (3.22)

Figs. 5(a) and (b) show two initial grids taken on the QEM and SQEM respectively, com-
posed by 30 grid-nodes, whose positions are refined by evaluating the (3.22) in each
point. Results after the first and the second iteration are reported. Those initial grids
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Figure 6: Comparison between Newton method and relaxation method: (a) Two iterations starting from the
QEM approximation; (b) Two iterations starting from the SQEM approximation.
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Figure 7: Newton method with incomplete linearization: Two iterations starting from the SEILDM approxima-
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were also refined by the relaxation method using the projector (3.20) to calculate the in-
variance defect: in this case, formula (2.29) allows to compute the grid nodes correction.
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In general, the relaxation method is expected to require an higher number of iterations
than the Newton method to achieve a result of comparable accuracy. Nevertheless, this
time because of the dimensionality of the problem the efficiency, as shown by Fig. 6, is
very similar. Two Newton iterations were also performed starting from 30 nodes on the
SEILDM approximation (see Fig. 7).

3.5 Convergence of the invariance grid construction

Now it is instructive to compare the efficiency of the methods described above, by intro-
ducing some procedures able to estimate how the refined grid, in each iteration, is distant
from the invariant one. That aim was reached utilizing two procedures. The first is based
on the normalized Hausdorff distance (see also [6]) between two points sets, while the
second one on the Euclidean norm of the invariance defect vector. In particular, let X̂,Ŷ
be the current set of grid points and the refined one on the SIM, if d(x,y) denotes the stan-
dard Euclidean metric between two points, by definition the Hausdorff distance between
X̂ and Ŷ is:

δH =
dH

DH
100%, (3.23)

where










dH =max
{

max
x∈X̂

min
y∈Ŷ

d(x,y),max
y∈Ŷ

min
x∈X̂

d(x,y)
}

DH = max
x,y∈X̂∪Ŷ

d(x,y).
(3.24)

Another way to evaluate the quality of an invariant grid approximation can be obtained
considering the Euclidean norm of that vector which collects, in each grid point, the
following measure of the invariance defect:

√

(∆,∆)/(J, J). In the continuation, that
value will be referred as to Error. The comparison between the two Figs. 8(a) and (b)
shows that both those methods give compatible results. Here, we want to stress that if
two initial grids are chosen, the most far one from the invariant manifold (e.g. in terms of
Hausdorff distance) can also present a faster convergence (see QEM vs SQEM in Fig. 8).
However, in general a closer initial grid to the invariant manifold gives better guarantees
for the convergence of equations (2.26)-(2.29).

It is worth to note that all the grids found above (first approximation and refined ones)
respect the thermodynamic requirement: indeed if they are traced from any point toward
the equilibrium, the entropy (−G) increases (Fig. 9), thereby confirming the thermody-
namic consistency of projector (3.20). Fig. 9 also provides the geometrical interpretation
of a quasi equilibrium manifold: the tangent spaces to entropy curves in intersection
points with the QEM have constant inclination.

3.6 CSP refinements

Also the refinement algorithms (2.33)-(2.34) were used to extract the SIM. This time we
need to choose a set of vectors as initial approximation (B f ,s(0,0) and A f ,s(0,0) matrices).
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For the system (3.13), the following vectors were chosen at the step (k=0,m=0):

A f (0,0)=
(

√
2

2
,

√
2

2

)T
, As(0,0)=

(

−
√

2

2
,

√
2

2

)T
, (3.25)

B f (0,0)=
(

√
2

2
,

√
2

2

)

, Bs(0,0)=
(

−
√

2

2
,

√
2

2

)

. (3.26)
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It proves convenient to introduce functions

u=−3c2
3+0.9c3−4c3c1+1.5c1−c2

1+0.54,

v=5c2
3−7.3c3+3c3c1−2.3c1+3.3,

w=6c2
3−9.9c3+2c3c1−2.1c1+3.78,

µ=1.7c2
3−2.62c3+1.7c3c1−0.16c1+0.24,

θ =3c3+c1−1.8.

Then the B f -A f -refinements can be written (see (2.33)-(2.34)):

A f (1,1)=
1√
2

(w

v
,−u

v

)T
, As(1,1)=

√
2
(0.2−c3

θ
,
2c3+c1−1.6

θ

)T
, (3.27a)

B f (1,1)=
√

2
(2c3+c1−1.6

θ
,
c3−0.2

θ

)

, Bs(1,1)=
1√
2

(u

v
,
w

v

)

, (3.27b)

Ḃ
f
(0,0)= Ȧ f (0,0)= Ȧ f (1,0)=0, Ḃ

f
(1,0)= Ḃ

f
(1,1)=

√
2
( µ

θ2
,− µ

θ2

)

. (3.27c)

The approximate SIM is found from Eq. (2.35) which takes, at the step (1,0), the form:

2c3
3−5.3c2

3+2c2
3c1−2.5c3c1+3.66c3+0.24c1−0.32=0. (3.28)

Eq. (3.28) provides three solutions and Fig. 10 reports only the relevant root (only one root
is positive and real, and respects the balance condition (2.13)). Moreover, the manifolds
related to the vectors B f (0,0) and B f (2,1) are also shown. Regarding to the latter man-
ifold, we want to stress that now Eq. (2.35) gives one physically acceptable root among
seven possible. Here the initial approximation coincides with the QEM, so it can be useful
to compare MIG results with CSP ones on the base of Error (see Fig. 11). The derivatives
(3.27c) show that the CSP procedure can become computationally intensive in few iter-
ations even for a very simple example. Finally it is worth to comment Fig. 11(b): since
every A f iteration does not increase the accuracy of B f vectors, the manifold, after the
step (1,1), remains not refined.

4 Conclusion

In this paper, the method of invariant grids is utilized for reducing the kinetics of a simple
two-dimensional system in order to obtain an one-dimensional description. Different ini-
tial approximations have been calculated and refined. It has been shown that the rate of
convergence depends also, but not only, on the quality (distance from the invariant man-
ifold) of initial approximation. Moreover, the SQEM is a convenient (for convergence)
way to get the first grid: particularly when it is extended not far from the equilibrium
point. In general, we found that the QEM construction is a very promising procedure
to choose the initial manifold, and its efficient implementation in large dimension will
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be presented elsewhere. As expected, the SEILDM approximation provides a manifold
very close to the SIM without facing the full Jacobian matrix (ILDM), but just considering
its symmetrized part. It was shown that the Newton method and the relaxation method
give, when a 1D invariant grid is searched, comparable results. Nevertheless, in a general
case, the Newton method is expected to be much more efficient, whereas the relaxation
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method requires a lesser computational load. Therefore, it is worth to think of some hy-
brid procedures in which the Newton method and the relaxation method are used on
different stages of computation. The CSP algorithm is utilized too and, although that
method and MIG are based on completely different approaches, the comparison shows
very similar results in terms of accuracy of SIM description.

The examples and computational approaches presented in this paper are implicitly
based on a hypothesis about connected slow invariant manifold of fixed dimension. Nev-
ertheless, we know that this hypothesis is not always true. In concentration space could
exist areas with different dynamic behavior and different fast-slow separation. There is
an important difference between areas where some of reactions go to their equilibrium
faster than other do and areas where some of concentrations remain relatively small dur-
ing long time. In the first case (fast equilibria), the slow motion goes near QEM, in sec-
ond case (small concentrations), the quasi steady state (QSS) approximation could be
used. Differences between smallness parameters and dynamical properties of QE and
QSS were discussed, for example, in Refs. [2, 5]. In the quasi-equilibrium approximation
for closed systems, both fast and slow motions inherit thermodynamic properties of the
whole system and have simple dynamics with relaxation to equilibrium. Fast motion for
QSS approximation can have bifurcation even if the whole system is isolated. These bi-
furcations are considered as models of critical effects, such as ignition (see, for example,
Ref. [27]).

Already these two different situations with two types of small parameter could gen-
erate a complicated structure of approximate slow invariant manifolds and fast-slow sep-
aration in concentration space that is far from the picture presented on Fig. 1.

The choice of initial approximation and of the projector field could be also specifi-
cally discussed. CSP methods pretend to find optimal projector (fast directions) and SIM,
both, but efficacy of this computations depends on initial approximation (i.e. on coordi-
nate system). If we do not correct the projector field in computations, its pre-selection
is even more important. For systems with separation of reversible reactions onto fast
and slow, the reasonable initial approximation for slow manifold is QEM and its vari-
ous modifications. The choice of projector in this case is also clear, the thermodynamic
projector will work. The same is true near equilibrium, even if there is no obvious separa-
tion of reactions onto fast and slow. If we would like to continue these manifolds further
from equilibrium, that choice could also give an appropriate result. But near a boundary
of positivity the thermodynamic projector has singularity because of logarithmic singu-
larity of chemical potentials near zero concentrations. In that case other projectors and
scales could be used. Nevertheless, the notion of invariant grid and the sequence of con-
struction: choice of projector field – invariance equation – iterative procedure remain
universal.

Finally, in this paper we focused on the geometry of the model reduction, that is, con-
struction of slow invariant manifolds (grids). Dynamic equations of the reduced system
using the grid approach will be studied in a separate publication.
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