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Abstract. Ranging from Re=100 to Re=20,000, several computational experiments are
conducted, Re being the Reynolds number. The primary vortex stays put, and the long-
term dynamic behavior of the small vortices determines the nature of the solutions. For
low Reynolds numbers, the solution is stationary; for moderate Reynolds numbers, it is
time periodic. For high Reynolds numbers, the solution is neither stationary nor time
periodic: the solution becomes chaotic. Of the small vortices, the merging and the
splitting, the appearance and the disappearance, and, sometime, the dragging away
from one corner to another and the impeding of the merging—these mark the route
to chaos. For high Reynolds numbers, over weak fundamental frequencies appears
a very low frequency dominating the spectra—this very low frequency being weaker
than clear-cut fundamental frequencies seems an indication that the global attractor
has been attained. The global attractor seems reached for Reynolds numbers up to
Re=15,000. This is the lid-driven square cavity flow; the motivations for studying this
flow are recalled in the Introduction.
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1 Introduction

The square: the simplest shape—the flow: unexpected and complicated long-term dy-
namic behavior and the global attractor persisting at extremely large time t—this is the
lid-driven square cavity flow—an almost fictitious flow [27]—solved many times by var-
ious techniques: [1, 10, 19, 21, 23, 26, 35], their results sometime agreeing, sometime dis-
agreeing.
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Figure 1: The lid-driven square cavity flow.

The domain is the unit square cavity, and the viscous incompressible flow is gov-
erned by the two-dimensional time-dependent incompressible Navier-Stokes equations
(NSE) [33] and driven by the upper wall, see Fig. 1. Here, we consider the nondimension-
alized NSE in primitive variables with Dirichlet boundary conditions over the domain
Ω= ]0,1[×]0,1[; that is



























∂u

∂t
−ν∆u+c(u,u)+∇p= f in Ω, t>0,

∇·u=0 in Ω,

u=ϕ on Γ=∂Ω,

u(x,0)=u0(x) in Ω,

(1.1)

where u is the velocity, p is the pressure, ν > 0 is the kinematic viscosity, Re= ν−1 is the
Reynolds number, f is the external force, and c(u,v)=(u·∇)v represents the convection
term. Here, we set f=0 and consider the boundary conditions

{

u(x,·)=(1,0) if x∈upper wall,

u(x,·)=0 if x∈ left, bottom, or right wall.
(1.2)

An unexpected balance of viscous and pressure forces makes the fluid to turn into
the square cavity. The properties of these forces depending upon the Reynolds number,
a hierarchy of vortices develops—the large clockwise-rotating primary vortex (1), whose
location occurs toward the geometric center of the square cavity, and several small vor-
tices: the counterclockwise-rotating secondary vortices (2), the clockwise-rotating tertiary
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vortices (3), the counterclockwise-rotating quaternary vortices (4), whose locations occur
at the three relevant corners of the square cavity: bottom left (BL), bottom right (BR), and
top left (TL), and appear hierarchically at the inclined ellipses as in Fig. 1.

Specifically, at the three relevant corners of the square cavity and at each level, sec-
ondary, tertiary, and quaternary, one or two small vortices develop. If there is only one
small vortex, this is named after the corresponding corner and the corresponding level,
subscript; e.g., the bottom right tertiary vortex is named BR3. If there are two small vor-
tices, one occurs on the up (U) side of the inclined ellipse; the other, on the down (D) side.
The corresponding letter U, D is added to the left of its name; e.g., the two bottom right
secondary vortices are named UBR2 and DBR2.

But, the agreement and disagreement in the results of so many authors, what is it
about?

In the first place, it is about the quantities obtained. Firstly, we consider the char-
acteristics of BR2. For Re = 1,000, our results agree with those obtained by all authors
except [21]. The results obtained in [21] are different from all the other published results;
in particular, the strength of BR2 is weaker, for the most part. For Re=5,000, our results
agree with those obtained in [1, 10] and [19] and differ with those obtained in [21, 35].
The results displayed in [21, 35] are different from all the others: according to [21], the
strength of BR2 is weaker; according to [35], stronger, for the most part. Secondly, we con-
sider the characteristics of the primary vortex. For Re=5,000, Re=7,500, Re=10,000, and
Re=12,500, our results agree with those obtained in [1,10], and [23] and are different from
those obtained in [19] where the strength of the primary vortex is systematically weak-
ened. The results obtained in [21,35], and [26] differ significantly from those obtained by
the other authors, the strength of the primary vortex being substantially weaker.

In the second place, it is about the quality of the solutions obtained. In [1,10,19,23,26,
35], the authors consider the stationary NSE, but in [21] and in the present research, the
time-dependent NSE; so that qualitative comparisons are possible with [21]. In [21] the
author reports stationary solutions in a row from Re=100 to Re=7,500, and time periodic
solutions in a row for Re=10,000 and Re=12,500. Notwithstanding, we report stationary
solutions in a row from Re=100 to Re=5,000—and time periodic solutions in a row from
Re=7,500 to Re=12,500, this kind of solutions occurring for smaller Reynolds numbers
in the present research.

On the other hand, we know that the dynamical system associated with the two-
dimensional NSE possesses a global attractor, see [32, page 104] and the references therein,
typically a complicated set—perhaps a fractal set; when the time t is large, u(·,t) wan-
ders around the global attractor, and the complicated convolutions of this set cause the
complicated form of the flow, explaining its chaotic appearance.

For the lid-driven cavity flow, we aim to reach the picture of the global attractor and
record the long-term dynamic behavior of the small vortices in the flow, which should de-
cay exponentially toward a small value [11]. Immediately, a serious difficulty arises—the
global attractor persists for extremely large times t. The temporal and spatial methodol-
ogy used to perform the long-term integration should be extremely efficient and accurate.
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And we would like to do the computations with large time steps. Therefore, further ques-
tions arise: what is the effect of the time step and of the inherent temporal errors in the
computed solution, and how to know when the global attractor has been reached?

A new combination of known methods is used to compute the solutions of the NSE:
the linear Linθ∗-scheme, the projection method, the Conjugate Gradient method, the Bi-
CGSTAB method, the Fast Fourier Transform method—and incremental unknowns as a
spatial preconditioner. The temporal and spatial methodology is accurate and efficient.

The incremental unknowns—first introduced by Temam [31] through approximate
inertial manifolds and spatial multilevel finite-difference discretizations—are a natural
tool to study the long-term dynamic behavior of nonlinear dissipative evolutionary equa-
tions, see, e.g., [2–8, 12–18, 24].

Ranging from Re = 100 to Re = 20,000, several computational experiments are con-
ducted, Re being the Reynolds number. The primary vortex stays put. For low Reynolds
numbers, the solution is stationary; for moderate Reynolds numbers, it is time periodic.
For high Reynolds numbers, the solution is neither stationary nor time periodic: the solu-
tion becomes chaotic. Of the small vortices, the merging and the splitting, the appearance
and the disappearance, and, sometime, the dragging away from one corner to another
and the impeding of the merging—these mark the route to chaos. For high Reynolds
numbers, over weak fundamental frequencies appears a very low frequency dominating
the spectra—this very low frequency being weaker than clear-cut fundamental frequen-
cies seems an indication that the global attractor has been attained. The global attractor
seems reached for Reynolds numbers up to Re = 15,000. This is the lid-driven square
cavity flow.

There are controversies about such two-dimensional flows, see, e.g., [27, page 105],
whether or not they are physically relevant to turbulence. We do not enter into this con-
troversy here. It seems to us that the problem studied can somehow model the central
part of the flow in a long cavity (long in the z-direction) driven by an outside flow (dom-
inantly in the x-direction). It is also a relevant study for the understanding of the corre-
sponding two-dimensional global attractor [32, p. 104] which has not been proven to be
trivial.

This article is organized as follows. In Section 2, we consider the temporal and spatial
discretizations of the NSE and discuss the numerical resolution of the underlying lin-
ear systems. In Section 3, ranging from Re = 100 to Re = 20,000, several computational
experiments are conducted. Finally, in Section 4, we summarize our conclusions.

2 Temporal and spatial discretization

Here, we consider the temporal and spatial discretization of the NSE and discuss the
numerical resolution of the underlying linear systems.
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Algorithm 2.1: The nonlinear θ-scheme and the linear Linθ∗-scheme.

Set u0 =u0

for n=0,1,2,···
Solve the intermediate quantities un+θ, pn+θ:

un+θ−un

θ∆t
−αν∆un+θ+∇pn+θ = fn+θ +βν∆un−c(un,un) in Ω,

∇·un+θ =0 in Ω,

un+θ =ϕn+θ on Γ=∂Ω,

Solve the intermediate quantities un+1−θ, pn+1−θ:

un+1−θ−un+θ

(1−2θ)∆t
−βν∆un+1−θ+c(u∗,un+1−θ)= fn+1−θ +αν∆un+θ−∇pn+θ in Ω,

un+1−θ =ϕn+1−θ on Γ=∂Ω,

Solve the ultimate quantities un+1, pn+1:

un+1−un+1−θ

θ∆t
−αν∆un+1+∇pn+1 = fn+1+βν∆un+1−θ−c(u∗,un+1−θ) in Ω,

∇·un+1 =0 in Ω,

un+1 =ϕn+1 on Γ=∂Ω.
end

2.1 The temporal discretization

The nonlinear θ-scheme [20] and the linear Linθ∗-scheme [28] are used for the temporal
discretization of the NSE. These numerical schemes are described in Algorithm 2.1. The
quantities fτ , ϕτ are the quantities f, ϕ at time τ.

The nonlinear θ-scheme and the linear Linθ∗-scheme are set by choosing the param-
eters θ,α,β and the quantity u∗. The choices are highlighted in Table 1: for u∗ = un+1−θ,
we obtain the nonlinear θ-scheme; for

u∗=
2θ−1

θ
un+

1−θ

θ
un+θ,

we obtain the linear Linθ∗-scheme.

The linear Linθ∗-scheme possesses the same advantages as the nonlinear θ-scheme:
second-order accuracy in time—detachability of the incompressibility and the nonlinear-
ity—unconditional stability—invariance of the linear systems throughout the temporal
iterations. Furthermore, it adds a crucial advantage: the replacement of a nonlinear el-
liptic equation by a linear elliptic equation with variable coefficients. The linear Linθ∗-
scheme has been our choice for the temporal discretization.

In practice, two generalized Stokes equations (GSE) and one linear elliptic equation
with variable coefficients must be solved at each temporal iteration. And these equations
have then to be discretized at present in space, a question that we now address.
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Table 1: The nonlinear θ-scheme and the linear Linθ∗-scheme.

Parameters
Acronym θ α β u∗

θ 1− 1√
2

1−2θ

1−θ

θ

1−θ
un+1−θ

Linθ∗ 1− 1√
2

1−2θ

1−θ

θ

1−θ

2θ−1

θ
un+

1−θ

θ
un+θ

2.2 The spatial discretization

First, we consider the generalized Stokes equations (GSE) and then we treat the linear
elliptic equation with variable coefficients.

2.2.1 The generalized Stokes equation

Here, we consider the following GSE in primitive variables with Dirichlet boundary con-
ditions over the domain Ω= ]0,1[×]0,1[



































−ν∆u+γu+
∂p

∂x
= f ,

−ν∆v+γv+
∂p

∂y
= g,

∂u

∂x
+

∂v

∂y
=0,

u
∣

∣

Γ
= ϕ, v

∣

∣

Γ
=ψ,

(2.1)

where u=(u,v) is the velocity, p is the pressure, f=( f ,g) is the external force, ν>0 is the
kinematic viscosity, and γ≥0 is a given constant.

Its spatial discretization is performed on a staggered marker-and-cell (MAC) mesh
by finite-differences [22]. The mesh size in both directions is h=1/N, where N is a non-
negative integer. An (N−1)×N (classical mesh) × (staggered mesh) is used to discretize
the first component of the velocity; an N×(N−1) (staggered mesh) × (classical mesh), to
discretize the second component; and an N×N (staggered mesh) × (staggered mesh), to
discretize the pressure.

Using lexicographical order for the unknown u, transposed lexicographical order for
the unknown v, and lexicographical order for the unknown p, we obtain the spatial dis-
cretization in block form of the GSE [16]:

[

A B
−BT O

][

u

p

]

=

[

f

z

]

, (2.2)
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where

A=

[

Aγ O
O Aγ

]

, B=

[ B
T TB

]

, u=

[

u
v

]

, f=

[

f̌
T T ǧ

]

, (2.3)

Aγ =−ν∆
s

h+γIN

⊗

IN−1, B= IN

⊗

δ h
2
, B=δ h

2

⊗

IN,

∆
s

h = IN

⊗

∆h +∆
s

h

⊗

IN−1.

The operators ∆
s

h,∆s

h,∆h are the two-dimensional staggered, the one-dimensional stag-
gered, and the classical finite-difference Laplace operators with Dirichlet boundary con-
ditions,

∆h =
1

h2















−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2















, ∆
s

h =
1

h2















−3 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −3















.

The operator δ h
2

is the centered second-order finite-difference with halved mesh size h/2

for the first derivative:

δ h
2
=

1

h















−1 1
−1 1

. . .
. . .

−1 1
−1 1















.

Hereafter, we write v = T v, where T is the transposed permutation matrix. The op-
erator I is the identity matrix of order . Finally, the quantities f̌ and ǧ are the finite-
difference discretizations of the right-hand side of the equations with, near the bound-
ary, some terms coming from the finite-difference discretizations of the Laplace operator
and involving the Dirichlet boundary conditions (boundary and extrapolated values).
The quantity z is the finite-difference discretization of the zero function with, near the
boundary, some terms coming from the finite-difference discretization of the divergence
operator and involving the Dirichlet boundary conditions (boundary values).

To solve the GSE, we use the projection method, see [25] and the references therein.
In the end, we uncouple the variables u,p to obtain a linear system for the velocity:

PAPu=P

(

f+AB
(

BTB
)−1

z

)

. (2.4)

Here, P is the orthogonal projector onto the null space of BT:

P= I−BB† = I−B
(

BTB
)−1

BT, (2.5)
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where I is the identity matrix and B† is the Moore-Penrose inverse of B:

B† =
(

BTB
)−1

BT. (2.6)

The matrix PAP is symmetric positive semidefinite, and null(PAP) = null(P) = range(B).
Then, the linear system (2.4) is solvable. And to solve it, we apply the Conjugate Gradient
(CG) method [9] to the linear system

PAu=Pf,

for the unknown u with BTu=−z.
Each CG iteration requires computing the action of the projector P: solving a linear

system BTB ζ =BTd being the most difficult operation, other significant operations being
matrix-vector products.

But, solving a linear system BTB ζ=BTd, is this a simple computational task? See, [25,
p. 207]. Here, the matrix BTB reads

BTB= In

⊗

δT
h
2

δ h
2
+δT

h
2

δ h
2

⊗

In =−∆
n

h, (2.7)

where the operator ∆
n

h is the two-dimensional staggered finite-difference Laplace oper-
ator with Neumann boundary conditions [16]. Furthermore, we have that (BTd,1) =
(d,B1)=0, where 1 is the unit function and (·,·) is the scalar product of the Hilbert space
L2(Ω).

Therefore, solving a linear system BTB ζ=BTd amounts to solving a two-dimensional
discrete Poisson equation with Neumann boundary conditions—indeed, a simple com-
putational task, performed by a direct Fast Fourier Transform (FFT) method [30].

Finally, the pressure is computed from the equation

p=B†(f−Au). (2.8)

2.2.2 The linear elliptic equation with variable coefficients

Here, we consider the following linear elliptic equation with variable coefficients in prim-
itive variables with Dirichlet boundary conditions over the domain Ω= ]0,1[×]0,1[

−ν∆u+µu+u∗ ∂u

∂x
+v∗

∂u

∂y
= f ,

−ν∆v+µv+u∗ ∂v

∂x
+v∗

∂v

∂y
= g,

u
∣

∣

Γ
= ϕ, v

∣

∣

Γ
=ψ,

(2.9)

where u = (u,v) is the velocity, p is the pressure, f = ( f ,g) is the external force, ν > 0 is
the kinematic viscosity, and µ≥ 0 is a given constant. Here, the quantity u∗ =(u∗,v∗) is
known and computed from the relation

u∗=
2θ−1

θ
un+

1−θ

θ
un+θ, θ =1− 1√

2
. (2.10)
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The discretization is performed on an (N−1)×N (classical mesh) × (staggered mesh) by
finite differences. To discretize the convection terms, we use uncentered second-order
first finite-differences:

ρ(x,y)
∂w

∂x
(x,y)≈ρ(x,y)∇x,ρ(x,y)w(x,y),

where ∇x,ρ(x,y)w(x,y) is the partial uncentered second-order first finite-difference with
respect to x. The ordinary uncentered second-order first finite-difference with respect to
x is

∇ρ(x)w(x)=











3w(x)−4w(x−h)+w(x−2h)

2h
, if ρ(x)≥0,

−3w(x)−4w(x+h)+w(x+2h)

2h
, if ρ(x)<0.

The discrete equation reads
{

−ν∆
s

hu+µu+u∗∇x,u∗u+v∗∇x,v∗u= f̌ (u∗,v∗),

−ν∆
s

hv+µv+u∗∇x,u∗v+v∗∇x,v∗v= ǧ(u∗,v∗).
(2.11)

The quantities f̌ (u∗,v∗), ǧ(u∗,v∗) are the finite-difference discretizations of the right-hand
sides of the equations with, near the boundary, some terms coming from the finite-
difference discretization of the Laplace operator and of the convection terms, related to
the Dirichlet boundary conditions (boundary and extrapolated values)—and the quantity
u∗=(u∗,v∗) (values near the boundary).

The matrices being nonsymmetric, we solve the linear systems before by the precondi-
tioned Bi-CGSTAB method [34], using incremental unknowns in the preconditioner [16].
To build up the block diagonal (scaling) preconditioning matrix, we neglect the variable
coefficients and consider only the block diagonal part of the incremental unknowns ma-
trix associated to the operator Aµ =−ν∆

s

h+µI. Furthermore, at the coarsest level, some
terms are added; others, dropped, making αlast = α,γfirst = γlast = γ, see [16, p. 458]. This
approximation allows us to switch from direct LU decomposition methods to direct FFT
methods [29] in the preconditioner.

3 Computational experiments

Ranging from Re=100 to Re=20,000, several computational experiments are conducted:
long-term integration—mesh-size and time-step refinement analysis—change of the ini-
tial condition—detailed comparisons of quantities. The global attractor seems reached
for Reynolds numbers up to Re=15,000.

3.1 Preliminaries

To do the computations, we take N = 128 and N = 256. For the incremental unknowns
setup, we always choose ł=2, where ł is the number of levels; so we choose M =64 and
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x=( 1
8 , 1

8 ) x=( 7
8 , 1

8 )

x=( 1
8 , 7

8 )

x=( 1
32 , 31

32 )

Figure 2: The three relevant corners of the square cavity.

M=128, where M determines the coarsest mesh size. For Re≤5,000, the initial condition
u0 is the solution of the Stokes equation, that is, the GSE with γ=0, at the same Reynolds
number; for Re>5,000, it is the last computed solution of the NSE at the Reynolds number
considered just before.

To perceive the long-term dynamic behavior of the flow, we will use phase diagrams.
Using the time step ∆t = 4h, the time t∞ is a large time for which in the first instance a
solution has been computed, a large time where the global attractor seems attained. The
complete phase diagram at the point x is the plot of the values (u(x,t),v(x,t)), from t=0 to
t=t∞. The detailed phase diagram at the point x is the plot of the values (u(x,t),v(x,t)) in
a 2×2 windowed matrix W displayed in row-major order by discarding more and more
portions of time as t−→ t∞ : in W(1,1) appears the complete phase diagram at the point
x; in W(1,2), the plot of the values (u(x,t),v(x,t)) from t = t1 to t = t∞; in W(2,1), the
plot of the values (u(x,t),v(x,t)) from t = t2 to t = t∞; in W(2,2), the plot of the values
(u(x,t),v(x,t)) from t=t3 to t=t∞. Here, t1,t2,t3 are chosen such that t=0≪t1 ≪t2 ≪t3

and t3≈ t∞, to better perceive the long-term dynamic behavior of the flow.

Phase diagrams will be considered at the three relevant corners of the square cavity:
at the bottom left corner, x = ( 1

8 , 1
8), at the bottom right corner, x = ( 7

8 , 1
8), and at the top

left corner, x=( 1
8 , 7

8),( 1
32 , 31

32), see Fig. 2. The complete phase diagram at the three relevant
corners of the square cavity is the simultaneous display of the complete phase diagram
at the points x =( 1

8 , 1
8), ( 7

8 , 1
8), ( 1

8 , 7
8), presented in a 2×2 windowed matrix W displayed

in row-major order by location: in W(2,1) is the complete phase diagram at the point
x = ( 1

8 , 1
8); in W(2,2), the complete phase diagram at the point x = ( 7

8 , 1
8); in W(1,1), the

complete phase diagram at the point x=( 1
8 , 7

8). W(1,2) is empty.

To assess the end of the computations, that is, to assess if the global attractor has been
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t=0 τ1 = t∞ τ1+δt

the initial time interval

τ2−δt τ2

the final time interval

Figure 3: The time-step refinement analysis.

reached, we carry out a time-step refinement analysis. With the time step ∆t = 4h, the
computations are performed from t = 0 to t = t∞. Then, the computations are continued
from t=τ1 = t∞ to t=τ2, where τ1 ≪τ2, with four time steps: ∆t=h, ∆t=2h, ∆t=3h, and
∆t = 4h—always starting with the same initial condition, the last solution computed at
time t=t∞ with the time step ∆t=4h. Two time intervals are fixed: the initial time interval
[τ1,τ1+δt] and the final time interval [τ2−δt,τ2], where δt is a lapse of time, δt = 93.75,
always, see Fig. 3.

For an interval [t1,t2], the oscillograms of the kinetic energy and, at any relevant cor-
ner of the square cavity, the phase diagrams, and their corresponding power spectra with
the four time steps—∆t = h, ∆t = 2h, ∆t = 3h, and ∆t = 4h—are presented in a 1×2 win-
dowed matrix W: in W(1,1) are the oscillograms of the kinetic energy or the phase di-
agrams; in W(1,2), their corresponding power spectra, their likeness or unlikeness al-
lowing to assess the end or extent of the computations: the reaching or not of the global
attractor. The kinetic energy of the flow is Eu(t)=‖u(·,t)‖2

ℓ2
. Here, the oscillogram of the

kinetic energy is the plot of the values (t,Eu(t)) from t = t1 to t = t2. The phase diagram
at the point x is the plot of the values (u(x,t),v(x,t)) from t = t1 to t = t2. The time-step
refinement analysis is displayed in Fig. 11, the initial time interval, and in Fig. 12, the
final time interval.

Throughout, we will stick to a gray-color usage: a 0 gray (black) line means compu-
tations performed with the time step ∆t = 4h, displayed first; a 0.25 gray line, ∆t = 3h,
second; a 0.5 gray line, ∆t=2h, third; a 0.75 gray line, ∆t=h, last, unless otherwise speci-
fied.

To perceive the geometrical structure of the flow and the associated physics, we will
consider sequences of streamlines. For time periodic solutions, the computations will be
performed with the time step ∆t=4h. Once the time periodic solution has been reached,
two consecutive relative maxima are identified. Let us assume they occur at time t1 and
time t2, with t1 < t2. Let J be the number of temporal iterations with the time step ∆t=4h
which are needed to go from t = t1 to t = t2. A complete cycle of streamlines is the plot
of the streamlines in a 4×3 windowed matrix W displayed in row-major order for the
solutions computed at the sequence of times t = t1+ j×ceil(J/12), for j = 0,··· ,11, where
ceil rounds toward infinity. The time t = t1+12×ceil(J/12) may not be exactly the time
t= t2, but it will be very close past the time t2.

For chaotic solutions, the computations will be performed with the time step ∆t = h,
after the time t∞. Once the global attractor or a large time is reached, a large initial
time T with t∞ ≪ T is chosen to better highlight distinctive features of the flow. A par-
tial sequence of streamlines is the plot of the streamlines in a 4×3 windowed matrix
W displayed in row-major order for the solutions computed at the sequence of times
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t=T+ j×20×h, for j=0,··· ,11. The levels for the streamlines are:

1. ±1× 1

10i
, ±3× 1

10i
, for i=2,··· ,15;

2. 0;

3. −12× 1

102
−i× 1

102
, for i=0,··· ,10.

3.2 Stationary solutions

For Re=100, Re=1,000, Re=3,200, and Re=5,000, the solution is stationary.

The case Re=5,000. The long-term dynamic behavior of the flow at the three relevant
corners of the square cavity is unstructured in the mid term and structured in the long
term—and the large time step ∆t = 4h chosen makes this chaotic in the end. First, the
long-term integration is performed with the time step ∆t = h (black line); then, with the
time step ∆t = 4h (light gray line). In Fig. 4, we display the detailed phase diagram at
the point x=( 7

8 , 1
8). Computed with the time step ∆t = h, the long-term dynamic behav-

ior is sharp throughout; computed with the time step ∆t = 4h, it stays very close to the
former everywhere—but this is chaotic in the end. Notwithstanding, the long-term in-
tegration performed with the time step ∆t=4h preserves accuracy, the distance between
the starting points in Fig. 4, bottom right, being

d=8.49×10−7 =O(10−7).

Now, some contrasts. In Fig. 5 we display the detailed phase diagram at the point
x=( 7

8 , 1
8): the linear Linθ∗-scheme (black line) versus the nonlinear θ-scheme (light gray

line). The nonlinear θ-scheme produces a blurred long-term dynamic behavior, whereas
the linear Linθ∗-scheme draws a sharp one. These numerical results favor the use of
the linear Linθ∗-scheme over the nonlinear θ-scheme. Notwithstanding, the nonlinear
θ-scheme preserves accuracy, the distance between the end points in Fig. 5 bottom right
being

d=4.16×10−5 =O(10−5).

At this point in time, the mesh-size refinement analysis. In Fig. 6, we display the com-
plete phase diagram at the point x=( 7

8 , 1
8). First, the long-term integration is performed

with N =128 and ∆t =4h, looking inclined; then, it is achieved with N =256 and ∆t = h,
looking symmetrical. Qualitatively, they behave similarly. To some extent, the long-term
integration performed with N=128 and ∆t=4h preserves accuracy, the distance between
the end points in Fig. 6 being

d=7.23×10−3 =O(10−3).

Now, the time-step refinement analysis, see Fig. 7: the initial interval (top) and the
final interval (bottom). Here, we take τ1 = 2,062.5 and τ2 = 2,453.1094. On the initial
interval and on the final interval with ∆t=4h, the oscillograms of the kinetic energy and
the corresponding power spectra resemble. Indeed, the global attractor has been attained.
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d

Figure 4: The detailed phase diagram at the point x=( 7
8 , 1

8 ). Re=5,000. N=256. ∆t=h (black line). ∆t=4h
(light gray line).

On the final interval, three fundamental frequencies— f4 = 0.896, f5 = 1.2373, f6 =
1.536—with amplitudes of the order O(10−8) set the pace, and a very low frequency—
f1 =0.0427—and noise-like frequencies— f2 =0.2987, f3 =0.5973—with amplitudes of the
order O(10−9) push or pull while active, causing feeble chaotic behavior.

On the initial interval with ∆t = h, ∆t = 2h, and ∆t = 3h, the oscillograms of the ki-
netic energy, see Fig. 7 (top left), stay very close for a short period of time to the one with
∆t = 4h. Then, they approach the same stationary solution. On the final interval the os-
cillograms of the kinetic energy, see Fig. 7 (bottom left), corroborate this behavior. The
feebly chaotic solution computed with the time step ∆t=4h fluctuates around the station-
ary solution computed with the time steps ∆t=h, ∆t=2h, and ∆t=3h. These fluctuations,
see Fig. 7 (left), are of the order O(10−4), preserving accuracy, notwithstanding.

Finally, the geometrical structure of the flow and the associated physics. In Fig. 8
we display the streamlines of the stationary solutions. For Re = 100, the location of the
primary vortex appears toward the top right corner; for Re increasing, it moves toward
the geometric center of the square cavity. Secondary and tertiary vortices emerge at the
three relevant corners of the square cavity.
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d

Figure 5: The linear Linθ∗-scheme (black line) versus the nonlinear θ-scheme (light gray line). Re = 5,000.
N =128.

3.3 Time periodic solutions

For Re=7,500, Re=10,000, and Re=12,500, the solution is time periodic.
The dynamic behavior of the flow at the three relevant corners of the square cavity

is unstructured in the mid term and structured in the long term—indeed, this is time
periodic in the end.

The case Re=7,500. In Fig. 9, we display the complete phase diagram at the three rele-
vant corners of the square cavity, the limit set being highlighted (light gray line).

The case Re=10,000. To start with, in Fig. 10, we display the detailed phase diagram
at the top left corner, x = ( 1

32 , 31
32), the limit set being highlighted (light gray line). But

here, the long-term integration is performed twice with the same time step ∆t =4h. The
light gray line: the initial condition is the solution of the NSE computed at the Reynolds
number Re = 9,000. The black line: the initial condition is the solution of the Stokes
equations computed at the same Reynolds number Re = 10,000. As time goes on, the
dynamic behaviors of these two solutions of the NSE get closer and closer; the limit sets
are indistinguishable. The light gray line dynamic behavior starts closer to the limit set
than the black line dynamic behavior does.
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d

Figure 6: The complete phase diagram at the point x=( 7
8 , 1

8 ). Re=5,000. N =128 (light gray line), N =256
(black line).

Finally, the geometrical structure of the flow and the associated physics. In Fig. 14,
we display a complete cycle of streamlines for the time periodic solution.

At the bottom left corner appear two secondary vortices: DBL2 and UBL2. These
vortices keep merging as time goes on. The primary vortex drags DBL2 up to merge with
UBL2. When they are merging, a tertiary vortex appears; when the merging is complete,
this tertiary vortex disappears. DBL2 absorbs UBL2 (UBL2 disappears), and the primary
vortex drags DBL2 up to become UBL2. Then, DBL2 appears again. This behavior goes on
periodically.

At the top left corner appear two secondary vortices: DTL2 and UTL2. These vortices
keep merging as time goes on. The primary vortex drags DTL2 up to merge with UTL2.
When they are merging, a tertiary vortex appears; when the merging is complete, this
tertiary vortex disappears. UTL2 absorbs DTL2 (DTL2 disappears), and the primary vor-
tex drags UTL2 up. UTL2 never disappears. Then, DTL2 appears again. This behavior
goes on periodically. No splitting of vortices occurs at the bottom and top left corners.

At the bottom right corner, appear a secondary vortex and a tertiary vortex. Although
moving periodically, these vortices remain stationary to a large extent. Neither splitting
nor merging of vortices occurs at the bottom right corner.
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Figure 7: The time-step refinement analysis. The initial time interval (top) and the final time interval (bottom).

The case Re=12,500. In the first place, the time-step refinement analysis. Here, we take
τ1 = 4,375 and τ2 = 5,312.5. On the initial time interval and on the final time interval
with ∆t=4h, the oscillograms of the kinetic energy and the corresponding power spectra
resemble. Indeed, the global attractor has been attained. This is time periodic: one funda-
mental frequency— f1 =2.432—the same on the initial time interval and on the final time
interval sets the pace. On the initial time interval with ∆t = h, ∆t = 2h, and ∆t = 3h, the
global attractors have not yet been attained: one fundamental frequency sets the pace, but
a very low frequency—with small amplitude—distances from the time periodic solution
attained with ∆t=4h.

On the final interval with ∆t=h, ∆t=2h, ∆t=3h, and ∆t=4h, the oscillograms of the
kinetic energy and the corresponding power spectra resemble. The global attractors have
been attained. These are time periodic, all. To some extent, they differ. But, they look
parallel.

And, the long-term dynamic behavior at the three relevant corners of the square cav-
ity, how do they differ? Indeed, they are time periodic, all. At the bottom right corner:
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Re = 3200 Re = 5000

Re = 100 Re = 1000

Figure 8: Low Reynolds number flow. Stationary solutions.

x = ( 7
8 , 1

8), see Fig. 13, they are almost indistinguishable; with ∆t = 4h, the fundamental
frequency is f1 =2.432.

In the second place, the geometrical structure of the flow and the associated physics.
In Fig. 15, we display a complete cycle of streamlines for the time periodic solution.

At the bottom and top left corners, the long-term dynamic behavior is as the one at
the corresponding corners for Re=10,000.

At the bottom right corner the long-term dynamic behaviors for Re = 10,000 and
Re=12,500 differ. Now, at the bottom right corner appear two secondary vortices: DBR2

and UBR2. These vortices keep merging and splitting as time goes on. The primary vor-
tex drags UBR2 down to merge with DBR2. When they are merging, two tertiary vortices
and two quaternary vortices appear: DBR3 and UBR3, and DBR4 and UBR4. UBR2 merges
with the quaternary vortex DBR4; when the merging is complete, DBR3 disappears and
UBR3 and UBR4 stands. UBR2 absorbs DBR2 (DBR2 disappears), and the primary vor-
tex drags UBR2 down to become DBR2. Then, UBR2 appears again. Meanwhile, UBR3

becomes stronger, and the interaction of the primary vortex and UBR3 produces the split-
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Figure 9: The long-term dynamic behavior. Re=7,500.

ting of DBR2 and UBR2. Then, the tertiary vortex UBR3 becomes weaker, and the stronger
action of the primary vortex produces again the merging of DBR2 and UBR2. This behav-
ior goes on periodically.

3.4 Chaotic solutions

As a matter of fact, for Re= 15,000, Re= 17,500, and Re= 20,000, the solution is neither
stationary nor time periodic: the solution becomes chaotic.

The case Re=15,000. In the first place, the time-step refinement analysis. Here, we take
τ1 = 13,437.5 and τ2 = 14,375. On the initial time interval and on the final time interval
with ∆t=4h, the oscillograms of the kinetic energy and the corresponding power spectra
resemble. Indeed, the global attractor has been attained. On the initial time interval,
six fundamental frequencies— f2 = incipient, f3 = 0.4267, f4 = 0.512, f5 = 0.64, f6 = 0.896,
f7 =2.3467—set the pace, and a very low frequency— f1 =0.0853—pushes or pulls while
active; on the final time interval, six fundamental frequencies— f2 = 0.1707, f3 = 0.384,
f4 =0.5547, f5 =0.7253, f6 =0.896, f7 =2.3467—set the pace, and a very small frequency—
f1 =0.0853—pushes or pulls while active, causing chaotic behavior.
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Figure 10: The long-term dynamic behavior. Re=10,000.

On the initial time interval and on the final time interval with ∆t=h, ∆t=2h, ∆t=3h,
and ∆t=4h, the oscillograms of the kinetic energy and the corresponding power spectra
resemble. The global attractors have been attained. They are chaotic, all. To some extent,
they differ. But, they look parallel.

Temporal errors do appear. And, the solutions computed later at the time τ2, how do
they differ? In Fig. 16, we display those solutions. With ∆t=h, the strength of the primary
vortex is −0.1161; with ∆t = 2h, −0.1162; with ∆t = 3h, −0.1160; with ∆t = 4h, −0.1159.
The primary vortex remains stationary: its location is (0.5117,0.5313), the same with all
the time steps. The small vortices appear to move clockwise: ∆t=h−→∆t=2h−→∆t=
3h−→∆t = 4h. The temporal errors seem to shift the time at some rate. And, the long-
term dynamic behavior at the three relevant corners of the square cavity, how do they
differ? Indeed, they become chaotic, all. At the bottom right corner: x=( 7

8 , 1
8), see Fig. 13,

similarly they become chaotic: with ∆t = 4h, one fundamental frequency— f1 = 2.3467—
sets the pace, and broadband, noise-like frequencies push or pull while active, causing
chaotic behavior.

In the second place, the geometrical structure of the flow and the associated physics,
see Fig. 17. Here, we take T =14,382.2656.

For the most part, at the three relevant corners of the square cavity, the long-term



S. Garcia / Commun. Comput. Phys., 2 (2007), pp. 900-932 919

Re = 20,000

Re = 17,500

Re = 15,000

Re = 12,500

f
1

f
2f3f

4
f
5
f
6

f
7

f
1
f
2f

3f4
f
5f

6 f
7

f
1

f
2f
3f4

f
5

f
6

f
1

Figure 11: The time-step refinement analysis. The initial time interval.

dynamic behavior is as the one at the corresponding corners for Re = 12,500; the shape
and the intensity of the vortices vary.

In addition, at the bottom left corner, sometime, the primary vortex merges with the
tertiary vortex BL3. Meanwhile, the quaternary vortex BL4 appears fleetingly, lacking
relevance. At the bottom right corner, sometime, when the two secondary vortices DBR2

and UBR2 are going to merge, UBR2 merges with the quaternary vortex DBR4, becoming
stronger; the merging of UBR2 and DBR2 is delayed; in fact, it does not occur. Instead,
two phenomena happen: first, DBR2 becomes weaker and is dragged away to the bottom
left corner to merge with DBL2; second, UBR2 splits by the action of the primary vortex
and UBR3, giving rise to the new DBR2 and UBR2. Meanwhile, the quaternary vortex
UBR4 appears fleetingly, lacking relevance.

The case Re=17,500. In the first place, the time-step refinement analysis. Here, we take
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Figure 12: The time-step refinement analysis. The final time interval.

τ1 =20,078.125 and τ2 =30,390.625.

On the initial time interval with ∆t = h, ∆t = 2h, ∆t = 3h, and ∆t = 4h, the oscillo-
grams of the kinetic energy coincide for a short period of time and unambiguously differ
afterward. On the initial time interval and on the final time interval with ∆t = 4h, the
oscillograms of the kinetic energy and the corresponding power spectra differ. Indeed,
on the initial time interval the global attractor has not yet been attained. Nevertheless,
chaos is going on.

With ∆t = 4h, on the initial time interval, six fundamental frequencies— f2 = 0.1707,
f3 = 0.2987, f4 = 0.4267, f5 = 0.512, f6 = 0.6827, f7 = 1.1093—set the pace, and a very low
frequency— f1=0.0853—with considerable amplitude pushes or pulls while active; on the
final interval, six fundamental frequencies— f2=0.3840, f3=0.4693, f4=0.6827, f5=0.8533,
f6 =0.9387, f7 =1.0667—set the pace, and a very low frequency— f1 =0.0853—with large
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Figure 13: The phase diagram and power spectrum at the point x=( 7
8 , 1

8 ). The final time interval.

amplitude pushes or pulls while active, causing chaotic behavior. But the fundamental
frequencies are weak. The amplitude of f1 on the final time interval is more than four
times the amplitude of f1 on the initial time interval. Solely two frequencies coincide on
both time intervals, initial and final.

On the final time interval with ∆t = h, ∆t =2h, ∆t =3h, and ∆t =4h, the oscillograms
of the kinetic energy unambiguously differ throughout. They do not look parallel. The
corresponding power spectra resemble: a very low frequency dominates the spectra over
weak fundamental frequencies. The global attractor has not been attained neither on the
final time interval.

And, the long-term dynamic behavior at the three relevant corners of the square
cavity, how do they differ? Indeed, they become chaotic, all. At the bottom right cor-
ner: x = ( 7

8 , 1
8), see Fig. 13, similarly they go chaotic: with ∆t = 4h, six fundamental
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Figure 14: A complete cycle of streamlines. Re=10,000.

frequencies— f2 = 0.1707, f3 = 0.9387, f4 = 1.1093, f5 = 1.4507, f6 = 1.6213, f7 = 2.688—set
the pace, and a very low frequency— f1 = 0.0853—and broadband, noise-like frequen-
cies push or pull while active, causing chaotic behavior. Now, the very low frequency
is weaker than the fundamental frequencies. This seems an indication that the global
attractor has been attained at the bottom right corner.

In the second place, the geometrical structure of the flow and the associated physics,
see Fig. 18. Here, we take T =21,021.7969.

For the most part, at the three relevant corners of the square cavity, the long-term
dynamic behavior is as the one at the corresponding corners for Re = 15,000; the shape
and the intensity of the vortices vary.
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Figure 15: A complete cycle of streamlines. Re=12,500.

Furthermore, at the bottom right corner, sometime, when the two secondary vortices
DBR2 and UBR2 are going to merge, the merging is delayed; in fact, it does not occur.
Instead, two phenomena happen: first, DBR2 becomes weaker and is dragged away to
the bottom left corner to merge with DBL2; second, the interaction of the primary vortex
and UBR3 splits UBR2, giving rise to the new DBR2 and UBR2. Then, DBR2 and UBR2 go
to merge again. When they are about to merge, DBR3 arises, and the interaction of DBR3

and UBR3 splits DBR2, giving rise to the new DBR2 and BR4. DBR3 and UBR3 merge, and
DBR2 and UBR2 merge. Meanwhile, the quaternary vortex BR4 stands.

The case Re=20,000. In the first place, the time-step refinement analysis. Here, we take
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∆ t = 2 h ∆ t = 3 h

Figure 16: The effect of temporal errors. Re=15,000.

τ1 =25,312.5 and τ2 =26,250.

On the initial time interval with ∆t=h, ∆t=2h, ∆t=3h, and ∆t=4h, the oscillograms of
the kinetic energy coincide for a shorter period of time than in the case before Re=17,500
and unambiguously differ afterward. On the initial time interval and on the final interval
with ∆t=4h, the oscillograms of the kinetic energy and the corresponding power spectra
differ. Indeed, on the initial time interval the global attractor has not yet been attained.
Nevertheless, chaos is going on.

With ∆t = 4h, on the initial time interval, six fundamental frequencies— f2 = 0.256,
f3 = 0.384, f4 = 0.5547, f5 = 0.6827, f6 = 0.8533, f7 = 2.2613—set the pace, and a very
low frequency— f1 = 0.0427—with large amplitude pushes or pulls while active, caus-
ing chaotic behavior; on the final time interval, six fundamental frequencies— f2 =0.128,
f3 = 0.2987, f4 = 0.4693, f5 = 0.5547, f6 = 0.7253, f7 = 0.9813—set the pace, and a very
low frequency— f1 =0.0427—with large amplitude pushes or pulls while active, causing
chaotic behavior. But the fundamental frequencies are weak, the very low frequency hav-
ing extremely large amplitude, and differ on both time intervals, initial and final, for the
most part.

On the final time interval with ∆t = h, ∆t =2h, ∆t =3h, and ∆t =4h, the oscillograms
of the kinetic energy unambiguously differ throughout. They do not look parallel. The



S. Garcia / Commun. Comput. Phys., 2 (2007), pp. 900-932 925

Figure 17: A partial sequence of streamlines. Re=15,000.

global attractors have not been attained either on the final interval.

And the long-term dynamic behavior at the three relevant corners of the square cav-
ity, how do they differ? Indeed, they become chaotic, all. At the bottom right corner:
x = ( 7

8 , 1
8), see Fig. 13, similarly they become chaotic: with ∆t = 4h, three fundamental

frequencies— f2=0.2987, f3=0.7253, f4=1.1093—set the pace, and a very low frequency—
f1 = 0.0853—and broadband, noise-like frequencies push or pull while active, causing
chaotic behavior. Now, the very low frequency is weaker than the not clear-cut, but aris-
ing fundamental frequencies. This seems an indication that the global attractor has not
yet been attained at the bottom right corner.

The global attractor has not yet been attained although the time reached is extremely
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Figure 18: A partial sequence of streamlines. Re=17,500.

large and the initial condition is the last computed solution of the NSE at the Reynolds
number considered just before Re = 17,500—the very low frequency having extremely
large amplitude, not allowing to perceive the fundamental frequencies, for the most part.

Finally, the small vortices in the flow decay exponentially toward a small value; e.g.,
the displayed plane segment in Fig. 13 bottom left is [−0.2547,0.2773]×[−0.1504,0.3036].

In the second place, the geometrical structure of the flow and the associated physics,
see Fig. 19. Here, we take T =26,253.5938.

To some extent, at the three relevant corners of the square cavity, the long-term dy-
namic behavior is as the one at the corresponding corners for Re=17,500; the shape and
the intensity of the vortices vary.
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Figure 19: A partial sequence of streamlines. Re=20,000.

Furthermore, at the top left corner, sometime, the tertiary vortex TL3 is so strong that
it does not disappear and it impedes the merging of DTL2 and UTL2; instead, DTL2 is
dragged up, and almost simultaneously, TL3 and DTL2 disappear. At the bottom left
corner the interaction of the vortices down UBL2 is such that any merging with UBL2 is
delayed; in fact, it does not occur. Instead, UBL2 becomes weaker and is dragged up to
the top left corner to merge with DTL2.

3.5 Quantitative and qualitative comparisons

Let us now make some detailed comparisons of quantities.
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Table 2: The bottom right secondary vortex.

Re=1,000 Re=5,000
Authors strength location strength location

Present 1.79×10−3 (0.8594,0.1094) 3.07×10−3 (0.7891,0.0781)
Erturk et al. 1.73×10−3 (0.8633,0.1117) 3.06×10−3 (0.8050,0.0733)

Barragy and Carey — — 3.07×10−3 (0.8041,0.0725)
Goyon 1.63×10−3 (0.8671,0.1171) 2.82×10−3 (0.8203,0.0781)
Vanka 1.74×10−3 (0.8625,0.1063) 5.49×10−3 (0.8500,0.0813)

Schreiber and Keller 1.70×10−3 (0.8643,0.1071) — —
Ghia et al. 1.75×10−3 (0.8594,0.1094) 3.08×10−3 (0.8086,0.0742)

In the first place, in Table 2 we highlight the characteristics of BR2 for Re=1,000 and
Re=5,000. First, the quantities we obtained with N=128 and ∆t=4h are displayed. Then,
the quantities obtained by the other authors are displayed chronologically. For Re=1,000,
our results agree with those obtained by all authors except [21]. The results obtained
in [21] disagree with those obtained by the other authors: the strength of BR2 is weaker,
for the most part. For Re=5,000, our results agree with those obtained in [1,10], and [19]
and differ with those obtained in [21] and [35]. The results obtained in [21] and [35]
disagree with those obtained by the other authors: according to [21], the strength of BR2

is weaker; according to [35], stronger, for the most part.

In the second place, in Tables 3 and 4 we highlight the characteristics of the primary
vortex for Re = 5,000, Re = 7,500, Re = 10,000, and Re = 12,500. First, the quantities we
obtained with N=256 and ∆t=4h are displayed. Then, when available, the quantities ob-
tained by the other authors are displayed chronologically. For these Reynolds numbers,
our results agree with those obtained in [1,10], and [23] and disagree with those obtained
in [19] where the strength of the primary vortex is systematically weakened. The results
obtained in [21,35], and [26] differ significantly from those obtained by the other authors,
the strength of the primary vortex being substantially weaker.

On the other hand, [1, 10, 23, 26, 35], and [19] consider the stationary NSE, but in [21]
and in the present research, the time-dependent NSE; so that qualitative comparisons are
possible with [21].

In [21] the author reports stationary solutions in a row from Re=100 to Re=7,500—
and time periodic solutions in a row for Re= 10,000 and Re= 12,500. Notwithstanding,
we report stationary solutions in a row from Re = 100 to Re = 5,000—and time periodic
solutions in a row from Re = 7,500 to Re = 12,500, this kind of solutions occurring for
smaller Reynolds numbers in the present research. Furthermore, the long-term dynamic
behavior we observed for Re=10,000 has been reported in [21]—but for a larger Reynolds
number: Re=12,500, where, besides, the merging and splitting of secondary vortices at
the bottom right corner is incipient, ibid., p. 332.

Finally, the mesh-size refinement analysis, see Table 5. Here, we highlight the char-
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Table 3: The primary vortex.

Re=5,000 Re=7,500
Authors strength location strength location

Present −0.1237 (0.5156,0.5352) −0.1246 (0.5117,0.5313)
Erturk et al. −0.1213 (0.5150,0.5350) −0.1209 (0.5133,0.5317)

Barragy and Carey −0.1222 (0.5151,0.5359) −0.1224 (0.5132,0.5321)
Goyon −0.1115 (0.5156,0.5391) −0.1052 (0.5156,0.5312)
Li et al. −0.1204 (0.5156,0.5391) −0.1194 (0.5156,0.5391)
Vanka −0.0920 (0.5125,0.5313) — —

Schreiber and Keller — — — —
Ghia et al. −0.1190 (0.5117,0.5352) −0.1200 (0.5117,0.5322)

Table 4: The primary vortex (continued).

Re=10,000 Re=12,500
Authors strength location strength location

Present −0.1230 (0.5117,0.5313) −0.1199 (0.5117,0.5313)
Erturk et al. −0.1204 (0.5117,0.5300) −0.1198 (0.5117,0.5283)

Barragy and Carey −0.1224 (0.5113,0.5302) −0.1224 (0.5113,0.5283)
Goyon — — — —
Vanka — — — —

Schreiber and Keller −0.1028 (0.5140,0.5307) — —
Ghia et al. −0.1197 (0.5117,0.5333) — —

Table 5: Characteristics of the vortices. Re=5,000.

n=128 n=256
Vortices strength location strength location

Primary −0.1270 (0.5156,0.5391) −0.1237 (0.5156,0.5352)
BL2 0.0012 (0.0703,0.1328) 0.0014 (0.0742,0.1328)
BR2 0.0031 (0.7891,0.0781) 0.0031 (0.8008,0.0742)
TL2 0.0016 (0.0625,0.9063) 0.0015 (0.0625,0.9102)
BL3 −1.61×10−7 (0.0078,0.0078) −1.21×10−7 (0.0078,0.0078)
BR3 −1.93×10−6 (0.9766,0.0234) −1.67×10−6 (0.9766,0.0195)

acteristics of the vortices for Re = 5,000. The quantities obtained in the present research
with N = 128 and ∆t = 4h, and N = 256 and ∆t = 4h are compared. For the primary
vortex, the difference between the strengths is −3.29×10−3; for BL2, −1.35×10−4; for
BR2, −1.33×10−5; for TL2, 5.47×10−5; for BL3, −3.97×10−8; for BR3, −2.61×10−7. Fur-
thermore, all the corresponding x- and y-directions components of the locations of the
vortices considered, exactly a half of them differ. For the primary vortex and BL2 and
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TL2 and BR3, the distance between the locations is 3.91×10−3; for BR2, 1.24×10−2; for
BL3, 0—no disagreements are there.

The computations were carried out in double precision arithmetic on the Silicon Graph-
ics Octane. From Netlib, blas, lapack, bihar, fftpack, and vfftpack were used to do the nu-
merical codes. Matlab was used to do the graphics and to fill out the tables.

4 Conclusion

Beginning at Re=7,500, at the bottom and top left corners, appear two secondary vortices
that keep merging as time goes on. Beginning at Re=12,500, at the bottom right corner,
appear two secondary vortices that keep merging and splitting as time goes on. Begin-
ning at Re= 15,000, the interaction of all the vortices—primary, secondary, tertiary, and
quaternary—is such that small secondary vortices may be dragged away from the bottom
right corner to the bottom left corner and from the bottom left corner to the top left corner.
Beginning at Re=20,000, at the top left corner, sometime, the tertiary vortex becomes so
strong that it does not disappear and it impedes the merging of the secondary vortices;
instead, the secondary vortex on the bottom of the top left corner is dragged up to disap-
pear almost simultaneously with the tertiary vortex. The primary vortex stays put. The
long-term dynamic behavior of the small vortices is stationary, for low Reynolds num-
bers; time periodic, for moderate Reynolds numbers; chaotic, for high Reynolds numbers;
this behavior determines the nature of the solutions. For high Reynolds numbers, over
weak fundamental frequencies appears a very low frequency dominating the spectra—
this very low frequency being weaker than clear-cut fundamental frequencies seems an
indication that the global attractor has been attained. The global attractor seems reached
for Reynolds numbers up to Re=15,000.
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