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Abstract. The numerical approximation of high frequency wave propagation is im-
portant in many applications. Examples include the simulation of seismic, acoustic,
optical waves and microwaves. When the frequency of the waves is high, this is a
difficult multiscale problem. The wavelength is short compared to the overall size of
the computational domain and direct simulation using the standard wave equations is
very expensive. Fortunately, there are computationally much less costly models, that
are good approximations of many wave equations precisely for very high frequencies.
Even for linear wave equations these models are often nonlinear. The goal of this pa-
per is to review such mathematical models for high frequency waves, and to survey
numerical methods used in simulations. We focus on the geometrical optics approx-
imation which describes the infinite frequency limit of wave equations. We will also
discuss finite frequency corrections and some other models.
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1 Introduction

In this review we consider numerical simulation of waves at high frequencies, and the
underlying mathematical models used. For simplicity we will mainly discuss the linear
scalar wave equation,

utt−c(x)2∆u=0, (t,x)∈R
+×Ω, Ω⊂R

d, (1.1)

where c(x) is the local speed of wave propagation of the medium. We complement
(1.1) with initial or boundary data that generate high-frequency solutions. The exact
form of the data will not be important here, but a typical example would be u(0,x) =
A(x)exp(iωk·x) where |k| = 1 and the frequency ω ≫ 1. With slight modifications,
the techniques we describe will also carry over to systems of wave equations, like the
Maxwell equations and the elastic wave equation.

When the frequency of the waves is high, (1.1) is a multiscale problem, where the
small scale is given by the wavelength, and the large scale corresponds to the overall size
of the computational domain. In the direct numerical simulation of (1.1) the accuracy of
the solution is determined by the number of grid points or elements per wavelength. The
computational cost to maintain constant accuracy grows algebraically with the frequency,
and for sufficiently high frequencies, direct numerical simulation is no longer feasible.
Numerical methods based on approximations of (1.1) are needed.

Let us mention before continuing that this multiscale problem is prevalent in many
applications for different types of waves: elastic, electromagnetic as well as acoustic. Seis-
mic wave propagation, for instance, is a challenging elastic wave problem. Both the for-
ward and the inverse problems are of great interest and high frequency approximations
must be used when the relative wavelength is short. In computational electromagnetics
(CEM) radiation and scattering problems, such as radar cross section (RCS) computa-
tions, are important. Electromagnetic waves emitted by communication or radar devices
often have a very small wavelength compared to the size of the scatterer, which can be an
entire aircraft. For acoustic problems high frequency techniques become interesting, for
instance, in underwater acoustics where waves of moderate frequency travel over very
large distances.

Fortunately, there exist good approximations of many wave equations precisely for
very high frequency solutions. In this paper we mainly consider variants of geometrical
optics, which are asymptotic approximations obtained when the frequency tends to in-
finity. These approximations are widely used in applications. Instead of the oscillating
wave field the unknowns in standard geometrical optics are the phase and the amplitude,
which typically vary on a much coarser scale than the full solution. Hence, they should
in principle be easier to compute numerically.

Geometrical optics can be formulated in several different ways. Assuming the solu-
tion can be approximated by a simple wave,

u(t,x)≈A(t,x)eiωφ(t,x), (1.2)
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one classical formulation is the partial differential equations (PDEs) for φ and A. The
phase function φ satisfies the Hamilton–Jacobi-type eikonal equation,

φt+c(x)|∇φ|=0, (1.3)

where | · | denotes the Euclidean norm in Rd. For the leading order amplitude term A one
obtains the transport equation

At+c(x)
∇φ·∇A

|∇φ| +
c(x)2∆φ−φtt

2c(x)|∇φ| A=0. (1.4)

Geometrical optics can also be formulated in terms of ray tracing. This is an ordinary dif-
ferential equation (ODE) model. As long as the phase function is smooth, it corresponds
to solving the eikonal equation (1.3) through the method of characteristics, i.e. solving the
system of ODEs,

dx

dt
=∇pH(x,p),

dp

dt
=−∇xH(x,p), H(x,p)= c(x)|p|, (1.5)

where the momentum variable p∈Rd is usually called the slowness vector. There are also
ODEs to compute the amplitude A.

Finally, there is a “kinetic” formulation, which have proved to be a useful basis for
some new numerical techniques. The kinetic model is based on the interpretation that
rays are trajectories of particles following Hamiltonian dynamics. In the phase space
(t,x,p) the evolution of a particle is governed by (1.5). Letting f (t,x,p) be a particle
density function, it will then satisfy the Liouville equation,

ft+∇pH ·∇x f −∇xH ·∇p f =0. (1.6)

The main drawbacks of the infinite frequency approximation of geometrical optics are
that diffraction effects at boundaries are lost, and that the approximation breaks down
at caustics, where the predicted amplitude A is unbounded. For these situations more
detailed models are needed, such as the geometrical theory of diffraction (GTD) [52], which
adds diffraction phenomena by explicitly taking into account the geometry of Ω and
boundary conditions. The solution’s asymptotic behavior close to caustics can also be
derived, and a correct amplitude for finite frequency can be computed [25, 42, 56, 66, 67].

High frequency wave propagation is thus well approximated by asymptotic formu-
lations like geometrical optics and the geometrical theory of diffraction. These formula-
tions can be used analytically for the understanding of high frequency phenomena but
also as the basis for computations. The ray tracing equations (1.5) can be solved directly
with numerical methods for ODEs. This gives the phase and amplitude solution along
a ray, and interpolation must be applied to obtain those quantities everywhere. The in-
terpolation can be simplified by instead using so-called wave front methods. They are
related to ray tracing, but instead of individual rays, an interface representing a wave
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front is evolved according to the ray equations. The eikonal and transport equations (1.3,
1.4) can also be solved with numerical PDE methods on regular grids. However, this
only gives the correct solution when it is a single wave of the form (1.2). When there
are crossing waves, more elaborate schemes must be devised. Methods using the kinetic
formulation can be seen as a compromise between ray tracing and eikonal equation meth-
ods. The Liouville equation (1.6) accepts crossing wave solutions and can in principle be
solved as a PDE. The computational drawback of (1.6) is the large number of indepen-
dent variables, a consequence of its being set in the full phase space. Unless solutions for
many different sources is of interest, the computational complexity of solving (1.6) is far
from competitive compared to the other methods. The complexity can be reduced, how-
ever. This is done in moment methods by considering the equations for the moments of
the density function f , set in (t,x)-space, and using the closure assumption that there are
only a fixed, finite, number of crossing waves at each point.

The purpose of this paper is to review the mathematical models and numerical meth-
ods outlined above. For other reviews of this topic, see [10, 27, 65]. The paper is orga-
nized as follows. After this introductory section, there are two main parts. In Section 2
the mathematical models discussed above, as well as some additional ones, are derived
and explained in more detail. This is followed by Section 3, where a survey of numerical
methods for the high frequency models is given.

2 Mathematical background

In this chapter we derive the equations that are used in geometrical optics. We also dis-
cuss corrections to the standard geometrical optics approximation and some other high
frequency models.

The starting point is the Cauchy problem for the scalar wave equation (1.1),

utt(x,t)−c(x)2∆u(x,t)=0, x∈R
d, t>0,

u(x,0)=u0(x), x∈R
d, (2.1)

ut(x,0)=u1(x), x∈R
d,

with highly oscillatory initial data u0 and u1. Here c(x) is the local wave velocity of the
medium. We also define the index of refraction as η(x)=c0/c(x) with the reference velocity
c0 (e.g. the speed of light in vacuum). For simplicity we will henceforth let c0 =1. When c
is constant (2.1) admits the simple plane wave solution

u(t,x)= Aeiω(ct−k·x), |k|=1, (2.2)

where ω is the frequency, k is the wave vector giving the direction of propagation and
A is a constant representing the amplitude. The parameters ω, k and A are determined
by appropriate initial data. For more complicated waves and when c is not constant, we
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A B

(a) Correct solution (b) Eikonal equation (c) Ray tracing

Figure 1: Solution after some time to a homogeneous problem with two point sources, A and B, where the
A source began transmitting slightly before the B source. The left figure shows the physically correct solution
with two superimposed wave fields. Level curves of their phase functions are plotted. The middle figure shows
level curves of φ in the viscosity solution of the eikonal equation (2.6). Note that the superposition principle
does not hold. Instead, the first arriving wave takes precedence over the second at each point. The right figure
shows a ray-traced solution

need to replace ct−k ·x by a general phase function φ(t,x), and also permit the amplitude
to depend on time, space and frequency. Hence, (2.1) has solutions of the type

u(t,x)= A(t,x,ω)eiωφ(t,x). (2.3)

The level curves of φ corresponds to the wave fronts of a propagating wave: cf. Fig. 1.
Since (2.1) is linear, the superposition principle is valid and a sum of solutions is itself

a solution (provided initial data is adapted accordingly). The generic solution to (2.1) is,
at least locally, described by a finite sum of terms like (2.3),

u(t,x)=
N

∑
n=1

An(t,x,ω)eiωφn(t,x). (2.4)

with An, φn being smooth functions and An depending only mildly on the frequency
ω. Typically this setting only breaks down at a small set of points, namely focus points,
caustics, discontinuities in c(x) and non-smooth boundary points.

We will first assume the validity of the geometrical optics approximation that ω→∞.
This means that we accept the loss of diffraction phenomena in the solution due to non-
smooth boundaries and c(x), as well as the break down of the wave amplitude approx-
imation at caustics. There are three strongly related formulations of geometrical optics,
which we will review in Section 2.1 to Section 2.3. The derivation of the geometrical op-
tics equations in this linear case is classical: see, for instance, the book by Whitham, [106].
For a rigorous treatment of propagation of singularities in linear partial differential equa-
tions, we refer to the books by Hörmander, [42]. After discussing boundary and interface
conditions in Section 2.4, we shall comment in Section 2.5 on a few techniques to correct
the standard geometrical optics approximation at caustics and to add diffraction effects.
Finally we consider two other high frequency models in Section 2.6: the physical optics
approximation and gaussian wave packets. These models handle high frequencies more
efficiently than direct numerical approximation of the wave equation (2.1), and they in-
clude some phenomena that are not described by geometrical optics.
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2.1 Eikonal equation

Let us now derive Eulerian PDEs for the phase and the amplitude functions that are
formally valid in the limit when ω→∞. Our focus on these functions is motivated by the
observation that the phase and amplitude in (2.3) generically vary on a much larger scale
than the solution u itself, and should therefore be easier to compute. In the homogeneous
case (2.2), for instance, φ=ct−k·x stays nonoscillating and bounded independently of ω.

To begin with we assume that the solution to (2.1) has the form (2.3) and that the
amplitude function in (2.3) can be expanded in a power series in 1/iω. We then get the
asymptotic WKB expansion, [42],

u= eiωφ(t,x)
∞

∑
k=0

ak(t,x)(iω)−k. (2.5)

We substitute this expression into (2.1), and equate coefficients of powers of ω to zero.
For ω2, this gives the eikonal equation,

φt±c|∇φ|=0. (2.6)

In fact, because of the sign ambiguity we get two eikonal equations. Without loss of gen-
erality we will henceforth consider the one with a plus sign. For ω1, we get the transport
equation for the first amplitude term,

(a0)t+c
∇φ·∇a0

|∇φ| +
c2∆φ−φtt

2c|∇φ| a0 =0. (2.7)

For higher-order terms of 1/iω, we get additional transport equations

(ak+1)t+c
∇φ·∇ak+1

|∇φ| +
c2∆φ−φtt

2c|∇φ| ak+1+
c2∆ak−(ak)tt

2c|∇φ| =0 (2.8)

for the remaining amplitude terms. When ω is large, only the first term in the expansion
(2.5) is significant, and the problem is reduced to computing the phase φ and the first am-
plitude term a0. Note that, once φ is known, the transport equations are linear equations
with variable coefficients.

Instead of the time-dependent wave equation (2.1) we can consider the frequency
domain problem. Setting u(t,x) = v(x)exp(iωt) with ω fixed, v satisfies the Helmholtz
equation

c2∆v+ω2v=0. (2.9)

Substituting the series

v= eiωφ̃(x)
∞

∑
k=0

ãk(x)(iω)−k (2.10)

into (2.9), we get an alternative, frequency domain, version of the pair (2.6, 2.7),

|∇φ̃|=1/c=η, 2∇φ̃ ·∇ã0+∆φ̃ã0 =0. (2.11)
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With consistent initial and boundary data, φ(t,x)=φ̃(x)−t. We note that, since the family
of curves {x|φ(t,x) = φ̃(x)−t = 0}, parametrized by t≥ 0, describe a propagating wave
front in (2.5), we often directly interpret the frequency domain phase φ̃(x) as the travel
time of a wave. The difference in phase between two points on the same characteristic
signifies the time it takes for a wave to travel between them.

In what follows we will denote the first amplitude term a0 by A (or A1, A2, etc. when
there are multiple crossing waves). We also drop the tilde for the frequency domain
quantities.

One problem with the eikonal and transport equations is that they do not accept solu-
tions with multiple phases. There is no superposition principle for the nonlinear eikonal
equation: cf. Fig. 1. A finite sum of solutions of the form (2.4), with slowly varying An

and φn, can in general not be well approximated by the first term in the ansatz (2.5) at
high frequencies. In fact, for the case in (2.4), the derivation must be done term wise, and
the {φn} and {An} will, locally, satisfy separate eikonal and transport equation pairs.

However, the eikonal equation still has a well-defined solution. It is a nonlinear
Hamilton–Jacobi-type equation with Hamiltonian H(x,p) = c(x)|p|. As in the case of
hyperbolic conservation laws, extra conditions are needed for this type of equations to
have a unique solution. These were given in [23] and the solution is known as the viscos-
ity solution, which is the analogue of the entropy solution for conservation laws. As can
be deduced from the previous paragraph, the viscosity solution does not have to agree
with the correct physical solution in all cases. At points where the correct solution should
have a multivalued phase, i.e. be of the type in (2.4), the viscosity solution picks out the
phase corresponding to the first arriving wave, i.e. the smallest φn in (2.4).

It is well known that solutions of Hamilton–Jacobi-equations can develop kinks, i.e.
discontinuities in the gradient, just as shocks appear in the solutions of conservation
laws. In the case of the eikonal equation, the kinks are located where the physically
correct phase solution should become multivalued: cf. Fig. 1. We notice that the transport
equation (2.7) has a factor involving ∆φ, which is not bounded at kinks, and therefore we
can expect blow-up of a0 at these points.

2.2 Ray equations

Another formulation of geometrical optics is ray tracing, which gives the solution via
ODEs. This Lagrangian formulation is closely related to the method of characteristics for
(2.6). Let (x(t),p(t)) be a bicharacteristic pair related to the Hamiltonian H(x,p)=c(x)|p|,
hence

dx

dt
=∇pH(x,p)= c(x)

p

|p| , x(0)= x0, (2.12)

dp

dt
=−∇xH(x,p)=−|p|∇c(x), p(0)= p0. (2.13)

In d dimensions the bicharacteristics are curves in 2d-dimensional phase space, (x,p) ∈
Rd×d. It follows immediately that H is constant along them, H(x(t),p(t))=H(x0,p0). We
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are interested in solutions for which H≡1. In this case the projections on physical space,
x(t), are usually called rays, and we can reduce (2.12, 2.13) to

dx

dt
=

1

η2
p, x(0)= x0, (2.14)

dp

dt
=

∇η

η
, p(0)= p0, |p0|=η(x0). (2.15)

Solving (2.14, 2.15) is called ray tracing. It should be noted here that if η = const the rays
are just straight lines.

We use the frequency domain version of the eikonal equation, (2.11), to explain the
significance of the bicharacteristics when the solution φ is smooth. It can be written as

H(x,∇φ(x))=1, (2.16)

with H as above. By differentiating (2.16) with respect to x, we get

∇xH(x,∇φ(x))+D2φ(x)∇pH(x,∇φ(x))=0.

Here, D2 represents the Hessian. Then, for any curve y(t) we have the identity

d

dt
∇φ(y(t))= D2φ(y(t))

dy(t)

dt

= D2φ(y(t))

[

dy(t)

dt
−∇pH(y(t),∇φ(y(t)))

]

−∇xH(y,∇φ(y(t))). (2.17)

Taking x(t) to be the curve for which the expression in brackets vanishes, we see that
(x(t),∇φ(x(t))) is a bicharacteristic. By the uniqueness of solutions to (2.12, 2.13), we
therefore have that p(t)≡∇φ(x(t)) if we take p0=∇φ(x0). Hence, with this initialization,
the rays are always orthogonal to the level curves of φ, since dx/dt is parallel to p=∇φ
by (2.14). Moreover, for our particular H,

d

dt
φ(x(t))=∇φ(x(t))· dx(t)

dt
= p(t)·∇pH(x(t),p(t))= H(x(t), p(t))=1. (2.18)

Thus, as long as φ is smooth, the solution to (2.16) along the ray is given by the simple
expression

φ(x(t))=φ(x0)+t. (2.19)

Since φ corresponds to travel time, this also verifies that the parametrization t in (2.12,
2.13) indeed corresponds to unscaled time; the ray x(t) traces one point on a propagating
wave front at time t. The absolute value of its time derivative |dx/dt| is precisely the
local speed of propagation c(x) by (2.14), and since p is parallel to dx/dt, while |p|=
H(x,p)c(x)−1 = c(x)−1 by (2.16), the vector p is often called the slowness vector.

As was discussed in Section 2.1, the solution of the eikonal equation (2.6) is valid
up to the point where discontinuities appear in the gradient of φ. This is where the
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phase should become multivalued but, by the construction, cannot. The bicharacteristics,
however, do not have this problem, and we can extend their validity to all t, see Fig. 1.

The rays can also be derived from the calculus of variations, using Fermat’s principle.
By analogy with the least action principle in classical mechanics, it says that the rays
between two points are stationary curves of the functional

I[γ]=
∫

γ
η(x)dx,

taken over all curves γ starting and ending at the points in question. The Euler–Lagrange
equations for this optimization problem give the same bicharacteristics as (2.12, 2.13), but
the formulation is also well defined for non-differentiable η. The integral represents the
length of γ under the measure ηds and therefore we often describe the rays as the shortest
optical path between two points.

In order to compute the amplitude along a ray we also need information about the
local shape of the ray’s source. Let (x(t,x0),p(t,x0)) denote the bicharacteristic originat-
ing in x0 with p(0,x0)=∇φ(x0), hence x(0,x0)= x0. Let J(t,x0) be the Jacobian of x with
respect to initial data, J = Dx0 x(t,x0). By differentiating (2.14) we get

∂J

∂t
= Dx0

∂x(t,x0)

∂t
= Dx0 c(x(t,x0))

2p(t,x0)

=Dx0c2(x(t,x0))∇φ(x(t,x0))=
(

Dx0 c2∇φ
)

J.

Assume that J is nonsingular and let J = SΛS−1 be a Jordan decomposition, so that the
diagonal entries of Λ are the eigenvalues {λj} of J. Setting q=det J=∏j λj, and using the

fact that tr(T−1AT)= trA, we have

∂q

∂t
=q tr

(

Λ−1Λt

)

=q tr
(

SΛ−1S−1SΛtS
−1+(SΛ−1)S−1St(SΛ−1)−1+(S−1)tS

)

=q tr
(

J−1 Jt

)

=q tr
(

J−1
(

Dc2∇φ
)

J
)

=q tr
(

Dc2∇φ
)

=q∇·c2∇φ.

Therefore differentiation along the ray gives

d

dt

[

A2(x(t,x0))η(x(t,x0))
2q(t,x0)

]

=q(∇A2η2)· ∂x

∂t
+qA2η2∇·c2∇φ

=q∇·(A2∇φ)=qA
[

2∇A·∇φ+∆φA
]

=0,

using (2.11) in the last step. It follows that the amplitude is given by the expression

A(x(t,x0))= A(x0)
η(x0)

η(x(t,x0))

√

q(0,x0)

q(t,x0)
. (2.20)
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For example, an outgoing spherical wave centered at x = 0 in homogeneous medium
with η ≡ 1 is given by x(t,x0)= x0+tx0/|x0|. Then J = I+t(I/|x0|−x0xT

0 /|x0|3) and q =
det J =(1+t/|x0|)d−1 =(|x|/|x0|)d−1 in d dimensions. Consequently, by (2.20), we get the
well-known amplitude decay of such waves, A∼|x|−(d−1)/2.

In order to compute A we thus need q, the determinant of Dx0 x. The elements of this
matrix is given by another ODE system. After differentiating (2.12, 2.13) with respect to
x0, we obtain

d

dt

(

Dx0 x
Dx0 p

)

=

(

D2
pxH D2

ppH

−D2
xxH −(D2

pxH)T

)(

Dx0 x
Dx0 p

)

, (2.21)

with initial data

Dx0 x(0,x0)= I, Dx0 p(0,x0)= D2φ(x0).

We note that the system matrix here only depends on x and p.
The determinant q is often called the geometrical spreading, since it measures the size

change of an infinitesimal area transported by the rays. Sets of points where q = 0 are
called caustics. These are points where rays concentrate, cf. Fig. 5. We see clearly from
(2.20) that the amplitude is unbounded close to these points. In fact, we have only shown
(2.20) as long as the ray does not encounter a caustic. Then J is nonsingular, and by
continuity, q(0) and q(t) have the same sign. However, with a slight modification, the
expression is also valid after caustic points, [67]. A careful analysis of the asymptotic
behavior of the solution close to caustics reveals that

A(x(t,x0))= A(x0)
η(x0)

η(x(t,x0))

√

∣

∣

∣

∣

q(0,x0)

q(t,x0)

∣

∣

∣

∣

e−im π
2 , (2.22)

where m = m(t) is a nonnegative integer called the Keller–Maslov index. It represents the
number of times q(·,x0) has changed sign in the interval [0,t], i.e. the number of times that
the ray has touched a caustic. Usually one counts the factor exp(−imπ/2) as a phase shift
of mπ/2ω and subtract this from the eikonal φ, keeping A real.

The formation of caustics is related to the shape of the manifold

Λ=
{

(x(t,x0),p(t,x0))∈R
d×d : t∈R

+, x0∈S0⊂R
d
}

,

for some (d−1)-dimensional smooth source manifold S0 ⊂ Rd and (non-characteristic)
initial data p(0,x0) =∇φ(x0) on S0. This is a smooth Lagrangian submanifold of phase
space, Λ⊂Rd×d, of co-dimension d. Its canonical projection onto physical space, Π : Λ→
Rd defined by Π(x,p)= x, is invertible as long as the solution is single-valued, i.e. there
is only one ray from the source that reach x. In general, however, Λ will turn back in
the x-direction and create a multi-valued solution where several points on Λ project on
the same x. The jacobian of Π is singular where Λ turns back, and the caustic is the
projection of these singular points. In differential geometry one shows that, locally, Λ is
constrained to a few simple shapes at the caustic. (At least if in addition some stability
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under perturbations is demanded.) The caustic can be classified by these shapes and
there is thus only a finite number of caustic types (two in 2D and five in 3D), [4, 93].
The most simple one is the fold caustic in 2D, for which the local shape of Λ is [(x =
3p2

x,y),(px,py)].
Since we have the constraint H(x,p) = 1, or |p|= η(x), the dimension of the phase

space (x,p) can actually be reduced by one. We have not done this reduction in the
equations above, and (2.14, 2.15), (2.22) and (2.21) are in this sense all overdetermined.
We will here show the reduced equations in two dimensions.

Setting p = η(cosθ,sinθ), we can use θ as a dependent variable in (2.14, 2.15) instead
of p. We then get, with x=(x,y),

dx

dt
= c(x,y)cosθ, (2.23)

dy

dt
= c(x,y)sinθ, (2.24)

dθ

dt
=

∂c

∂x
sinθ− ∂c

∂y
cosθ. (2.25)

Suppose the source is a curve x0(r) in R2 parametrized by r, and φ(x0(r))≡ 0. Set
x̃(t,r) :=x(t,x0(r)) and p̃(t,r) := p(r,x0(r)). Then φ(x̃(t,r))= t by (2.19) and xt= x̃t⊥ x̃r for
all time, since

0=
∂

∂r
φ(x̃(t,r))=∇φ(x̃)· x̃r = p· x̃r =η2 x̃t · x̃r.

We can then introduce the orthogonal matrix R := [x̃r x̃t], with determinant |detR| =
|x̃r||x̃t|= |x̃r|/η(x̃). By definition, for 0≤ s≤ t, we have x(t,x0)= x(s,x(t−s,x0)), and, by
differentiating both sides with respect to t,

xt(t,x0)= Dx0 x(s,x(t−s,x0))xt(t−s,x0).

Evaluating at s= t gives
xt(t,x0)= Dx0 x(t,x0)xt(0,x0). (2.26)

Therefore Dx0 x(t,x0(r))R(0,r)= R(t,r) and

|q(t,x0(r))|= |detDx0 x(t,x0(r))|= |detR(t,r)|
|detR(0,r)| =

|x̃r(t,r)|η(x0(r))

|∂r x0(r)|η(x̃(t,r))
,

so that

A(x(t,r))= A(x0(r))

√

|∂rx0(r)|η(x0(r))

|x̃r(t,r)|η(x̃(t,r))
e−im π

2 . (2.27)

We then only need to compute x̃r to get the amplitude, which reduces (2.21) to

d

dt

(

x̃r

p̃r

)

=

(

D2
pxH D2

ppH

−D2
xxH −(D2

pxH)T

)(

x̃r

p̃r

)

. (2.28)
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2.3 Kinetic equations

Finally, we can adopt a purely kinetic viewpoint. This is based on the interpretation
that rays are trajectories of particles following the Hamiltonian dynamics of (2.12, 2.13).
We introduce the phase space (t,x,p), where p is the slowness vector defined above in
Section 2.2, and we let f (t,x,p) be a particle (“photon”) density function. It will satisfy
the Liouville equation,

ft+∇pH ·∇x f −∇x H ·∇p f =0, (2.29)

or, with H(x,p)= c(x)|p|,

ft+
c(x)

|p| p·∇x f +
|p|
η2

∇xη ·∇p f =0. (2.30)

We are only interested in solutions to (2.12, 2.13) for which H≡1, meaning that f only has
support on the sphere |p|=η(x) in phase space. Because of this we can simplify (2.30) to
the Vlasov-type equation

ft+
1

η2
p·∇x f +

1

η
∇xη ·∇p f =0, (2.31)

with initial data f0(x,p) vanishing whenever |p| 6= η. We note that, if η ≡ 1, the equa-
tion (2.31) is just a free transport equation with solution f (t,x,p) = f0(x−tp,p) which
corresponds to straight line ray solutions of (2.14, 2.15).

The Wigner transform provides a direct link between the density function f in (2.31)
and the solution to the scalar wave equation (2.1) and the Helmholtz equation (2.9). It is
an important tool in the study of high frequency, homogenization and random medium
limits of these and many other equations, such as the Schrödinger equation, [11,34,63,82].
The Wigner transform of a solution uω(x) at frequency ω is defined by

f ω(t,x,p) :=
∫

Rd
exp(−iy·p)uω(t,x+y/2ω)uω(t,x−y/2ω)dy.

If {uω} is bounded in L2(Rd) (for instance), then a subsequence of { f ω} converges weakly
in S ′(Rd), the space of tempered distributions, as ω → ∞, [63]. The limit is a locally
bounded nonnegative measure called the Wigner measure or semiclassical measure, which
in our case agrees with the density function f in (2.31) above. An important property of
the Wigner transform is that, when uω is a simple wave,

uω(t,x)= A(t,x)eiωφ(t,x), (2.32)

then f ω→ f weakly in S ′, and the Wigner measure f represents a ‘particle’ in phase space
of the form

f (t,x,p)= A2(t,x)δ(p−∇φ(t,x)). (2.33)
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We note here that only the gradient of the phase is present and the value of the phase
itself disappears in this formulation. Even though f ω is not linear in uω, a sum of simple
wave solutions like in (2.4) converges to a sum of “particle” solutions to (2.31),

f (t,x,p)=
N

∑
n=1

A2
n(t,x)δ(p−∇φn(t,x)). (2.34)

See [44, 87]. Other references dealing with the rigorous study of the convergence f ω → f
and proving that the limiting Wigner measure f satisfies a transport equation such as
(2.31) are [6, 18, 70]. We can also derive (2.31) directly from the wave equation (2.1) using
so-called H-measures, [91], or microlocal defect measures, [33].

From (2.34) it follows that the total amplitude at a point x is given as the integral of f
over the phase variable,

A2
tot(t,x)=

N

∑
n=1

A2
n =

∫

Rd
f (t,x,p)dp.

This is the weak limit of |uω(t,x)|2. Because of interference between the waves, A2
tot is in

general not pointwise close to |uω(t,x)|2 when there are several crossing waves, N >1.

2.4 Boundary and interface conditions

Boundary conditions for the geometrical optics approximation are derived from the bound-
ary conditions for the wave equation. They follow from assuming that a wave incident
to the boundary generates a reflected wave, and that they both have smooth phase func-
tions. For Dirichlet and Neumann conditions the reflection law holds

θref = θinc, (2.35)

with the notation as in Fig. 2. The amplitudes of the incident and reflected rays are related
simply by

Aref =±Ainc,

with negative sign for Dirichlet condition and positive for Neumann condition. There are
also boundary conditions for the quantities in (2.21) related to the geometrical spreading,
often represented by the wave front’s principal radii of curvature. Those conditions de-
pend on the local shape of the boundary.

When a wave hits a sharp interface between two materials there will in general be
both a reflected and a transmitted wave, assuming that the width of the interface is much
smaller than the wavelength. In this case interface conditions must be derived directly
from the wave equation, before passing to the high frequency limit. For simplicity we
assume that we have the planar interface in Fig. 2. As before, the phase functions of all
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θref

inc
θ

θtr

η ηRL

Figure 2: Reflection and transmission of a ray at a sharp interface when ηL <ηR.

involved waves are assumed to be smooth. Continuity of the solution across the interface
then gives the reflection law (2.35) for θref and Snell’s law of refraction for θtr,

ηL sinθinc =ηR sinθtr. (2.36)

(Note, when ηL > ηR there may be no θtr satisfying this; if θinc is greater than a critical
angle there is total internal reflection and no transmitted ray.) Interface conditions for the
amplitudes and geometrical spreading coefficients depend on the type of wave equation,
physics for the problem in question and the local shape of the interface. In the case of the
scalar wave equation (2.1), with a plane incident wave and a planar interface, continuity
of the solution’s normal derivative at the interface implies

Aref =
ηL cosθinc−ηR cosθtr

ηL cosθinc+ηR cosθtr
Ainc, Atr =

2ηL cosθinc

ηL cosθinc+ηR cosθtr
Ainc.

For systems of wave equations, like Maxwell’s equations and the elastic wave equation,
the situation is a little more complicated. The interface and boundary conditions typically
couple the amplitudes of different components, and one incident wave may generate
several transmitted and reflected waves. Note that when the interface width is large
compared to the wave length, there is only a transmitted wave, and Snell’s law follows
from the geometrical optics equations.

2.5 Corrections to geometrical optics

The main shortcomings of standard geometrical optics are the failure to include diffrac-
tion effects and its breakdown at caustics. In this section we give a brief introduction to
how diffracted waves can be added to geometrical optics and how to correct the approx-
imation close to caustics.

2.5.1 Diffraction at nonsmooth boundaries

The geometrical theory of diffraction (GTD) can be seen as a generalization of geomet-
rical optics. It was pioneered by Keller in the 1960s, [52], and provides a technique for
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adding diffraction effects to the geometrical optics approximation. GTD is often used
in scattering problems in computational electromagnetics, where boundary effects are of
major importance, for example in radar cross section calculations and in the optimization
of base station locations for cell phones in a city.

In general, diffracted rays are induced at discontinuities in the standard geometrical
optics solution. By the reflection law (2.35), this happens primarily at singular points of
the boundary, such as at corners and edges where the normal, and therefore the reflected
field, is discontinuous. At these points an infinite set of diffracted rays are produced. The
diffracted rays obey the usual geometrical optics equations. (The main computational
task, even for GTD, is thus based on the standard geometrical optics approximation.)
The amplitude of each diffracted ray is proportional to the amplitude of the ray hitting
the corner and a diffraction coefficient D. The coefficient D depends on the directions
of the inducing and diffracted rays, the frequency, the local boundary geometry and the
shape of the incident wave front.

An example is given in Fig. 3 where the incident plane wave is reflected off a half
plane. This divides the space into regions A, B and C according to the number ray families
present (two, one and zero respectively). The resulting geometrical optics solution is
discontinuous at the region interfaces. Infinitely many diffracted rays shoot out in all
directions at the singular tip of the half plane, which thus acts as an (anisotropic) point
source.

By (2.5) the error in standard geometrical optics solutions is of the order O(1/ω).
However, the derivation of (2.6) and (2.7) from (2.5) does not take into account the effects
of geometry and boundary conditions. In these cases the series expansions (2.5, 2.10) are
not adequate and extra terms must be added to match the solution to the boundary con-
ditions. These terms represent the diffracted waves. They are of the order O(1/ωα) for
some α∈(0,1) and hence much larger than the usual error in standard geometrical optics,
but still small for large frequencies. Discarding diffraction phenomena, may therefore be
too crude an approximation for a scattering problem at moderate frequencies.

One typical improved expansion that includes diffraction terms is

u(x)= eiωφ(x)
∞

∑
k=0

Ak(x)(iω)−k+
1√
ω

eiωφd(x)
∞

∑
k=0

Bk(x)(iω)−k, (2.37)

which is similar to the standard geometrical optics ansatz (2.5), only that a new diffracted
wave scaled by

√
ω has been added (index d). For high frequencies, the diffraction term

B0 is also retained, together with the geometrical optics term A0. More elaborate expan-
sions must sometimes be used, such as those given by the uniform theory of diffraction
(UTD), [55].

It is important to note that the diffraction coefficients only depend on the local ge-
ometry of the boundary. Relatively few types of coefficients are therefore sufficient for
a systematic use of GTD. Diffraction coefficients have been computed for many differ-
ent canonical geometries, such as wedges, slits and apertures, different wave equations,
in particular Maxwell equations, and different materials and boundary conditions. For
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Figure 3: A typical geometrical optics solution in two dimensions and a constant medium (c ≡ 1) around a
perfectly reflecting halfplane (a), and the same problem augmented with diffracted waves given by GTD (b).
In the geometrical optics case, region A contains two phases (incident and reflected), region B one phase
(incident), and region C is in shadow, with no phases and hence a zero solution. On the boundaries between the
regions the geometrical optics solution is discontinuous. Real part of a solution to the Helmholtz equation for
this problem is shown in (c). The diffracted wave is faintly visible as a circular wave centered at the halfplane
tip.

example, in a two-dimensional homogeneous medium the diffraction coefficient D for a
halfplane is

D(θd,θinc,ω)=
eiπ/4

2
√

2πω

(

1

cos
θd−θinc

2

± 1

cos
θd+θinc

2

)

, (2.38)

with the definition of the angles as in Fig. 3a and Fig. 3b. Letting x0 be the position of tip
of the halfplane the expression for the diffracted wave, away from x0, is then

ud(x)=
uinc(x0)
√

|x−x0|
D(θd,θinc,ω)e−iω|x−x0|. (2.39)
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2.5.2 Creeping rays

Another type of diffraction is generated even for smooth scatterers. When an incident
field hits a smooth body there will be a shadow zone behind it and the geometrical op-
tics solution will again be discontinuous. There is a curve (point in 2D) dividing the
shadow part and the illuminated part of the body. Along this shadow line (shadow point
in 2D) the incident rays are tangent to the body surface. The shadow line will act as a
source for surface rays†, or creeping rays, that propagate along geodesics on the scatterer
surface, if the surrounding medium is homogeneous, η ≡ 1. The creeping ray carries an
amplitude proportional to the amplitude of the inducing ray. The amplitude decays ex-
ponentially along the creeping ray’s trajectory. In three dimensions, the amplitude also
changes through geometrical spreading on the surface. At each point on a convex surface
the creeping ray emits surface-diffracted rays in the tangential direction, with its current
amplitude. Those rays then follow the usual geometrical optics laws. To compute the
creeping ray contribution to the field, one thus needs to find geodesics on the scatterer
surface in addition to the standard geometrical optics rays. Some examples of how this
can be done are given in [20, 71, 108].

Let x0 be the incident point on the shadow line where the creeping ray starts, x1

the point on the body where the diffracted ray is emitted and s = |x−x1| the distance
from x1 to the field point. A simple approximation of the diffracted field is given by the
formula, [61]

ud(x)∼uinc(x0)D(x0,ω)D(x1,ω)

√

q̃(x0)

q̃(x1)

ρ(x1)

s(ρ(x1)+s)
eiω(t+s)e−

∫ t
0 α(t′,ω)dt′.

Here D is a diffraction coefficient that depends on the local geometry, q̃ is the surface
geometrical spreading and ρ is the local radius of curvature of the creeping wave front.
The last integral is taken along the creeping ray, whose length is t. The attenuation α
depends on the local curvature of the body.

A 2D example is shown in Fig. 4. When Dirichlet conditions are applied to the cylin-
der of radius R, we have

D(x,ω)2 =
e−iπ/12

√
R

25/6
√

πAi′(−ν0)2
· 1

(ωR)1/6
, α(t,ω)=

eiπ/6ν0

21/3R
·(ωR)1/3,

where Ai is the Airy function and ν0 is the smallest positive zero of Ai(−ν). For 2D
problems ρ is infinite and q̃(x1)/q̃(x0)=1. Since α and D are constant in t and x for this
case, we simply have

ud(x)∼uinc(x0)
D(ω)2

√
s

eiω(t+s)e−tα(ω),

with D and α as above.

†Other well-known surface waves are the Rayleigh waves in the elastic wave equation.
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uc

u
inc ud

Figure 4: Diffraction by a smooth cylinder. Left figure shows the solution schematically. The incident field uinc
induces a creeping ray uc at the north (and south) pole of the cylinder. As the creeping ray propagates along the
surface, it continuously emits surface-diffracted rays ud with exponentially decreasing initial amplitude. Right
figure shows the real of a solution to the Helmholtz equation. The surface diffracted waves can be seen behind
the cylinder.

2.5.3 Caustics

Close to caustics the amplitude grows rapidly in the geometrical optics approximation
and blows up at the caustic itself, as discussed in Section 2.2. In reality the amplitude
remains bounded, but increases with the frequency ω, see Fig. 5. The error in the standard
series expansion (2.5) is thus unbounded around caustics. To capture the actual solution
behavior there are better expansions that have small errors uniformly in ω, derived e.g.
by Ludwig [66] and Kravtsov [56]. The expansions are different for different types of
caustics. For a fold caustic there are two ray families meeting at the caustic, with phases
φ+ and φ−. Letting ρ = 3

4(φ+−φ−) a more suitable description of the solution u in this
case is

u(x)=ω1/6 eiωφ(x)

(

Ai(−(ωρ(x))2/3)
∞

∑
k=0

Ak(x)(iω)−k

+ iω−1/3Ai′(−(ωρ(x))2/3)
∞

∑
k=0

Bk(x)(iω)−k

)

.

The dominant term close to the caustic, |ρ|ω≪1 is of the order O(ω1/6) with an error of
O(ω−1/3). Away from the caustic, on the convex side where ρ > 0, we can use the fact
that |Ai(−x)|∼x−1/4 and |Ai′(−x)|∼x1/4 for large x, to conclude that the dominant term
is of the order O(1) with an error of O(ω−1), i.e. the standard situation for geometrical
optics.

One of the problems at caustics is that multiple ray families meet. To analyze the
asymptotic behavior of the wave field close to a caustic one can therefore look at solutions
given by an oscillatory integral,

u(x)=
( ω

2π

)d/2
∫

Rd
A(x,θ)eiωφ(x,θ)dθ,
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(a) GO (b) Helmholtz

(c) ω =90 (d) ω =180 (e) ω =270

Figure 5: Caustics generated when a plane wave is refracted by a cylinder of higher refractive index than the
surrounding media. The geometrical optics solution by ray tracing is shown in (a), while (b) contains an actual
solution of Helmholtz equation (real part). The concentration of rays coincides with the pronounced dark/light
pattern (high amplitude) in the solution. The figures in the bottom row (c–e) show the absolute value of the
Helmholtz solution in a horizontal cut in the middle of the top figures, for increasing frequencies ω. The cylinder
boundaries are indicated by dashed lines. The amplitude away from the caustic is independent of ω but grows
slowly with ω at the caustic.

which can be seen as a continuous superposition of waves with different phases param-
eterized by θ (cf. also (2.4)). See e.g. the works of Maslov [67], Duistermaat [25] and
Hörmander [42]. One can show that there is a globally valid representation of this type
for the solution, and that the functions A(x,θ) and φ(x,θ) to leading order satisfy the
eikonal and transport equations (2.6, 2.7) for fixed θ. The stationary phase method can
be used to find the main contributions of the integral. Nondegenerate stationary points,
where ∇θφ = 0 and the Hessian D2

θθφ has full rank, correspond to the usual rays, which
are O(1) solutions. Caustics correspond to degenerate stationary points, with ∇θφ = 0
and a rank deficient Hessian. These give solutions of size O(ωα), where α depends on
the dimension of the null-space of D2

θθφ.

2.6 Other high frequency models

In this section we will discuss two alternatives to the geometrical optics model: physical
optics and gaussian wave packets.
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2.6.1 Physical optics

The physical optics (PO) method, also known as Kirchhoff’s approximation, combines
the geometrical optics solution with a boundary integral formulation of the solution to
the Helmholtz equation. It is often used for scattering problems in, e.g., computational
electromagnetics. Let Ω be a perfectly reflecting scatterer in R3, i.e. u=0 on the boundary
∂Ω, and divide the solution into a (known) incident and an (unknown) scattered part,
u=uinc+us. Then, in a homogeneous medium with c≡1,

∆us+ω2us =0, x∈R
3\Ω, (2.40)

us =−uinc, x∈∂Ω, (2.41)

together with an outgoing radiation condition. The solution outside Ω is given by the
integral

us(x)=−
∮

∂Ω
uinc(x′)

∂G(x,x′)
∂n

+G(x,x′)
∂us(x′)

∂n
dx′, (2.42)

where G is the free space Green’s function in three dimensions:

G(x,x′)=
eiω|x−x′|

4π|x−x′| .

The unknown in this, exact, expression for the solution is ∂nus on the boundary of Ω. In
physical optics, this unknown is simply replaced by the geometrical optics solution. For
example, let n̂(x) be the normal of ∂Ω at x and assume that the incident field is a plane
wave uinc(x)= exp(−iωk·x), with |k|=1 and that Ω is convex. Then we would use the
approximation

∂us(x)

∂n
≈−iω|k·n̂(x)|e−iωk·x, x∈∂Ω. (2.43)

Note that this approximation would be applied both in the illuminated and shadow part
of ∂Ω. In the so-called physical theory of diffraction (PTD), the GTD extension of the geo-
metrical optics solution is used instead.

Expression (2.42) gives a rigorous pointwise solution to the Helmholtz in free space,
regardless what is used for ∂nus. The PO approximation is made at the boundary and
it is not self-consistent for finite frequencies: The normal derivative of us at the bound-
ary, computed from (2.42), is not equivalent to the applied geometrical optics solution in
(2.43). Iterative schemes to obtain this consistency can be used.

The accuracy of the PO approximation increases with frequency. Writing

∂us(x)

∂n
= A(x,ω)e−iωk·x,

one can show that for convex smooth scatterers,

A(x,ω)+iω|k ·n̂(x)|=O(1),
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away from shadow lines (cf. Section 2.5.2). At a shadow line, where k·n̂(x)≈0, the error
estimate degenerates to O(ω2/3). See [69].

The computational cost for PO is lower than the direct solution of the boundary in-
tegral formulation of the wave equation. Unlike geometrical optics, however, the cost of
finding the solution us is typically not frequency-independent, but grows with frequency
since (2.42) must be evaluated and there are small scales in G(x,x′).

The PO approximation has also been used as a stepping stone to solve the full integral
equation (2.42) with a low complexity. These methods are based on the observation that
A(x,ω) oscillates much slower than ∂nus, and can be used as the unknown instead, to
reduce the number of degrees of freedom. See e.g. [1, 2] and more recently [15, 24, 59].

2.6.2 Gaussian wave packets

Gaussian wave packets, or gaussian beams, is another way to describe high frequency
waves, [5,79]. It is related to ray tracing, but instead of viewing rays just as characteristics
of the eikonal equation, gaussian beams are “fatter” rays: They are full (approximate)
solutions to the wave equation or the Helmholtz equation in a narrow support around the
path of a standard ray. The main advantage of this description is that it is able to handle
caustics correctly; the predicted amplitudes always remain bounded. Gaussian wave
packets are also used in quantum mechanics, where they are solutions to the Schrödinger
equation representing paths of near-classical particles, [40].

The starting point for analyzing gaussian wave packets is the usual WKB ansatz

u(x)= eiωφ(x)
∞

∑
k=0

ak(x)(iω)−k.

We are interested in solutions of this type in a neighborhood of a ray x(t), satisfying
the ODE system (2.12, 2.13) together with p(t). In order to construct a solution mainly
supported close to x(t) we let φ have a positive imaginary part away from x(t). The solution
will then be exponentially decreasing away from x(t). In practice only the values of the
phase φ and the Hessian D2φ on the ray are used. Then, letting y be orthogonal to xt(t)
and ∇φ, we take the small y Taylor expansion,

u(x(t)+y)≈ eiω[φ(x(t))+ 1
2 yTD2φ(x(t))y]a0(x(t)),

as an approximation to the exact solution. Although only quantities on the ray x(t) ap-
pears in this expression, the phase and amplitude are defined also away from it. Note
that φ is constructed based on one specific ray (the center ray of the beam), which is
not the case in standard geometrical optics where it is globally defined for all rays. As
an example we consider the simple two-dimensional case, with the straight ray x(t) =
(x(t),y(t))=(t,0) and let φyy(x,0)=a(x)+ib(x) with b>0. Noting that ∇φ(x(t))=(1,0)T

we can find the expression for u to leading order in y,

u(x,y)≈ eiω[φ(x,0)+ y2

2 a(x)]e−b(x)ωy2/2a0(x,0).
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Hence, the profile of the wave packet is essentially gaussian, and it becomes more narrow
for high frequencies.

For the construction to make sense, we need to verify that a number of things hold
on the ray. First, x, p, φ should obviously be real and ∇φ should be parallel to xt. Sec-
ond, D2φ should exist and its imaginary part should be positive definite in the subspace
orthogonal to xt. We will show below that these properties are indeed kept for all time if
present at t=0.

The first point is rather easy to see. Allowing the phase and amplitude to be complex
does not change the previous derivation of the eikonal and transport equations (2.6, 2.7,
2.11). If we suppose that p(0) =∇φ(x0) is real, then clearly x, p are real for all t since
they are solutions to (2.12, 2.13). We also obtain the earlier identities ∇φ(x(t))= p(t) and
φ(x(t))=φ(x0)+t from (2.17, 2.18), showing that xt is parallel to ∇φ and φ is real for all
t, if φ(x0) is real.

For the second point, we note first that in standard geometrical optics, it is not true
that D2φ exists for all times. In fact, it blows up at caustics. Here, however, D2φ always
exists, and it can be shown as follows. We parameterize the bicharacteristics by their ini-
tial position as before, x̃=x̃(t,y) and p̃= p̃(t,y) with x(t):=x̃(t,x0) and p(t):= p̃(t,x0). The
relation p̃(0,y)=∇φ(y) is also understood. Moreover, we introduce the shorthand nota-
tion J(t) := Dy x̃(t,x0), P(t) := Dy p̃(t,x0) and C(t) :=ℑD2φ(x̃(t,x0)). Then the equations
(2.21) for J and P can be derived in the same way as before,

d

dt

(

J
P

)

=

(

D2
pxH D2

ppH

−D2
xxH −(D2

pxH)T

)(

J
P

)

, J(0)= I, P(0)= D2φ(x0). (2.44)

We note that J and P may now also be complex, since P(0) = D2φ(x0) is complex. We
want to show that, for all t≥0, the Hessian D2φ(x(t)) exists and C(t) is positive definite
in the subspace orthogonal to xt(t). Our assumption is that this is true for t = 0. The
explanation below is based on [79].

We start by using (2.21) and noting that for any z∈Cd

d

dt
ℑz∗ J∗(t)P(t)z=ℑz∗ dJ∗

dt
Pz+ℑz∗ J∗

dP

dt
z

=ℑz∗
(

D2
pxH J+D2

ppH P
)∗

Pz−ℑz∗ J∗
(

D2
xxH J+(D2

pxH)T P
)

z

=ℑz∗P∗D2
ppH Pz−ℑz∗ J∗D2

xxH Jz=0,

since H is real and D2
xxH, D2

ppH are both symmetric. Moreover, since pt = D2φxt is real,

we have C(t)xt(t)=0 for all t≥0. Therefore, using also the fact that D2φ(x0) is symmetric,
it follows that

ℑz∗ J∗(t)P(t)z=ℑz∗ J∗(0)P(0)z=ℑz∗D2φ(x0)z=z∗C(0)z

=(z⊥r )TC(0)z⊥r +(z⊥i )TC(0)z⊥i ≥0,
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where z=zr+izi and ⊥ denotes the projection on the subspace orthogonal to xt(0). This
means that J(t)z 6= 0 whenever zr or zi is not parallel to x̃t(0,x0). On the other hand,
J(t)x̃t(0,x0) = x̃t(t,x0) 6= 0 by (2.26), and we conclude that J(t) is nonsingular for all t.
(Compare Section 2.2 where we showed that det J =q vanishes at caustics.) Moreover,

P(t)= Dx0∇φ(x̃(t,x0))= D2φ(x̃(t,x0)) J(t)

and therefore
D2φ(x̃(t,x0))= P(t)J−1(t) (2.45)

is always well-defined and uniformly bounded in any fixed time interval. It remains to
show that yTC(t)y > 0 for all y∈Rd such that yT x̃t(t,x0)= 0 and all t > 0. Let y be such
a vector and define z as the solution to J(t)z = y. Then z cannot be parallel to xt(0) by
(2.26) and consequently,

yTC(t)y=ℑz∗ J∗(t)P(t)z=(z⊥r )TC(0)z⊥r +(z⊥i )TC(0)z⊥i >0.

For the amplitude we use a somewhat different formula than in the standard geo-
metrical optics case. As before, the first amplitude term a0 is governed by the transport
equation (2.11). On the curve, we note that a0(x(t)) therefore satisfies the ODE

d

dt
a0(x(t))=

dx

dt
·∇a0 =

1

η2
∇φ·∇a0 =− 1

2η2
∆φ(x(t))a0(x(t)). (2.46)

We can compute ∆φ=tr D2φ on the curve, by using (2.44, 2.45), and therefore solve (2.46)
as an ODE to obtain also a0 on the curve. The amplitude is bounded since the Hessian
D2φ is bounded. Note, however, that a0 may have an imaginary part.

In conclusion we can construct an approximate solution to the Helmholtz equation by
solving ODEs similar to ray tracing for x, φ, ∇φ, D2φ and a0. This solution is only sup-
ported in a narrow band around a ray, but by the superposition principle such solutions
can be added. The full wave field can therefore be approximated by the sum of many
gaussian wave packet solutions. To compute it we use initial data for the wave packets
that well approximate the wave data at the source, and then solve ODEs for each of them.

3 Numerical methods

In this section we shall describe different classes of computational techniques, based on
the three different mathematical models for geometrical optics discussed in Section 2
above: see Fig. 6. We begin by illustrating the advantages and disadvantages of some of
the methods by looking at a particular problem in Figs. 7 and 8. The problem in ques-
tion is a wave with a sharp front (which contains high frequencies) that propagates in
a heterogeneous medium. A snap shot of the full wave equation solution is shown in
Fig. 7(b). The faint fronts in the upper part of these figures represent reflections and are
not captured by geometrical optics but they vanish in the limit as ω→∞.
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Figure 6: Mathematical models and numerical methods. Wave front methods use aspects of both the ray and
the kinetic model.

The traditional way to compute travel times of high-frequency waves is through ray
tracing, see Section 3.1. Fig. 8(c) shows one problem with ray tracing: it may produce
diverging rays that fail to cover the domain. Even for smooth c(x) there may be shadow
zones where the field is hard to resolve. This effect derives from the Lagrangian formu-
lation of the problem. The computation follows the flow of the rays, but one would like
to obtain the solution on a fixed domain with uniform resolution in space. With ray trac-
ing it is also difficult to compute the amplitude and to find the minimum travel time in
regions where rays cross.

More recently, computational methods based on PDEs have been proposed to avoid
some of the drawbacks of ray tracing. Interest was initially focused on solving the eikonal
equation (1.3) numerically, on a fixed Eulerian grid. Upwind finite difference methods
have been used to compute the viscosity solution of (1.3), which is discussed further in
Section 3.2. A drawback of (1.3), visible in Fig. 8(a), is that it cannot produce solutions
with multiple phases, corresponding to crossing rays. There is no superposition prin-
ciple. At points where the correct physical solution should have a multivalued phase,
the viscosity solution picks out the phase corresponding to the first arriving wave, [23].
Hence, the eikonal equation only gives the first arrival travel time and misses later ar-
rivals, cf. Fig. 8(b). A multivalued solution can, however, be constructed by patching to-
gether the solutions of several eikonal equations, but this can be difficult; see Section 3.2.

In Section 3.3 wave front methods are introduced. They are related to ray tracing, but
instead of individual rays, the location of many rays coming from one source is com-
puted, at fixed times. Those points form a wavefront and its evolution is tracked in the
physical or the phase space, see Fig. 7(c). The tracking can be done by a pure Lagrangian
front tracking method, or Eulerian methods like the segment projection method or level
set methods.

The Liouville equation (1.6) has the advantage of the linear superposition property
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(a) Index of refraction and source point, marked by a
circle

(b) Wave equation solution

(c) Wave equation solution and wave front

Figure 7: Comparison between different techniques for the same problem. A wave propagates from a point
source through a heterogeneous medium. Top figure shows the source and the index of refraction of the medium.
Dark and light areas represent high and low index of refraction, respectively. Middle figure shows a snapshot
of a resolved numerical solution of the wave equation, where the solution is represented by gray scale levels.
Bottom figure shows the same solution with a wave front solution overlaid.

of the ray equations and like the eikonal equation, the solution is defined by a PDE and
can easily be computed on a uniform Eulerian grid. Direct numerical approximation of
(1.6) is, however, rather costly, because of the large set of independent variables (six in
3D). One way to remedy this problem is based on reducing the number of independent
variables by introducing equations for moments, reviewed in Section 3.4. Those moment
methods rely on the closure assumption that only a finite number of rays cross at each
point in time and space. Then f in the Liouville equation (1.6) is of a special form, and it
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(a) Eikonal equation solution

(b) Eikonal equation solution and wave front

(c) Ray-traced solution

Figure 8: Comparison between different techniques for the same problem. Top figure shows iso curves of a
solution to the eikonal equation. Middle figure shows the same solution with a wave front solution overlaid.
Bottom figure shows a ray-traced solution.

can be transformed into a finite system of equations representing the moments of f , set
in the reduced space (t,x).

Another situation when solving the whole Liouville equation can be cost effective,
is when the solution is sought for many different sources, but with the same index of
refraction. Then full phase space methods are an option. See Section 3.5.

Finally, a short examination of hybrid methods, which couple both direct and asymp-
totic solvers, is given in Section 3.6.
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Figure 9: Ray shooting and two point ray tracing. In this case there are three solutions to the two point ray
tracing problem.

3.1 Ray tracing

The ray equations derived in Section 2.2 are the basis for ray tracing. The ray x(t) and
slowness vector p(t)=∇φ(x(t)) are governed by the ODE system (2.14, 2.15). This system
can be augmented by another ODE system for the amplitude, (2.21). Solving those ODEs
is called ray tracing and it can be regarded as the method of characteristics applied to the
eikonal equation. Some general references on ray tracing are [19, 50, 58, 94].

Ray tracing is typically not used to solve the complete Cauchy problem, with arbitrary
initial and boundary data. Rather, the interest is to find the travel time of a wave from
one source point to all points in a domain, or to a limited set of receiver points, together
with the corresponding amplitudes in those points. The initial data is thus a single point
source. In applications the same information is often needed for many source points,
such as all points on a curve. The procedure is then repeated for each source point.

Ray tracing gives the phase and the amplitude along the rays, and there is no apriori
control of which points the ray passes through. One way of obtaining the solution at
the particular points of interest is to use ray shooting: see Fig. 9 (left). A great many rays
are shot from the source point in different directions. The result at the desired receiver
points is interpolated from the solutions along the rays. This method is preferred when
the travel time is sought for many receiver points, such as the grid points of a discretized
domain. The ODEs are solved with standard numerical methods, for instance second or
forth order Runge-Kutta methods. The index of refraction is often only given on a grid,
and it must be interpolated for the method to work. The interpolation can be smooth,
such that the gradient of η in (2.15) exists everywhere, but also simple piecewise constant
or linear interpolation is used. The rays are then straight lines or circular arcs within
the grid cells, and they can be propagated exactly without an ODE solver. Snell’s law
of refraction is used at cell boundaries. Interpolating the ray solutions to a uniform grid
from a large number of rays is difficult, in particular in shadow zones where few rays
penetrate, and in regions where many families of rays cross: cf. Fig. 9.

Another strategy to obtain the solution at a particular point is two point ray tracing,
also known as ray bending: see Fig. 9 (right). It is often used when there are only a limited
number of receiver points. In this setting the ODEs are regarded as a nonlinear elliptic
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boundary value problem. After rescaling dt=η(x(t))2dτ, we get from (2.14, 2.15),

d2x

dτ2
=

1

2
∇η(x(τ))2,

x(0)= x0, x(τ∗)= x1,

(3.1)

where x0 is the source point and x1 is the receiver point of interest: see e.g. [76]. Note
that τ∗, the parameter value at the end point x1, is an additional unknown that must be
determined together with the solution. The equation (3.1) can be solved by a standard
shooting method. It can also be discretized and turned into a nonlinear system of equa-
tions that can be solved with, for instance, variants of Newton’s method. Initial data for
the iterative solver can be difficult to find, in particular if there are multiple solutions
(arrivals). Also for two point ray tracing the index of refraction must be interpolated.

In most problems in computational electromagnetics (CEM) the medium is piecewise
homogeneous. This simplifies the calculations, since the solution of (2.14, 2.15) is triv-
ial given the solution at the boundaries and on the interfaces between media. Rays are
straight lines satisfying the reflection law and Snell’s law at interfaces. Ray tracing then
reduces to the geometrical problem of finding points where rays are reflected and re-
fracted. In the electromagnetic community, ray shooting is often referred to as shooting
and bouncing rays (SBR), and two point ray tracing as ray tracing: see e.g. [62].

Note that the source and receiver points may be at infinity, corresponding to inci-
dent and scattered plane waves. For instance, a common problem in CEM is to compute
the radar cross section of an object. In this case both the source and receiver points are
typically at infinity.

3.2 Hamilton–Jacobi methods

To avoid the problem of diverging rays, several PDE-based methods have been proposed
for the eikonal and transport equations (2.6, 2.7, 2.11). When the solution is sought in a
domain, this is also computationally a more efficient and robust approach. The equations
are solved directly, using numerical methods for PDEs, on a uniform Eulerian grid to
control the resolution.

3.2.1 Viscosity solutions

The eikonal equation is a Hamilton–Jacobi-type equation and it has a unique viscosity
solution which represents the first arrival travel time, [23]. This is also the solution to
which monotone numerical finite difference schemes converge, and computing it was the
starting point for a number of PDE based methods. In [103] and [102] upwind methods
were used to compute the viscosity solution of the frequency domain eikonal equation

|∇φ|=η. (3.2)

Upwind methods are stable, monotone methods that give good resolution of the kinks
usually appearing in a viscosity solution. Importantly, the methods in [103] and [102] are
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Figure 10: An explicit solver for the frequency domain eikonal equation (3.2). Starting from one source point
(left), the grid points are updated one at a time in a certain order (middle, right). The outermost points (filled
circles) constitute the grid wave front, which propagates outwards from the source, leaving behind it points
where the solution is already established (circles). Note, the grid wave front is not necessarily close to an actual
wave front.

explicit; computing the solution at a new grid point only involves previously computed
solutions at adjacent grid points. The methods make one sweep over the computational
domain, finding the solution at one grid point after another, following an imagined ex-
panding “grid wave front,” propagating out from the source: see Fig. 10. To ensure
causality and to obtain the correct viscosity solution from an explicit scheme, the grid
points must be updated in a certain order. Those early methods used a grid wave front
with fixed shape (rectangular in [103] and circular in [102]) and fail in this respect when
there are rays in the exact solution that run parallel to the grid wave front. To avoid fail-
ure, the grid wave front could systematically be advanced from the grid point that has
the smallest current solution value (minimum travel time). This ensures causality and
guarantees a correct result, which was recognized in [78]. The method presented in [78]
included simple sorting of the points on the grid wave front according to solution value.
The sorting was improved in [17], where an efficient heap sort algorithm was proposed
to maintain the right ordering of the points on the grid wave front, as it is advanced. The
method in [17] bears a close resemblance to the fast marching method, [83, 84, 101]. This
is an upwind based method for efficient evaluation of distances or generalized distance
functions such as the phase φ in (3.2). It also uses a heap sort algorithm allowing for
computationally efficient choices of marching directions. Those methods can be seen as
versions of Dijkstra’s algorithm for finding the shortest path in a network, adapted to
a grid based setting. The overall computational complexity for solving a problem with
N grid points, is O(N logN), but it can be reduced to O(N) with a careful implementa-
tion [107]. Other recent O(N) methods include the group marching method, [53] and the
fast sweeping method [13, 51, 100].

In parallel, high resolution methods of ENO and WENO type, which for some time
had been used in the numerical analysis of nonlinear conservation laws, were adapted
to Hamilton–Jacobi-equations, [75]. Those methods were used for the time-dependent
eikonal equation (2.6) in [30]. Constructing higher order schemes for methods that use
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an expanding grid wave front is difficult if the shape of the front changes, as in the fast
marching method. For methods with fixed shape grid fronts, the high-resolutions meth-
ods can be applied directly to obtain higher order schemes. Post sweeping is a technique
for avoiding the failures that are associated with turning rays in these methods. The
problem at hand is solved in several “sweeps,” using different preferred directions. For
each sweep, at each grid point, the smallest of the new and the previously computed
solution value is selected, [54].

3.2.2 Multivalued solutions

The eikonal and transport equations only describe one unique wave (phase) at a time.
There is no superposition principle in the nonlinear eikonal equation. At points where
the correct solution should have a multivalued phase, the viscosity solution picks out the
phase corresponding to the first arriving wave. When later arriving waves are also of
interest, the viscosity solution is not enough. In inverse seismic problems, for instance, it
is recognized that first arrival travel times are often not sufficient to give a good migration
image, [32]. This is particularly a problem in complicated inhomogeneous media, where
caustics that generate new phases appear in the interior of the computational domain for
almost any type of source. The problem is related to the fact that the first arrival wave is
not always the most energetic one (cf. the example in Figs. 7 and 8).

One way to obtain more than the first arrival solution is to geometrically decompose
the computational domain, and solve the eikonal solution, with appropriate boundary
conditions, in each of the subdomains. The viscosity solutions thus obtained, can be
pieced together to reconstruct a larger part of the full multibranch solution.

A simple decomposition strategy can be based on detecting kinks in the viscosity
solution. The kinks appear where two different branches of the full solution meet, cf.
Section 2.1. In [30] an attempt was made to compute multivalued travel times with this
approach. A second phase, corresponding to the second arrival time, was calculated us-
ing two separate viscosity solutions of the eikonal equation, with boundary conditions
for the second phase given at the location of the kink that had appeared in the first vis-
cosity solution, see Fig. 11. The same technique was also used at geometric reflecting
boundaries. In principle, the same procedure could be repeated, using kinks in the sec-
ond solution as boundary data for a third phase, etc.

It is difficult, however, to find a robust way of detecting a kink and to distinguish
it from rapid, but smooth, gradient shifts at strong refractions. For more complicated
problems, such as the one shown in Fig. 12, there are difficulties even if the kink could be
detected perfectly. In this example, there is no obvious way to find boundary data for the
third phase using the singularities in the second viscosity solution (bottom row, middle
figure). Moreover, only the part of the second solution lying to the right of the caustic
curve that develops (see ray-traced solution), corresponds to a physical wave. The rest
of the solution should be disregarded, including the kinks near the top and bottom right
corners.

Another, more ad hoc, way of dividing the domain is used in the big ray tracing
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Figure 11: Geometrical decomposition by detecting kinks. Bold lines indicate location of the (first) viscosity
solution kink. Middle figure shows second viscosity solution where the first solution (left) was applied as
boundary condition at the kink.
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Figure 12: Geometrical decomposition by detecting kinks in a problem with a caustic. Top row shows index of
refraction and exact solution. Bottom row shows computed solutions. Bold lines indicate location of the (first)
viscosity solution kink.

method. It was introduced in [8], and extended for use with unstructured grids in [3].
A limited number of rays are shot from the source point in different directions. The do-
mains bounded by two successive rays are the “big rays.” In each big ray, the viscosity
solution is computed. Since the big rays may overlap multivalued solutions can be ob-
tained, although in general the method will not capture all phases. In the presence of
caustics the basic method is not so reliable, and it needs to be modified. Then there is for
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instance no guarantee that it includes the viscosity solution among its branches.
In [9], Benamou introduced a more natural decomposition of the computational do-

main, which ensures that all phases in the multibranch solution are captured. In his
method, the domain is cut along caustic curves. The caustics are detected by solving an
accompanying PDE that enables a continuous monitoring of the geometrical spreading.
The geometrical spreading vanishes at caustics, which therefore can be found numeri-
cally by checking sign changes in the computed geometrical spreading. See also [12, 86].

3.3 Wave front methods

Wave front methods are closely related to standard ray tracing, but instead of computing
a sequence of individual rays, a wave front is evolved in physical or phase space. This
can be based on the ODE formulation (2.12, 2.13) or the PDE formulation (2.31).

The propagation of a wave front in the xy-plane is given by the velocity c(x) in its
normal direction n̂. The velocity u=(u,v) of the wave front in the xy-plane is thus

(u,v)= c(x)n̂= c(x)(cosθ,sinθ), (3.3)

where θ is the angle between the normal vector and the x-axis. At caustic and focus
points, the normal direction is not defined, and front tracking methods based on (3.3)
break down.

The tracing of the wavefronts in phase space facilitates problems including the for-
mation of caustics, as is seen in the following simple example. In Fig. 13, left frame, an
initial circular wave front is given in the xy-plane. This frame also displays the phase
plane curve γ in R3 together with its xθ-and yθ-projections. Let the circular wave front
contract with time in a constant medium, c(x)≡1, and be focused to a point (x,y)=(1, 1)
at time t=1. Although degenerate in the xy-plane, the representations of γ at t=1 in the
xθ- and yθ-planes are smooth and the evolution as well as the computation of amplitudes
can easily be continued to t>1.

Wave front construction is an ODE-based method that uses (2.12, 2.13). For the PDE-
based wave front methods in phase space, the evolution of the front is given by the Liou-
ville equation (2.31) and the front is represented by some interface propagation technique.
We shall here discuss the application of the segment projection method, [28,97], and also
outline level set techniques, [74]. The segment projection method uses an explicit rep-
resentation of the wave front while the level set method uses an implicit representation:
see below.

3.3.1 Wave front construction

Wave front construction is a front tracking method in which Lagrangian markers on the
phase space wave front is propagated according to the ray equations (2.14, 2.15). To
maintain an accurate description of the front, new markers are adaptively inserted by
interpolation when the resolution of the front deteriorates, e.g. in shadow zones. The
method was introduced by Vinje et al in [104, 105].
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Figure 13: Phase plane curve γ: thick line, with projections onto xy-, xθ- and yθ-planes: dotted lines. The left
frame shows the initial circular wave front at t=0. The middle frame shows the focus at t=1. The right frame
shows the wave front after the focus at t=1.5.

Figure 14: Wave front construction. Markers (⋄) on the wave front are propagated as ordinary rays (left). Grid
approximates the wave front in physical space, x(t,r) at constant t- and r-values. When the markers move too
wide apart to accurately describe the front, new markers are inserted via interpolation (middle). The traveltimes
and possibly amplitudes on the wave front are interpolated onto a regular grid as the front propagates (right).

Let us consider the two-dimensional case. As in Section 2.2 we assume that the wave
front in phase space is described by (x(t,r),p(t,r)) at time t, where r is the parametriza-
tion induced by the parametrization of the source. The markers (xn

j ,pn
j ) are initialized

uniformly in r at t =0, (x0
j ,p0

j )= (x(0, j∆r),p(0, j∆r)). Each marker is updated by a stan-

dard ODE-solver, such as a fourth order Runge-Kutta method, applied to the ray equa-
tions (2.14, 2.15). Thus the markers approximately trace rays, and

xn
j ≈ x(n∆t, j∆r), pn

j ≈ p(n∆t, j∆r), ∀n>0, j.

See Fig. 14 (left).
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When the resolution of the wave front worsens, new markers must be inserted. The
location in phase space of the new points is found via interpolation from the old points.
A new marker (xn

j+1/2, pn
j+1/2) between markers j and j+1 would satisfy,

xn
j+1/2≈ x(n∆t, j∆r+∆r/2), pn

j+1/2≈ p(n∆t, j∆r+∆r/2).

See Fig. 14 (middle). When deciding on whether to add new markers, it is not sufficient
only to look at the distance in physical space between the old markers, because it de-
generates at caustics and focus points. The distance in the phase variable should also be
taken into account, [88]. A useful criterion is to add a new marker between markers j and
j+1 if

|xn
j+1−xn

j |≥TOL or |pn
j+1−pn

j |≥TOL,

for some tolerance TOL. This criterion ensures that the phase wave front remains fairly
uniformly sampled. Lambaré et al [57] introduced another criterion, where more points
are added when the curvature of the phase space wave front is large. For each marker,
they compute the additional quantities

Xn
j ≈ xr(n∆t, j∆r), Pn

j ≈ pr(n∆t, j∆r),

via the ODE system (2.28). Based on the fact that

|x(t,r+∆r)−x(t,r)−∆rxr(t,r)|≈ 1

2
(∆r)2|xrr|≥

1

2
(∆r|xr|)2κ(r)

≈1

2
|x(t,r+∆r)−x(t,r)|2κ(r),

where κ(r) is the curvature, the criterion for adding a new marker is taken as

|xn
j+1−xn

j −∆rXn
j |≥TOL or |pn

j+1−pn
j −∆rPn

j |≥TOL.

The computed variables Xn
j , which is proportional to the geometrical spreading, and Pn

j

are also used for computing the amplitude and to simplify high order interpolation when
inserting new markers, and in the grid interpolation below.

Finally, the interesting quantities carried by the markers on the wave front, such as
traveltime and amplitude, are interpolated down on a regular cartesian grid, see Fig. 14
(right). The wave front construction covers the physical space by quadrilateral “ray
cells.” The interpolation step involves mapping the grid points to the right ray cells,
in order to find the markers and marker positions from which to interpolate.

In three dimensions the wave front is a two-dimensional surface. The method gener-
alizes by using a triangulated wave front, and performing the same steps as above. In-
terpolation can be done in essentially the same way as in two dimensions, but it is more
complicated and the ray cells are now triangular prism-like “ray tubes.” See e.g. [16].
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Figure 15: Results for the lens simulation. Left frame: local ray directions with contour lines of index of
refraction overlayed; right frame: wave front in the xy-plane for a sequence of arrival times (T-values).

3.3.2 Segment projection method

The segment projection method is a PDE-based computational method for tracking the
dynamic evolution of interfaces, [95, 96]. The basic idea is to represent a curve or surface
as a union of segments. Each segment is chosen such that it can be given as a function
of the independent variables. The representation is thus analogous to a manifold being
defined by an atlas of charts. The motions of the individual segments are given by partial
differential equations based on the physics describing the evolution of the interfaces. In
the geometrical optics case the manifold is the Lagrangian submanifold in phase space
mentioned in Section 2.2 and the motion is governed by (2.23, 2.24, 2.25).

Let us consider a two-dimensional case such as the one in Fig. 15, where a plane
wave is refracted by a smooth lens. Initial data is given on the source line x = 0. In this
case the x-axis can be used as evolution direction. More precisely, we start from (2.23,
2.24, 2.25) and assume that there are no turning rays, i.e. there is a constant C such that
|θ|≤C < π/2 for all times. Time is then not explicitly needed in the calculation and θ, y
and φ can be computed as a function of x (and initial position y0) directly. The travel time
T (which is also the phase φ) must be computed by a separate ODE. Dividing (2.24, 2.25)
and inverting (2.23), we get

d

dx

(

y
θ

)

=

(

tanθ
η−1(ηy−ηx tanθ)

)

=: u(y,θ),

dT

dx
=

η

cosθ
, (3.4)

y(0,y0)=y0, θ(0,y0)=0, T(0,y0)=0.

This is sometimes called a paraxial approximation of the geometrical optics equations.
A reduced description of the Lagrangian submanifold is given by (x,y(x,y0),θ(x,y0)).
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Figure 16: Segment structure for lens simulation corresponding to phase plane curve in Fig. 15. Upper row:
y-segments; lower row: θ-segments.

Since caustics in general develop, the curve γ(x) = {(y(x,y0),θ(x,y0)) : y0 ∈ R} is not
globally the graph of a function, for fixed x. Instead it will be represented by θ- and
y-segments, given by the functions Yj(x,θ) and Θk(x,y) respectively. The domains of
the independent variables of these functions are projections of the segments onto the
coordinate axis. For fixed x, the coordinates of the points on γ are given by (y,θ) =
(Yj(x,θ),θ) or (y,θ) = (y,Θk(x,y)). For each point on γ, there is at least one segment
defining the curve. To make the description complete, information about the connectivity
of segments must also be provided. For each segment in one variable there is information
regarding which parts of the curve has overlap with segments in the other variable, as
well as pointers to these segments.

The number of segments needed to describe a curve depends on the shape of the
curve. An extremum of a function Yj(x,θ) in θ defines a separation point for the y-
segments, as no segment given as a function of y can continue past this point. Similarly,
an extremum in y of a function Θk(x,y) defines a separation point for the θ-segments. A
sketch of a distribution of segments is shown in Fig. 16 for various values of x. Note that
the separation points for the y-segments correspond to caustic points.

The curve is moved by the velocity field u=(u,v) in (3.4). Let ȳ(x) and θ̄(x) solve the
ODE in (3.4). Then

u=
d

dx
Y(x, θ̄(x))=Yx+ θ̄xYy =Yx+vYθ ,

and similarly for Θ(x,ȳ(x)). Hence, we get evolutionary partial differential equations for
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the segments Θ(x,y) and Y(x,θ),

∂Y

∂x
+v

∂Y

∂θ
=u,

∂Θ

∂x
+u

∂Θ

∂y
=v.

After each numerical advection step, the segment representation is re-initialized. Dy-
namic creation and elimination of segments is employed to follow the evolution of the
curves. New segments are created if necessary, and segments are removed when they are
no longer needed. The connectivity of segments must be kept updated in such a way that
the pointers relating segments represent the current configuration. For example, at x=2
in Fig. 16 (third column) a new maximum and minimum have appeared in the middle
θ-segment. The number of y-segments is then increased, as is seen in the figure.

The travel time, T, is a quantity defined on the phase plane curve γ. Let Ty and Tθ

be the traveltime associated to y- and θ-segments respectively. As above, the chain rule
gives

η

cosθ
=

d

dx
Ty(x, θ̄(x))=T

y
x + θ̄xT

y
θ =T

y
x +vT

y
θ ,

and again, similar for Tθ . This yields the following travel time differential equations,
defined for the y-segments and θ-segments,

∂Ty

∂x
+u

∂Ty

∂y
=

η(x,y)

cosθ
,

∂Tθ

∂x
+v

∂Tθ

∂θ
=

η(x,y)

cosθ
. (3.5)

The amplitude can be computed in the same way as the travel time T by solving for two
unknowns on the curve corresponding to the quantities in (2.28).

3.3.3 Level set methods

The level set method was introduced by Osher and Sethian in [74] as a general technique
for the simulation of moving interfaces. Level set methods for special applications had
been introduced earlier. It uses an implicit representation of an interface in Rd as the zero
level set of a function φ(t,x). The motion of the interface following a velocity field u(t,x)
is given by a PDE for the level set function φ,

φt+u·∇φ=0. (3.6)

This technique has been successfully applied to many different types of problems. Exam-
ples are multiphase flow, etching, epitaxial growth, image processing and visualization,
described in the books [73, 84]. An attractive property is that equation (3.6) can be ap-
plied without modifications even if the topology of the interface changes as, for example,
when merging occurs in multiphase flow.

For the location of the interface to be well defined, the gradient of φ in the direction
normal to the interface should be bounded away from zero. In practice, the level set
function φ is reinitialized at regular time intervals, such that it is approximately a signed
distance function to the interface.
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If φ(t,x)=0 represents an evolving wave front given by geometrical optics the velocity
is u(t,x)= c(x)n̂(x) where n̂ is the normal vector at the interface, that is,

n̂(t,x)=
∇φ

|∇φ| .

This results in the eikonal equation,

φt+c(x)n̂·∇φ=φt+c(x)|∇φ|=0.

A direct application will thus clearly not satisfy the linear superposition principle. As
was noted in [72] the method can, however, still be used if we approximate the wave
front in phase space and evolve the front using the Liouville equation (2.31), similar to
what was done in the segment projection method. The wave front in the kinetic formu-
lation (2.31) is of higher codimension, and such geometrical objects must be represented
by the intersection of interfaces that are given by different level set functions. In two di-
mensions, a wave front like the helix in Fig. 13 can be defined by the intersection of two
regular surfaces. The evolution of both level set functions φi(t,x,y,θ), with i =1,2, is de-
fined by the same velocity vector given by (2.23, 2.24, 2.25). They thus satisfy a reduced
form of the Liouville equation (2.31),

∂tφi+ccosθ∂xφi+csinθ∂yφi+(cx sinθ−cy cosθ)∂θφi =0. (3.7)

If the initial wave front is given as the zero level set of the function ψ0(x,y) then initial
data for (3.7) can for instance be taken as

φ1(0,x,y,θ)=ψ0(x,y), φ2(0,x,y,θ)=sinθ∂xψ0(x,y)−cosθ∂yψ0(x,y).

The methodology can be generalized to many other types of equations and to higher
dimensions [20, 22, 47, 64, 77]. An extensive review can be found in [65].

A practical problem with this approach is that the evolution of the one dimensional
object representing the wave front requires approximation of the evolution of two level
set functions in three dimensions. For wave fronts in R3, three level set functions in five
independent variables and time are required. The computational burden can be reduced
by restricting the computation to a small neighborhood of the wave front. In order to
have a well-functioning algorithm, a number of special techniques are useful. Reinitial-
ization of the level set functions φi, i = 1,··· ,d in d dimensions should be performed at
regular time intervals, such that

|∇φi|≈1, ∇φi ·∇φj ≈0, i 6= j,

at the interface.
A method to compute amplitudes in the phase space level set framework was intro-

duced in [45, 46]. Let w(t,x,y,θ) be the solution to the reduced Liouville equation (3.7)
with initial data

w(0,x,y,θ)= A0(x,y)2|∇φ1(0,x,y,θ)·∇φ2(0,x,y,θ)⊥|,
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where A0(x,y) is the initial amplitude of the front, extended smoothly to be defined for
all (x,y)∈R2. The function w is smooth, positive and bounded also at caustics. One can
then show that the amplitude on the wavefront at later times can be obtained from

A2(t,x,y)δΓ(t)(x,y)=
∫ 2π

0
wδ(φ1)δ(φ2)dθ.

Here δΓ(t) is a delta function supported on the wavefront Γ(t) at time t. The problem
is thus reduced to the numerical approximation of integrals involving delta functions
with level set functions as arguments. This is another current research field. See e.g.
[29, 85, 98, 99].

Boundaries can be treated in the level set framework by having the boundary co-
incide with the grid boundary in physical space, and applying suitable conditions, e.g.
reflection boundary conditions, see [21]. For interfaces where the wave speed is discon-
tinuous, it is in practice difficult to have the grid aligned with the interface. Instead one
would like to have methods that automatically capture the interface effect using regular
grids. The behavior of the solution at an interface is, however, not uniquely defined by
the geometrical optics equations, which in the level set form are linear equations like (3.7)
with discontinuous (c(x,y)) and even delta-type (cx(x,y), cy(x,y)) coefficients. Additional
conditions given by the physics of the problem must be incorporated, cf. Section 2.4.
Moreover, any standard method using a direct discretization across a discontinuity and
explicit time stepping would have a very severe CFL condition because of the cx and cy

terms in the equation. These problems were solved in [48, 49] by constructing a certain
Hamiltonian-preserving numerical flux, where the physically relevant interface condi-
tions can be included at the interfaces. The resulting Hamiltonian-preserving explicit
schemes are proved to be stable, positive and contractive under mild assumptions on the
initial data and a CFL condition which is only constrained by the size of the coefficients
in the smooth regions.

3.4 Moment-based methods

Moment-based methods take as their starting point the kinetic formulation of geometrical
optics,

ft+
1

η2
p·∇x f +

1

η
∇xη ·∇p f =0, (3.8)

where f (t,x,p)≥ 0 is the density of particles in phase space. Like kinetic equations in
general, solving the full equation (3.8) by direct numerical methods would be expensive,
because of the large number of independent variables (six in 3D). (See, however, also
Section 3.5 where this is done for a stationary version of (3.8).) Instead one can use the
classic technique of approximating a kinetic transport equation set in high-dimensional
phase space (t,x,p), by a finite system of moment equations in the reduced space (t,x).
See, for instance, [39], and more recently [60]. In general the moment equations form
a system of conservation laws that gives an approximation of the true solution. The



866 O. Runborg / Commun. Comput. Phys., 2 (2007), pp. 827-880

classical example is the compressible Euler approximation of the Boltzmann equation. In
the geometrical optics setting, the moment system is, however, typically exact under the
closure assumption that at most N rays cross at any given point in time and space. In fact,
this moment system solution is equivalent to N disjoint pairs of eikonal and transport
equations (2.6, 2.7) when the solution is smooth.

Brenier and Corrias, [14], originally proposed this approach for finding multivalued
solutions to geometrical optics problems in the one-dimensional homogeneous case. It
was subsequently adapted for two-dimensional inhomogeneous problems by Engquist
and Runborg, [26, 81]. See also Gosse [35]. More recently, the same technique has been
applied to the Schrödinger equation by Jin and Li [44], Gosse, Jin and Li [36], and Sparber,
Markowich and Mauser [87].

Let us start by defining the moments mij, with p=(p1,p2)T, as

mij(t,x)=
1

η(x)i+j

∫

R2
pi

1 p
j
2 f (t,x,p)dp. (3.9)

Next, multiply (3.8) by η2−i−j pi
1 p

j
2 and integrate over R2 with respect to p. After using

integration by parts and assuming that f has compact support in p, we see that formally
mij will satisfy the infinite system of moment equations

(η2mij)t+(ηmi+1,j)x+(ηmi,j+1)y = iηxmi−1,j+ jηymi,j−1−(i+ j)(ηxmi+1,j+ηymi,j+1),

(3.10)

valid for all i, j≥0. For uniformity in notation we have defined mi,−1 = m−1,i =0, ∀i. The
system (3.10) is not closed. If truncated at finite i and j, there are more unknowns than
equations. To close the system we have to make specific assumptions on the form of the
density function f .

3.4.1 Closure with delta functions

We first consider the case when f is a weighted sum of delta functions in p,

f (t,x,p)=
N

∑
n=1

gn ·δ(p−pn), pn =η

(

cosθn

sinθn

)

. (3.11)

Hence, for fixed values of x and t, the particle density f is non zero at a maximum of
N points, and only when |p|= η(x). This form of f is motivated by (2.34). If the wave
equation solution has the form

u(t,x)≈
N

∑
n=1

An(t,x)eiωφn(t,x),

with smooth An and φn, then the new variables introduced here would be identified as
gn=A2

n and pn=∇φn. Hence, the assumptions in (3.11) is that there are at most N crossing
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rays at each point in space and time, with gn=gn(t,x) being the intensity (particle density)
of ray n and θn = θn(t,x) its local direction.

A system describing N phases needs 2N equations, corresponding to the 2N un-
knowns gk and θk. It turns out that a good choice of equations are the ones for the
moments m2ℓ−1,0 and m0,2ℓ−1 with ℓ=1,··· ,N,

(η2m2ℓ−1,0)t+(ηm2ℓ,0)x+(ηm2ℓ−1,1)y =(2ℓ−1)(ηxm2ℓ−2,0−ηxm2ℓ,0−ηym2ℓ−1,1),

(η2m0,2ℓ−1)t+(ηm1,2ℓ−1)x+(ηm0,2ℓ)y =(2ℓ−1)(ηym0,2ℓ−2−ηxm1,2ℓ−1−ηym0,2ℓ).
(3.12)

We collect those moments in a vector,

m=(m10,m01,m30,m03,··· ,m2N−1,0,m0,2N−1)
T. (3.13)

Inserting (3.11) into the definition of the moments (3.9) yields

mij =
N

∑
n=1

gn cosi θn sinj θn. (3.14)

We also introduce new variables,

un = gn

(

cosθn

sinθn

)

, u=







u1
...

uN






∈R

2N , (3.15)

where un thus shows the direction and strength of ray n. Clearly, each moment defined
in (3.14) depend on u in a straightforward way, mij =mij(u). In particular, one can define

a function F0 :R2N →R2N through the equation

F0(u)=m. (3.16)

Similarly, we define the functions F1(u), F2(u) and K(u,ηx,ηy), for the remaining columns
in (3.12). This permits us to write (3.12) as a system of nonlinear conservation laws with
source terms

(η2m)t+F1◦F−1
0 (ηm)x+F2◦F−1

0 (ηm)y =K(F−1
0 (m),ηx,ηy). (3.17)

The functions F j and K are rather complicated nonlinear functions. In the most simple
case, N =1, the function F0 is the identity, and

F1 =
u1

|u|

(

u1

u2

)

, F2 =
u2

|u|

(

u1

u2

)

, K =
ηxu2−ηyu1

|u|

(

u2

−u1

)

.

For N =2, let w=(w1,w2)T and

f 0 =









w1

w2

w3
1/|w|2

w3
2/|w|2









, f 1 =
w1

|w| f 0, f 2 =
w2

|w| f 0.
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Then F j = f j(u1,u2)+ f j(u3,u4) for j = 0,1,2. Note that the functions F j are not invert-
ible; the vectors un can for instance be permutated without changing the value of the
moments. The compositions with F−1

0 , e.g. F1◦F−1
0 , can, however, be shown to be well-

defined and continuous [81] for almost all m. This means that the system (3.17) is es-
sentially closed. This would in general not be true if we had made another choice of
moments in (3.12).

Analysis of the conservation laws

The main advantage with the moment-based methods is that the multiple phase systems
possess a finite superposition principle in the following sense. If the moments correspond-
ing to un, n =1,··· ,N are N solutions to the single phase system, then the moments cor-
responding to u = (u1,··· ,uN)T is a solution to the N-phase system. This follows from
a trivial computation if the solutions are smooth. Physical solutions can, however, have
discontinuities in g. If weak solutions are introduced, one can show that a sufficient
condition for the superposition principle to hold is just that g is bounded and that θ is
continuous and has locally bounded variation [81]. (A discontinuous θ would typically
not be physical.)

A distinguishing feature of the system (3.17) is that it typically has measure solutions
of delta function type, even for smooth and compactly supported initial data. These
appear when the physically correct solution passes outside the class of solutions that the
system (3.17) describes. If initial data dictate a physical solution with M phases for t>T,
the system (3.17) with N < M phases will have a measure solution for t>T, cf. Fig. 17(a).

In [26] it was shown that the general system (3.17) is nonstrictly hyperbolic for all
states m and N. The same was shown for the Schrödinger equation case in [44]. The
Jacobian has a Jordan-type degeneracy and there will never be more than N linearly
independent eigenvectors for the 2N×2N system. The systems are thus not well posed
in the strong sense, which is reflected in their sensitivity to numerical treatment. Even
for smooth problems, many standard numerical schemes converge poorly in L1 and may
fail to converge in L∞, [26, 80]. Kinetic schemes have been recognized to better handle
nonstrictly hyperbolic problems. They were used with success in [36, 44]. Also note that
in heterogeneous media the source term may be very stiff because of large gradients in
the index of refraction. It is therefore important to treat it correctly, for example by using
so-called well-balanced schemes, [35, 36].

Another numerical difficulty is to evaluate the flux functions F1◦F−1
0 and F2◦F−1

0 and
the source function K. It is necessary to solve a nonlinear system of equations

F0(u)=m, (3.18)

for each time step, at each grid point. Solving (3.18) can be difficult. When N =1,2 there
is an analytical way to invert F0: see [81]. For N >2 an iterative solver must be used.



O. Runborg / Commun. Comput. Phys., 2 (2007), pp. 827-880 869

0

1

2 0
1

2

0

10

yx

(a) N =1.

0

1

2 0
1

2

0

5

yx

(b) N =2.

0  1  2
0

 

1

 

2

(c) Ray-traced solution.

0 1 2
0

1

2

(d) δ-equations, N =2.

0 1 2
0

1

2

(e) H-equations, N =3.

0 1 2

−0.5

0

0.5

0 1 2

−0.5

0

0.5

(f) δ-equations, N =2 (above), H-
equations, N =3 (below).

Figure 17: Wedge. Amplitude results (top row) for δ-equations with N=1, 2. Top left and top middle pictures
show total ray strength, i.e. g and g1+g2 respectively. Top right figure shows a ray-traced solution with contour
lines of the index of refraction superimposed. Lower left and lower middle figures show quiver plots of ray angles
for δ- and H-equations with N = 2, 3. A contour plot of the index of refraction is overlaid on the solutions.
Lower right figure shows sine of ray angles (solid) in a cut at x = 1.75 together with the corresponding values
for a ray traced solution (dashed).

3.4.2 Closure with Heaviside functions

We can also consider a different form of f to close (3.10). By assuming that

f (t,x,p)=
1

η
δ(|p|−η)

N

∑
n=1

(−1)n+1H(θ−θn), p= |p|
(

cosθ
sinθ

)

, (3.19)

one can discard the amplitude information carried by gn used in the previous section and
only solve for the angles θn. In this way one gets fewer and less singular equations.

For fixed (t,x), the density function f is supported by a set of intervals on the sphere
{|p|=η}. The intervals correspond to fans of rays whose edges are given by the unknown
angles θn. The transport equation (3.8) governs the propagation of all these rays, and in
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particular the rays at the edges, which will propagate just like ordinary rays as long as f
stays of the form (3.19). The values of the N angles θn will then coincide with those of a
problem with N rays crossing at each point, as long as the assumption (3.19) holds.

For this case we usually make the paraxial approximation mentioned in Section 3.3.2
and choose the equations for the moments {m0,ℓ} with ℓ= 0,··· ,N−1. The assumption
(3.19) then leads to a steady state version of (3.10),

(ηm1,ℓ)x+(ηm0,ℓ+1)y = ℓ(ηym0,ℓ−1−ηxm1,ℓ−ηym0,ℓ+1), ℓ=0,··· ,N−1. (3.20)

This system is strictly hyperbolic as long as θn 6= θℓ for all n,ℓ. Moreover, the same super-
position principle as for the delta equations in Section 3.4.1 holds also for these Heaviside
equations. Numerical schemes are not as sensitive as for the δ-equations. The evalua-
tion of the flux functions is also easier; it was recently shown that the inversion corre-
sponding to F0(u)=m can be reduced to a generalized eigenvalue problem Ax=λBx for
A,B∈RN×N, which can be solved in a stable way with the QZ-algorithm, [37, 38]. Ini-
tialization of physically irrelevant phases is, however, more difficult for these equations.
See [35, 81] for further discussion of the theory of this system and how to couple it with
equations for the amplitudes.

3.4.3 Numerical example

We consider a problem where a plane wave, injected at x=0 with θ(0,y)=0 and g(0,y)=2,
is refracted by a smooth wedge similar to the one in Fig. 15. When the wave is refracted
in the interface a second and third phase appear. A caustic develops around the point
(1,1), fanning out to the right: see Fig. 17(c).

The equations closed with delta and Heaviside functions (δ- and H-equations, in
short) were solved in the square [0,2]×[0,2]. Different aspects of the solutions are shown
in Fig. 17. The δ-equations with N = 1 only capture one of the phases, as expected. A
delta function appear where rays try to cross. The N=2 system captures both the second
phase and the caustic quite well. The H-equations cannot correctly capture the second
phase when N =2. However, when N =3 all three phases are captured.

3.5 Full phase space methods

As was discussed in the introduction of this section, solving the full phase space Liouville
equation (3.8) is significantly more expensive than solving e.g. the eikonal and transport
equation. This is, however, only under the assumption that we are interested in the so-
lution for just one set of initial data. In many applications, we seek instead the solution
for many different initial data (sources), with the same index of refraction η(x). Examples
include the inverse problem in geophysics and the computation of radar cross sections.
For these cases, solving a PDE in the full phase space can be an attractive alternative.

To describe the evolution in phase space we introduce the phase map (solution op-
erator) Gt : R2d →R2d, mapping a ray’s starting point y0 = (x0,p0) in phase space to its
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location after time t. More precisely,

Gt(y0)=y(t),

when y(t)=(x(t),p(t)) solves the ray equations (2.14, 2.15) with initial data y0.

3.5.1 Fast phase space method

The fast phase space method was put forth by Fomel and Sethian in [31]. They consider
the unknown ŷ(x,p), defined in a subdomain Ω of phase space as the point where a
bicharacteristic originating in (x,p) ∈ Ω first crosses the boundary ∂Ω. Hence, in the
phase map notation,

ŷ(x,p)=GT(x,p)(x,p), T(x,p)=min
t

{t≥0 | Gt(x,p)∈∂Ω}.

Then ŷ solves the escape equation

Dxŷ p+ηDpŷ∇η =0, (x,p)∈Ω,

ŷ(x,p)=(x,p), (x,p)∈∂Ω̃,
(3.21)

where Dxŷ, Dpŷ are the Jacobians of ŷ with respect to x, p respectively and ∂Ω̃ is the
part of ∂Ω with ingoing characteristics. The escape equation can be derived by noting
that ŷ(x(t),p(t)) is constant along a bicharacteristic (x(t),p(t)). Therefore, after differ-
entiation with respect to t and multiplication by η2, the chain rule together with the ray
equations (2.14, 2.15) give (3.21). Note that this is the stationary version of (3.8) with
the scalar density function f replaced by the vector ŷ. There is also an accompanying
transport equation for the travel time T(x,p) defined above, which represents the time
it takes for a bicharacteristic starting at the point (x,p) to reach the boundary. Since
∂tT(x(t),p(t))=1, we get

p·∇xT+η∇η ·∇pT =η2, (x,p)∈Ω,

T(x,p)=0, (x,p)∈∂Ω̃.
(3.22)

Both (3.21) and (3.22) are solved numerically by the fast marching method (see Sec-
tion 3.2.1) adapted to the linear phase space setting. It is done in a Eulerian framework, on
a fixed grid. In two dimensions, the phase space is three-dimensional, and the cost for fast
marching is O(N3 logN) when each dimensions is discretized with N grid points. The
corresponding cost for three-dimensional problems is O(N5 logN). The slowness matching
method of Symes, [89,90], has a slightly different setting, but it can be seen as a method to
solve (3.21, 3.22) in a subdomain of phase space where there are no turning rays, so that
the paraxial approximation can be used (cf. Section 3.3.2). It has a comparable complexity.

The solution to (3.21, 3.22) gives the travel time to the boundary and escape location
for rays with all possible starting points and starting directions in the domain Ω. The
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Figure 18: Travel time from a point source on the boundary ∂Ω, marked “×”. Left frame: Isotime lines in a
square part of Ω, with gray scale of index of refraction superimposed. Right frame: Plot of x̂(x0,p) and T(x0,p)
for a fixed point x0, marked “◦” in the left frame. Here, both x̂ and p are one-dimensional periodic variables
and represented by an angle α∈ [0,2π). The source is located at x̂ = x1 = π/2 (dotted line in right frame).
There are three solutions to (3.24) representing three different traveltimes. (The artificial solution introduced
by the periodicity of x̂ is discarded.)

travel times between any two points x0 and x1 can then be computed from the solution.
First, solve

ŷ(x0,p0)= ŷ(x1,p1), (3.23)

for p0 and p1. Then the travel time is |T(x0,p0)−T(x0,p1)|. There may be multiple solu-
tions to (3.23), giving multiple travel times. If x1 ∈ ∂Ω, the expression simplifies. Setting
ŷ=(x̂, p̂), we can solve

x̂(x0,p)= x1, (3.24)

for p to get the travel time T(x0,p). An example is shown in Fig. 18. To find the travel
time at x0 of a wave front that starts at the boundary of Ω in physical space, one instead
needs to find p such that

p̂(x0,p)=ηn̂(x̂(x0,p)),

where n̂(x̂) is the normal of the boundary at x̂. Again, the travel time is T(x0,p).
The amplitude can also be obtained directly through post-processing of the solution.

Let us consider a point source at x0 in two dimensions. In the notation of Section 2.2, we
have

|A(x̃(t,r))|−2∼|x̃r(t,r)|η(x̃(t,r)),

after assuming that x0(r) = x0+ε(cosr, sinr) and ε → 0. Set p0(r) = η(x0)(cosr, sinr)T.
Then there is a function t(r) such that x̂(x0,p0(r)) = x̃(t(r),r), and, after differentiation
with respect to r,

Dpx̂ p⊥
0 = x̃tt

′(r)+ x̃r.
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But, p̂(x0,p0)‖ x̃t⊥ x̃r and since |p̂|=η(x̂),

|A(x̂(x0,p0))|−2∼ p̂⊥Dpx̂ p⊥
0 .

See also [71] for an adaptation of the fast phase space method to geodesics on a surface.
This setting is e.g. relevant for computing the creeping ray contribution to radar cross
sections.

3.5.2 Phase flow method

The phase flow method was proposed by Candès and Ying in [109]. Their idea is to
compute an approximation of the whole phase map Gt on a grid. It can be seen as a
clever tabulation of well chosen ray paths that allows for a rapid approximate evaluation
of any other ray path. The method is in fact general and works for any autonomous ODE.

The key observation is the group property

Gt(Gs(y))=Gt+s(y).

By induction, this leads to

Gn∆t(y)=Gn0∆t(Gn12∆t(···Gnk2k∆t(y)···)),

with nj given by the binary expansion of n,

n=
k

∑
j=0

nj2
j, nj∈{0,1}.

Suppose we want to compute y(n∆t), with n∆t ≤ T, when the initial data is y0. Then
y(n∆t) =Gn∆t(y0) and if Gt can be applied at an O(1) cost, we can obtain y(n∆t) at an
O(|log∆t|) cost, since k≤|log2(T/∆t)|. Moreover, we only need to use G∆t, G2∆t, ··· , G2k∆t,
i.e. O(|log∆t|) instances of the phase map. In the phase flow method approximations of
these instances are computed. One assumes‡ that there is a compact submanifold M
of phase space that is invariant under Gt, i.e. if y ∈M then Gt(y)∈M. One example
would be when the coefficient c(x) is periodic. The manifold is discretized with N grid
points in each coordinate direction, such that T/∆t∼N, and Gt is approximated by a grid
function extended by interpolation to all of M. The first instance, G̃∆t≈G∆t, is computed
by applying an ODE-solver to (2.14, 2.15) with each grid point ỹ0∈M as initial data. The
remaining instances, G̃t with t=2j∆t, are computed by repeated use of the recursion

G2t(y)=Gt(Gt(y)),

plus interpolation. Local interpolation is used, so that applying G̃t can be done in fixed
time.

‡This is not a crucial assumption, and the method can be adapted also to other cases.
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If the dimension of M is 2d−1, the computational complexity is O(N2d−1 logN) in
time and memory to compute and store the approximations of the phase map instances.
This is thus the same as the complexity for the fast phase space method. Once the
phase map instances are computed, the cost to approximate y(n∆t), for any initial data,
is only O(logN). However, in practice one needs to take a few more instances of Gt

than O(|log∆t|) because of stability issues when applying it many times. The stabilized
method has a slightly worse complexity, O(N2d−1+s) for some small s.

To compute the amplitude one needs the derivative of the phase map. This can be
computed in a way similar to Gt itself. Another possibility is to differentiate Gt numer-
ically, as is done in the fast phase space method. The phase flow method has also been
used to compute geodesics on surfaces [108].

3.6 Hybrid methods

We end this review by giving some brief comments on hybrid methods in which direct
solvers of the wave equation are coupled with solvers based on one of the high frequency
models. The high frequency approximation is bad where the wave length is relatively
large compared to the scales on which the boundary or the index of refraction vary. One
must then instead use an expensive, but accurate, direct solver. The main assumption
in this section is that the parts where this is necessary, are small compared to the overall
computational domain and that high frequency solvers are accurate in the remaining
parts.

We confine the discussion to the scattering problem for the Helmholtz equation as
in Section 2.6.1. This problem is often solved with hybrid methods in computational
electromagnetics, see e.g. [43, 68, 92]. To fix ideas, let Ω ⊂ R3 be a bounded open set
representing the scatterer. We suppose furthermore that it has two disjoint, disconnected,
components, Ω=Ω1∪Ω2 and Ω1∩Ω2=0, where Ω1 is small, |Ω1|∼ω−1, and complicated,
while Ω2 is large, |Ω2| ≫ ω−1, and smooth. Let u be the scattered field and uinc the
incident wave. Then

∆u+ω2u=0, x∈R
3\Ω,

u=−uinc, x∈∂Ω,

together with a radiation condition at infinity. Since Ω2 is large, it is computationally
very expensive to solve this problem completely with a direct solver.

As a first step to reduce the computational cost, one can use the boundary decomposition
method, a common strategy for breaking up the problem into more tractable parts. It is
an iterative method for u where the subscatterers Ω1 and Ω2 are treated independently
in each iteration. The iterations start with u0

j , j=1,2, the solutions to

∆u0
j +ω2u0

j =0, x∈R
3\Ωj,

u0
j =−uinc, x∈∂Ωj.
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Ω2

1Ω
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Figure 19: Interaction in one iteration between the subscatterers for the element at xi on Ω1. The element is
assumed to radiate as a point source. Rays bouncing off Ω2 and hitting the elements on Ω1 are shown. Note
that for some elements on Ω1 there are multiple returning rays.

Then un
j is computed iteratively for n=1,2,3,··· , by solving

∆un
j +ω2un

j =0, x∈R
3\Ωj,

un
j =−un−1

2−j , x∈∂Ωj.

Note that the field from the other subscatterer, in the previous iteration, is used as bound-
ary data. One can show that for disjoint subscatterers in R3 the iteration converges and

u=
∞

∑
n=0

un
1 +un

2 ,

provided there is enough separation between the subscatterers [7]. The method easily
generalizes to any finite number of subscatterers.

The idea with hybrid methods is to use a direct solver for the un
1 problems that are set

on the small Ω1 subscatterer, and an approximate high-frequency solver for the un
2 prob-

lems on the large Ω2. The direct solver is usually a boundary element method, called
method of moments in the computational electromagnetics community, [41]. The high fre-
quency solver can be physical or geometrical optics, with or without the geometrical the-
ory of diffraction extension. The coupling between the models is made by considering
each surface element on the discretized Ω1 subscatterer as a point source. For example,
in the geometrical optics case, an element at xi∈Ω1 shoots out rays in all directions with
a strength given by un

1(xi). In order obtain the boundary conditions for un+1
1 one has to

find the rays that reflect off Ω2 back to the elements on Ω1, see Fig. 19.
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[42] L. Hörmander, The Analysis of Linear Partial Differential Operators. I-IV, Springer-Verlag,

Berlin, 1983-1985.
[43] U. Jakobus and F. M. Landstorfer, Improved PO-MM hybrid formulation for scattering

from three-dimensional perfectly conducting bodies of arbitrary shape, IEEE T. Antennas
Propag., 43(2) (1995), 162-169.

[44] S. Jin and X. Li, Multi-phase computations of the semiclassical limit of the Schrödinger
equation and related problems: Whitham vs. Wigner, Physica D, 182(1-2) (2003), 46-85.



878 O. Runborg / Commun. Comput. Phys., 2 (2007), pp. 827-880

[45] S. Jin, H. Liu, S. Osher and R. Tsai, Computing multi-valued physical observables for the
high frequency limit of symmetric hyperbolic systems, J. Comput. Phys., 210(2) (2005), 497-
518.

[46] S. Jin, H. Liu, S. Osher and R. Tsai, Computing multivalued physical observables for the
semiclassical limit of the Schrödinger equation, J. Comput. Phys., 205(1) (2005), 222-241.

[47] S. Jin and S. Osher, A level set method for the computation of multivalued solutions to
quasi-linear hyperbolic PDEs and Hamilton-Jacobi equations, Commun. Math. Sci., 1(3)
(2003), 575-591.

[48] S. Jin and X. Wen, Hamiltonian-preserving schemes for the Liouville equation with discon-
tinuous potentials, Commun. Math. Sci., 3(3) (2005), 285-315.

[49] S. Jin and X. Wen, Hamiltonian-preserving schemes for the Liouville equation of geometrical
optics with discontinuous local wave speeds, J. Comput. Phys., 214(2) (2006), 672-697.

[50] B. R. Julian and D. Gubbins, Three-dimensional seismic ray tracing, J. Geophys. Res., 43
(1977), 95-114.

[51] C. Y. Kao, S. Osher and J. Qian, Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi
equations, J. Comput. Phys., 196(1) (2004), 367-391.

[52] J. Keller, Geometrical theory of diffraction, J. Opt. Soc. Am., 52 (1962), 116-130.
[53] S. Kim, An O(N) level set method for eikonal equations, SIAM J. Sci. Comput., 22(6) (2000),

2178-2193.
[54] S. Kim and R. Cook, 3-D traveltime computation using second-order ENO scheme, Geo-

physics, 64(6) (1999), 1867-1876.
[55] R. G. Kouyoumjian and P. H. Pathak, A uniform theory of diffraction for an edge in a

perfectly conducting surface, Proc. IEEE, 62(11) (1974), 1448-1461.
[56] Y. A. Kravtsov, On a modification of the geometrical optics method, Izv. VUZ Radiofiz., 7(4)

(1964), 664-673.
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