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Abstract. This paper introduces an extension of the time-splitting spectral (TSSP) meth-
od for solving a general model of three-wave optical interactions, which typically
arises from nonlinear optics, when the transmission media has competing quadratic
and cubic nonlinearities. The key idea is to formulate the terms related to quadratic
and cubic nonlinearities into a Hermitian matrix in a proper way, which allows us to
develop an explicit and unconditionally stable numerical method for the problem. Fur-
thermore, the method is spectral accurate in transverse coordinates and second-order
accurate in propagation direction, is time reversible and time transverse invariant, and
conserves the total wave energy (or power or the norm of the solutions) in discretized
level. Numerical examples are presented to demonstrate the efficiency and high res-
olution of the method. Finally the method is applied to study dynamics and inter-
actions between three-wave solitons and continuous waves in media with competing
quadratic and cubic nonlinearities in one dimension (1D) and 2D.

AMS subject classfications: 65M70, 78M25, 42A10

Key words: Nonlinear optics, three-wave, time-splitting spectral method, energy, continuous
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1 Introduction

In nonlinear optics, based on the model for the type-II [11] second-harmonic-generating
(SHG) systems and the one for the co-propagation of two orthogonal linear polarizations
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in the lossless Kerr medium [9], a general model of three-wave optical interactions sys-
tem, which combines the quadratic and cubic nonlinearities and birefringence, can be
formulated as follows [9, 11, 12]:
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where u=u(x,z), v=v(x,z) and w=w(x,z) are complex-valued functions, the fields u and
v are complex envelopes of the two components with fundamental frequency, w is that
of the single second harmonic component, and f ∗ is the complex conjugate of a function
f . For the parameters in (1.1)-(1.3), b is a real birefringence coefficient, q is the phase-
mismatch parameter that controls the SHG process, α is the coefficient for quadratic non-
linearity, and γ1 and γ2 are coefficients for cubic nonlinearities. All these parameters are
real, and they may be positive or negative, with a constraint that γ1 and γ2 have the
same sign. The cases γ1,γ2 > 0, and resp. γ1,γ2 < 0, correspond to the self-focusing and
self-defocusing cubic nonlinearities.

The system (1.1)-(1.3) is written for the paraxial evolution in the spatial domain, so
that z≥0 is the propagation distance, x∈R

d (d=1,2) is the transverse coordinate in the cor-
responding planar waveguide, and the ∆ operator accounts for transverse coordinates.
Furthermore, it conserves a dynamical invariant (power, alias the norm of the solution,
in the temporal domain, it would be wave energy), i.e.,

E(z)

=
∫

Rd

[
|u(x,z)|2+|v(x,z)|2+4|w(x,z)|2

]
dx≡

∫

Rd

[
|u(x,0)|2+|v(x,0)|2+4|w(x,0)|2

]
dx

= E(0), z≥0. (1.4)

In addition, the system also conserves the momentum and Hamiltonian, which will not
be explicitly used in this work.

The general form of (1.1)-(1.3) covers many three-wave interactions in nonlinear op-
tics. For example, when γ1 = γ2 = 0, i.e. all the cubic nonlinear terms are dropped, it is
reduced to the so-called type-II SHG system which is a subject that has been studied in
detail theoretically and experimentally, see reviews [11,15]. In this case, the material bire-
fringence is employed to phase-match two orthogonal linearly polarized components of
the fundamental-frequency wave to a single second-harmonic component. In addition, if
b=0 and u=v, it is further simplified to a two-wave setting, i.e. type-I SHG system with-
out walk-off between harmonic waves [13]. The solutions of this simplified two-wave
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SHG system have been analyzed by many authors, both in the 1D case and in a more
general 2D case (see page 104 in [11] for a thorough review). When α = 0, i.e. all the
quadratic nonlinear terms are dropped, it is reduced to coupled nonlinear Schrödinger
equations with cubic nonlinearities arising from wave interactions in Kerr medium [3,18]
or Bose-Einstein condensation [4, 7].

There has been some recent studies which deal with the analysis and numerical so-
lutions of the three-wave system (1.1)-(1.3). Most work was focused on the finding of
the soliton solutions and the exploring of their stability property and interacting behav-
ior [15]. By using a Crank-Nicolson finite-difference scheme, Baboiu and Stegeman [1, 2]
studied the interaction between two optical soliton beams during type-I SHG in quadratic
nonlinear materials, i.e. γ1 = γ2 = 0 in (1.1)-(1.3), and they found that the interaction is
highly sensitive to the relative phase difference and the soliton oscillations occur during
excitation between the launched beams. Etrich et al. [15] considered the collision be-
havior of self-trapped optical beams in quadratic nonlinear media and they found that
above a critical velocity, the solitary waves behave similarly to the true solitons, while
below that threshold, they merge and form oscillating states. Recently, Chen, Kaup and
Malomed [12] studied three-wave solitons and continuous waves in the system (1.1)-
(1.3) analytically and numerically. They found several types of solitons in the system by
means of the variational approximation and numerical methods, investigated stability of
the solitons by means of the Vakhitov-Kolokolov criterion and direct simulations, and
studied the existence and stability of continuous-wave solutions.

Due to the fully nonlinearities and complicated wave interaction patterns in (1.1)-
(1.3), an efficient and accurate numerical method is one of the key issues in studying wave
dynamics and interaction in the system. Currently there are two types of numerical meth-
ods proposed in the literature for solving (1.1)-(1.3): one is the Crank-Nicolson finite-
difference scheme [15] and the other one is the leap-frog pesudospectral method [12].
There are some drawbacks of the two numerical methods: the former is implicit and
only second-order accurate in space and the latter is explicit but there is a severe stability
constraint. Historically, time-splitting methods are among the most popular methods for
studying the dynamics of Schrödinger-type equations (see earlier studies by [8, 16–19]
and references therein and recent applications by [3–6]). The aim of this paper is to de-
sign a time-splitting spectral methods for the system (1.1)-(1.3). The key idea in designing
our novel numerical scheme is to formulate the terms related to quadratic and cubic non-
linearities into a Hermitian matrix in a proper way. Compared with the scheme used
in [12, 15], the remarkable advantage is that our scheme is unconditionally stable and
time transverse invariant, and conserves the total energy in discretized level.

The paper is organized as follows. In Section 2, we propose a time-splitting spectral
method for discretizing the system (1.1)-(1.3). In Section 3, we study the properties of
our new numerical method and test its accuracy. It is then applied to study dynamics
and wave interaction of the three-wave system in 1D and 2D in Section 4. Finally, some
conclusions are drawn in Section 5.
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2 A time-splitting spectral method

In order to use some standard techniques [3,5,18], by changing of variables, w→w/2 and
z→ t, we can reformulate the system (1.1)-(1.3) as
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For simplicity of notation, we shall introduce the method in one transverse coordi-
nate. Generalization to two transverse coordinates is straightforward for tensor product
grids and the results remain valid without modifications. In the practical implementa-
tion, we truncate the system (2.1)-(2.3) with one transverse coordinate to one defined on
the interval [a,b]
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which is solved with periodic boundary conditions

u(x,t=0)=u0(x), v(x,t=0)= z0(x), w(x,t=0)=w0(x), a≤ x≤b, (2.7)

u(a,t)=u(b,t), ux(a,t)=ux(b,t), v(a,t)=v(b,t), (2.8)

vx(a,t)=vx(b,t), w(a,t)=w(b,t), wx(a,t)=wx(b,t), t≥0, (2.9)

where |a| and |b| are chosen sufficiently large so as to assure that the effect of domain
truncation remains insignificant. The use of more sophisticated radiation boundary con-
ditions is an interesting topic that remains to be examined in the future. In the system
(2.4)-(2.9), it conserves the total wave energy
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We choose the spatial mesh size h>0 with h=(b−a)/M for M an even positive integer,
time step size k>0 and let the grid points and time steps be

xj := a+ jh, tn :=nk, j=0,1,··· ,M, n=0,1,2,···

Let un
j , vn

j and wn
j be the approximations of u(xj,tn), v(xj,tn) and w(xj,tn) respectively,

and un, vn and wn be the solution vectors with component un
j , vn

j and wn
j respectively.

From time t= tn =nk to t= tn+1 = tn+k, the system (2.4)-(2.9) is solved in two splitting
steps. One solves the free Schrödinger system first
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for the time step of length k, followed by solving the nonlinear ODE system
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for the same time step. The system (2.11) will be discretized in space by the Fourier
spectral method and integrated in time exactly [3–6, 18]. For the nonlinear ODE system
(2.12)-(2.14), we first rewrite it in the form
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with the coefficient matrix A(u,v,w) a Hermitian matrix. Denote Φ = (u,v,w)T. Inte-
grate (2.15) over the time interval [tn,tn+1], approximate the integral by the trapezoidal
quadrature [7], we get
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where Φn := Φ(tn) and Φ(1) is an approximation of Φ(tn+1) and can be computed from
the ODE system (2.15) by any explicit method. Here we use the forward Euler method to
compute it as:

Φ(1) =Φn +ikA(Φn)Φn,

B(Φn)=
1

2
[A(Φn)+A(Φ(1))].
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Remark 2.1. If the decomposition of the Hermitian matrix B(Φn) in (2.17) couldn’t be
done explicitly, one can do it numerically, i.e. compute the eigenvalues and eigenvectors
numerically, since it is only a 3×3 matrix.

3 Properties of the scheme and accuracy test

In this section, we will demonstrate the properties of our discretization (2.19) and test the
spatial/temporal accuracy numerically.

3.1 Properties of the scheme

First, the discretization (2.19) for the system (2.4)-(2.9) is explicit and time reversible, i.e.
the scheme is unchanged if we interchange n←→n+1 and k←→−k in it.

Second, another main advantage of the time-splitting method (2.19) is that it is time
transverse invariant, just as for the original system (2.1)-(2.3) itself. If the constants α1,
α2 are added to the potentials b and q respectively, then the discrete wave functions
un+1

j , vn+1
j and wn+1

j obtained from (2.19) get multiplied by the phase factors eiα1(n+1)k,

e−iα1(n+1)k and e−iα2(n+1)k/2 respectively, which leaves the amplitudes of the wave func-
tions |un+1

j |, |vn+1
j | and |wn+1

j | unchanged. This property does not hold for the Crank-

Nicolson finite difference method [15] and the leap-frog spectral method [12] for the sys-
tem.

Third, the disretization (2.19) is unconditionally stable and conserves the total energy
E in (2.10) in the discretized level, i.e. we have the following lemma

Lemma 3.1. The time-splitting spectral scheme (2.19) is unconditionally stable. In fact, under
any mesh size h and time step k, we have
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Proof. For the scheme (2.19), by the Pasaval equality, we have
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Thus the desired equality (3.1) is obtained from (3.3) by induction. �

3.2 Accuracy test

In order to test the spatial/temporal accuracy of the TSSP method (2.19), we solve the
problem on the interval [−16,16] with α=1, γ1 =1, γ2 =1/6 and b=q=0. The initial data
in (2.7) is taken as

u0(x)=
3

2
sech2

√
2x

2
, v0(x)=u0(x), w0(x)=0, x∈R.

Let u, v and w be the ‘exact’ solutions which are obtained numerically by using our nu-
merical method with a very fine mesh and time step, e.g. h=1/64 and k=1/16384, and
uh,k, vh,k and wh,k be the numerical solutions obtained by using our method with mesh
size h and time step k. Fig. 1 plots the amplitudes, i.e. |u| and |w| of the solutions u and
w. To quantify the numerical method, we define the error function as

e(t) :=

√
||u(·,t)−uh,k(·,t)||2+||v(·,t)−vh,k(·,t)||2+||w(·,t)−wh,k(·,t)||2

||u(·,t)||2 +||v(·,t)||2 +||w(·,t)||2 ,

where ‖·‖ is the standard l2-norm as defined in (3.2).
First, we test the discretization error in space. In order to do this, we choose a very

small time step, e.g. k=1/16384, such that the error from time discretization is negligible
compared with the spatial disretization error. Table 1 lists the numerical error e(t) at t=1
with different mesh sizes h. Second, we test the discretization error in time. Table 2 shows
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Table 1: Spatial discretization error analysis: at time t=1.0 under k=1/16384.

Spatial mesh size h=1/2 h=1/4 h=1/8 h=1/16

e(t=1.0) 2.537E-2 2.329E-4 2.283E-8 3.255E-12

Convergence order - 6.767 13.32 12.77

Table 2: Temporal discretization error analysis: at time t=1.0 under h=1/64.

Time step size k=1/128 k=1/256 k=1/512 k=1/1024

e(t=1.0) 6.806E-5 1.702E-5 4.252E-6 1.060E-6

Convergence order - 2.000 2.001 2.004

(a) (b)

Figure 1: Time evolution of the solutions. (a) |u|; (b) |w|.

the numerical error e(t) at t=1.0 under different time steps k with mesh size h=1/64. In
addition, Fig. 2 plots the total wave energy E(t).

From Tables 1 and 2, we can see that our TSSP method (2.19) is second order accurate
in time and spectral order accurate in space. Furthermore, Fig. 2 demonstrates that our
scheme conserves the total wave energy E(t) exactly in the discretized level.

4 Three-wave dynamics and interactions

In this section, we apply our efficient and accurate method (2.19) to study the dynamics
and interaction of three-waves in nonlinear optics modeled by the system (2.1)-(2.3).
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Figure 2: Conservation of the total wave energy E(t).

4.1 Results in 1D

For the system (2.1)-(2.3) in 1D, if we set v = w = 0 in (2.1), resp. u = w = 0 in (2.2) and
u=v=0 in (2.3), it is reduced to three independent nonlinear Schrödinger equation with
cubic nonlinearity. When γ1 >0, they admit the following solitary solutions:

us(x,t)=2

√
β1

γ1
sech

(√
β1

(
x− c1t

2

))
e

i

(
c1
2 x+(

β1
2 +b− c2

1
8 )t

)

, (4.1)

vs(x,t)=2

√
β2

γ1
sech

(√
β2

(
x− c2t

2

))
e

i

(
c2
2 x+(

β2
2 −b− c2

2
8 )t

)

, x∈R, t≥0, (4.2)

ws(x,t)=2

√
β3

γ1
sech

(
2
√

β3

(
x− c3t

4

))
e

i

(
c3
2 x+(β3−

c2
3

16 )t

)

, (4.3)

where β j (j=1,2,3) are the amplitudes and cj (j=1,2,3) are the velocities.

In order to study three-wave interactions in 1D, we choose the initial data in (2.7) for
(2.1)-(2.3) as

u0(x)=us(x−x0,t=0), v0(x)=vs(x−x1,t=0),

w0(x)=ws(x−x2,t=0), x∈R. (4.4)

and study three cases with α=1, γ1 =8 and γ2 =4/3:

Case I. Interaction of three stationary solitons, i.e. we choose β1 = β2 = β3 =2, c1 = c2 =
c3 =0, x0 =−2.5, x1 =2.5 and x2 =0 in (4.1)-(4.4).



W. Bao and C. Zheng / Commun. Comput. Phys., 2 (2007), pp. 123-140 133

Case II. Interaction of two fundamental solitons with a second harmonic stationary soli-
ton, i.e. we choose β1 =β2 =β3 =2, c1 =c2 =2

√
2, c3 =0, x0 =−8, x1 =8 and x2 =0 in

(4.1)-(4.4).

Case III. Interaction of two fundamental solitons, i.e. we choose β1 = β2 = 2, β3 = 0,
c1 = c2 =2, c3 =0, x0 =−8, x1 =8 and x2 =0 in (4.1)-(4.4).

We solve the problem on [−16,16] with mesh size h=1/128 and time step k=0.0001.
Figs. 3 and 4 show time evolution of the solutions |u|, |v| and |w|, and wave energies
respectively, for Case I with different parameters b and q. Figs. 5 and 6 show similar
results for Case II, and Figs. 7 and 8 for Case III.

From Figs. 3-8, we can draw the following conclusions: (i) Due to the soliton-type
initial data, if the solutions of different waves are well-separated, they will propagate
themselves without interaction (cf. Figs. 5 and 7 before t = 4) and the wave energy of
each wave is conserved (cf. Figs. 6 and 8 before t=4). (ii) Interactions are observed when
the solutions of different waves are overlapped (cf. Figs. 3, 5 and 7) and wave energies
of different waves are exchanged (cf. Figs. 4, 6 and 8). (iii) Symmetric property of the
three waves are kept during the interaction when b = q =0, while conspicuous emission
of acoustic waves and inconspicuous emission of sound waves are observed when either
b 6=0 or q 6=0. (iv) The total wave energy is conserved in all the cases which confirm the
results in Lemma 3.1.

Furthermore, we also study the influence of the cubic nonlinearities. In fact, when
α = 1, γ1 = γ2 = b = 0, the system (1.1)-(1.3) in 1D admits a stationary vectorial soliton
solution

uv(x,t)=vv(x,t)=
3k

2
sech 2

(√
2kx

2

)
eikt , (4.5)

wv(x,t)=3k sech 2

(√
2kx

2

)
e2ikt, x∈R, t≥0, (4.6)

with q=−3k. We solve the problem (2.1)-(2.3) in 1D on [−16,16] with mesh size h=1/128
and time step k=0.0001. The initial data is chosen as

u0(x)=v0(x)=uv(x,t=0), w0(x)=wv(x,t=0), x∈R. (4.7)

We choose the parameters α = 1, γ1 = γ2 = 0 when time t≤ 4, and α = 1, γ1 = 1, γ2 = 1/6
when t > 4. Thus the cubic nonlinearities are turned on at time t = 4. Figures 9 and 10
depict time evolution of the solutions |u|, |v| and |w|, and wave energies respectively.

From Figs. 9 and 10, we can see that: (i) without the cubic nonlinearities, the ampli-
tudes remain the same with time (cf. Fig. 9 before t=4) and the wave energy of different
waves is conserved (cf. Fig. 10 before t=4); (ii) when the cubic nonlinearities are turned
on, they have a focusing effect to the soliton, i.e. the solitons shrink and change to a
breather, with part of the energy radiated (cf. Figs. 9 and 10 after t=4).
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(a)

(b)

(c)

(d)

Figure 3: Time evolution of the solutions |u|, |v| and |w| for interaction of three stationary solitons, i.e. Case
I. (a) b=0, q=0; (b) b=0, q=1; (c) b=1, q=0; and (d) b=1, q=1.
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Figure 4: Time evolution of wave energies in Case I. (a) b =0, q =0; (b) b =0, q =1; (c) b =1, q =0; and (d)
b=1, q=1.
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(a)

(b)

(c)

(d)

Figure 5: Time evolution of the solutions |u|, |v| and |w| for interaction of two fundamental solitons with a
second harmonic stationary soliton, i.e. Case II. (a) b=0, q=0; (b) b=0, q=1; (c) b=1, q=0; and (d) b=1,
q=1.
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Figure 6: Time evolution of wave energies in Case II. (a) b =0, q=0; (b) b =0, q=1; (c) b =1, q=0; and (d)
b=1, q=1.
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(a)
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(c)

(d)

Figure 7: Time evolution of the solutions |u|, |v| and |w| for interaction of two fundamental solitons, i.e. Case
III. (a) b=0, q=0; (b) b=0, q=1; (c) b=1, q=0; and (d) b=1, q=1.
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Figure 8: Time evolution of wave energies in Case III. (a) b=0, q=0; (b) b=0, q=1; (c) b=1, q=0; and (d)
b=1, q=1.
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(a)

(b)

Figure 9: Time evolution of the solutions |u|, |v| and |w| for turning on cubic nonlinearities. (a) b=0; (b) b=1.
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Figure 10: Time evolution of wave energies for turning on cubic nonlinearities. (a) b=0; (b) b=1.

4.2 Results in 2D

In this subsection, we simulate wave interactions of (2.1)-(2.3) in two transverse coordi-
nates, i.e. we choose α = 1, γ1 = 1, γ2 = 1/6, b = 0 and q = 0. The initial data is chosen
as

u0(x,y)=v0(x,y)= e−((x−1.5)2+y2)+e−((x+1.5)2+y2),

w0(x,y)=0, (x,y)∈R
2. (4.8)

We solve the problem on [−16,16]×[−16,16] with mesh size h = 1/4 and time step k =
1/32.

Fig. 11 shows the solutions |u| and |w| for different times and Fig. 12 depicts the wave
energies of u and w.

From Figs. 11 and 12, we can see that a second harmonic wave is generated dur-
ing their interaction (cf. Fig. 11), and with the time evolution, more and more energy is
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(a)

(b)

(c)

Figure 11: Surface plots of the solutions |u| (left column) and |w| (right column) at different times. (a) t=0.2;
(b) t=0.7; and (c) t=3.0.
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Figure 12: Time evolution of wave energies of u and w.

transfered from the fundamental waves to the second harmonic wave. Furthermore, the
interaction of two Gaussian-type waves leads to the formation of another Gaussian-like
wave packet at the center of the plane, it absorbs more and more wave energy and fi-
nally dominates the initial two Gaussian-type waves. This example also demonstrates
the efficiency and high resolution of our numerical method.

5 Conclusion

An efficient and accurate time-splitting spectral (TSSP) method is designed for a general
model of three-wave optical interactions arising from nonlinear optics with competing
quadratic and cubic nonlinearities by formulating the terms related to quadratic and cu-
bic nonlinearities into a Hermitian matrix in a proper way. The method is explicit, un-
conditionally stable, time reversible, time transverse invariant, of spectral accuracy in
space and second order accuracy in time. Furthermore, it conserves the total wave en-
ergy. We apply the novel numerical method to study three-wave interactions and observe
different interaction patterns. Furthermore, the method is also applied to simulate wave
interactions in two dimensions which is not studied in the literature yet.
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