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Abstract. Numerical simulations have been carried out for laminar sinusoidal pul-
sating flow in a tube with smooth single constriction. A second-order finite volume
method has been developed to solve the fluid flow governing equations on a non-
staggered non-orthogonal grid. The effects of the Reynolds number, the Womersley
number, the pulsatile amplitude, the constriction ratio and the constriction length on
fluid flow in constricted tube will be investigated. It will be demonstrated that the
dynamic nature of the pulsating flow greatly depends on the frequency of the flow
changes. It is observed that the peak wall vorticity seems to increase with the in-
crease of Reynolds number, the pulsating amplitude and the constriction ratio. The
peak values of instantaneous wall vorticity are not greatly affected by the variation of
Womersly number. The constriction length does not put a significant impact on the
flow instantaneous streamline behaviors compared with other parameters. However,
the peak wall vorticity increases monotonically with the decrease of the constriction
length.

PACS: 47.11.Df, 47.15.-x, 47.27.nf, 47.50.Cd, 47.63.Cb
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1 Introduction

The problem of fluid motion in a given domain whose boundaries do not only consist
of solid impermeable parts but also include the inflow and outflow parts we will call
the ‘flowing-through’ problem (Moshkin and Mounnamprang, [24]). This problem is
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rather interesting for its applications, especially the flows inside constricted tubes are
encountered in many engineering situations, for example fluid flow in pipes with fittings
(Lee et al. [16]), fluid flow in heat exchangers (Suzuki et al. [32]), blood flow in arterial
stenoses (Kleinstreuer, [14]), etc.

The research and engineering application of pulsatile fluid flows have been estab-
lished as a major branch of fluid dynamics. The research on pulsatile flow includes wind
energy conversion systems (Azoury, [1]), liquid and solid bulk transportation (Masry and
Shobaky, [21]) and biomedical flow phenomena (Tucker, [34]). The principle of pulsatile
laminar flow has been applied to practical heat transfer devices, since heat transfer can
be enhanced at the incipience of flow instability (Niceno and Nonile, [26]). In biomedical
engineering, the pulsatile flow has attracted more and more attention in the investigation
of intracardiac flow (Nichols and O’Rourke, 1997 [27]) and blood vessel stenosis flow in
recent years as mentioned in Ku [15] and Berger and Jou [2].

It is possible to simulate the flows in a constricted tube by the numerical solution
of the unsteady Navier-Stokes equations (Tannehill et al. [33], Wesseling [36]). A con-
siderable number of numerical algorithms have been developed for the solution of this
equation. Although a large number of investigations has led to better understanding of
the flow disturbances induced by a constriction or multiple constrictions, most of the
theoretical, numerical and experimental studies have been performed under different
simplifying assumptions; for example, the liquid is homogeneous and its viscosity is the
same at all rates of shear, it behaves as a Newtonian liquid, the liquid does not slip at the
wall, the flow is cylindrical in shape and is rigid.

Berger and Jou [2] reviewed the modeling studies and experiments on steady and
unsteady, two- and three- dimensional flows in arteries, and in arterial geometries most
relevant in the context of atherosclerosis. They also discussed the work that elucidated
many of the pathways by which mechanical forces, primarily the wall shear stresses,
were transduced to effect changes in the arterial wall at the cellular, subcellular and ge-
netic level. Mittal et al. [22, 23] applied the technique of large-eddy simulation (LES) to
the study of pulsatile flow through a modeled arterial stenosis. The inlet volume flux
was varied sinusoidally in time in a manner similar to the laminar flow simulations of
Tutty [35]. LES was used to compute flow at a peak Reynolds number of 2000 and a
Strouhal number of 0.024. Liu and Yamaguchi [18] numerically studied the pulsatile
influence on vortical fluid dynamics in the terms of waveform dependence on physio-
logical pulsation with a two-dimensional model of unsteady flow in a stenosed channel.
Bertolotti et al. [3] simulated three-dimensional unsteady flows through coronary bypass
anastomosis by means of both experimental and finite element methods. The host artery
included a stenosis shape located at two different distances of grafting. Mahapatra et al.
[19] numerically solved unsteady Navier-Stokes equations by finite-difference technique
in staggered grid distribution for a flow through a channel with locally symmetric and
asymmetric constrictions. For flow through symmetric constriction the centerline ver-
tical velocity exhibited finite oscillation behind the constriction at high Reynolds num-
ber. Mallinger and Drikakis [20] presented a computational investigation of instabilities
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in pulsatile flow through a three-dimensional stenosis. The instability was manifested
by asymmetric flow patterns, though the stenosis is axisymmetric, large flow variations
in the cross-sectional planes, and swirling motion in the poststenotic region. Liao et al.
[17] studied numerically the physiological turbulent flow fields in the neighborhoods
stenosed arteries for Reynolds numbers from 1000 to 4000. The dimensionless diameter
constriction ratios were allowed to vary from 0.375 to 0.6 for bell-shaped constrictions.
The Womersley numbers are varied from 6 to 50. The stenosed tube was translated into a
rectangular solution domain in a curvilinear co-ordinate system. The solution procedure
was based on the method of artificial compressibility with implicit LU-SGS and used a
decoupled approach to solve the Reynolds-averaged Navier-Stokes equations and k-ω
turbulence model equations. The comparison of the numerical solutions to three types of
pulsatile flows, including a physiological flow, an equivalent pulsatile flow and a simple
pulsatile flow, are made. The comparison of the three pulsatile flows showed that the
flow characteristics cannot be properly estimated if an equivalent or simple pulsatile in-
flow is used instead of actual physiological one in the study of the pulsatile flows through
arterial stenosis.

Although numerous investigators have contributed to the understanding of steady
and pulsatile flows in a rigid pipe with a constriction, the knowledge in this area is still
far from complete. There are a few works on the laminar pulsatile flows, especially on
comparison of different types of pulsating flow through various smoothly curved con-
strictions.

Based on those understandings, the main objectives of the present work are to study
numerically different type of laminar pulsatile flow in a pipe with a smoothly curved
constriction and investigate the effects of the Womersley number, the Reynolds number,
the pulsating amplitude, the constriction ratio and the constriction length on the flow
property.

In the present study, the liquid is assumed to be homogeneous, and its viscosity is
the same at all rates of shear. The flow behaves as a Newtonian liquid, does not slip at
the wall and is laminar. The tube is long compared to the region being studied and is
cylindrical in shape. The cross-section of the tube is circular, and the wall of the tube is
parallel and rigid. The tube is considered to be straight.

2 Governing equations and numerical procedure

2.1 Governing equations

For axisymmetric flow of incompressible and Newtonian fluids with constant fluid prop-
erties, the continuity and Navier-Stokes equations in two-dimensional cylindrical co-
ordinates (r,z) can be written in differential conservation form as follows (Bird et al.,
[4]).
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Figure 1: Geometric configuration of the constriction (a) Physical solution domain and computational solution
domain (b) Dimensionless geometric configuration.
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Here, r and z are the physical co-ordinates with the z-axis located along the axis of sym-
metry of the tube. Fig. 1(a) shows the physical solution domain and computational so-
lution domain of flow through typical constricted tube. No secondary or swirling flows
have been allowed so that the total velocity is defined by vr and vz, the radial and axial
components. The pressure, density and dynamic viscosity are denoted by p, ρ and µ,
respectively.

Experimental studies of flows are often carried out on models, and the results are
displayed in dimensionless form, thus allowing scaling to real flow conditions. The same



T. S. Lee, X. Liu, G. C. Li and H. T. Low / Commun. Comput. Phys., 2 (2007), pp. 99-122 103

approach can be undertaken in numerical studies as well. The governing equations can
be transformed to dimensionless form by using appropriate normalization.

For unsteady pulsatile flow, taking the tube radius (a0), the mean velocity at inlet
(v0) and the time period of the pulsatile flow (t0) as the characteristic length, velocity
and time respectively, the following non-dimensional variables are defined:

r∗=
r

a0
, z∗=

z

a0
, v∗r =

vr

v0
, v∗z =

vz

v0
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t

t0
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p

ρv2
0

. (2.4)

If the fluid properties are constant, the dimensionless continuity and Navier-Stokes
equations become, omitting the asterisk (*) for simplicity,
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where the Reynolds number and the Strouhal number are defined as

Re=
ρv0a0

µ
, (2.8)

St=
a0

v0t0
. (2.9)

The Womersley number is an indication of the main frequency of the pulsatile flow. It is
related to the Reynolds number and the Strouhal number

Wo=
√

2π ·Re·St. (2.10)

2.2 Numerical procedure

The finite volume method is used to discretize the governing equation on a non-staggered
non-orthogonal grid. The advantage of the boundary-fitted non-orthogonal grids is that
they can be adapted to any geometry, and that optimum properties are easier to achieve
than with orthogonal curvilinear grids. Since the grid lines follow the boundaries, the
boundary conditions are more easily implemented than with stepwise approximation of
curved boundaries (Ferziger and Perić, [8]). The standard algorithm is used with the
second-order accuracy of the midpoint rule integral approximation, which is developed
and presented below.

The continuity (2.1) and the Navier-Stokes equations (2.2) and (2.3) can be treated
partly as scalar equations, and are integrated over a finite number of small control vol-
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umes (CV) by applying the Gauss’s divergence theorem,

∫

S
(vzi+vrj)·ndS=0, (2.11)
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where Ω is the closed control volume that is bounded by the surface S, n is the unit
vector orthogonal to S pointing outward from Ω, i, j are the unit vectors along the z- and
r-direction, respectively.

The midpoint rule approximation of the surface and volume integrals is used. The
derivative ∂/∂z, ∂/∂r is calculated using Gauss’s divergence theorem.

The mean value of the transported variable at the CV face e is the value at the centre
of the cell face. It is expressed in terms of the nodal values and its gradient by employing
the central differencing scheme (CDS), which implies linear interpolation between nodes
E and C:
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Here, φ is a scalar quantity to represent vz, vr and p, the node ie lies at the intersection of
the cell face and the straight lines connecting nodes C and E.

With these definitions the expression for the mass flux becomes
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The diffusion flux Fd involves an estimate of the gradient of vz and vr at the CV face,
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The gradient of the variable at the cell face centre is calculated with second-order ap-
proximations by using values at auxiliary nodes C′ and E′, which lie at the intersection
of the straight line through cell face centre parallel to the line CE and the straight lines
connecting the nodesC and N or E and NE, respectively.
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The midpoint rule approximates a volume integral by the product of the CV centre value
of the integrand and the CV volume.

After rearrangement, equations (2.12), (2.13) and (2.11) can be rewritten as algebraic
equations of the form
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where A is the coefficient, Q is the source that contains all the terms which do not con-
tain unknown variable values. For the solution domain as a whole, the strongly implicit
procedure (SIP) method (Stone, 1968) [31] is used for the resulting matrix equations:

[Avr ]{vr}={Qvr}, [Avz ]{vz}={Qvz},
[

Ap

]

{p}=
{

Qp

}

. (2.20)

The coupled series equations for vz, vr and p are solved by the SIMPLE algorithm (Pan-
tankar, [28]). The numerical procedure can be briefly outlined as follows.

1) The steady flow is computed and taken as initial condition for the unsteady flow
computation. Start calculation of the fields at the new time using the previous iter-
ation values for pressure, mass fluxes and other variables.

2) The vz and vr matrix equations in (2.20) are solved by applying the SIP algorithm.
The residual of the continuity equation is computed with the new mass fluxes based
on the just calculated velocity field and used as the source term of the pressure
correction equation (p matrix equation in (2.20)), which is solved by using SIP until
the residuals are reduced to 0.1 of their values at the first iteration. The mass fluxes,
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velocity components and pressure are then corrected with the calculated pressure
correction. Repeat this step until convergence. The convergence criterion is that the
sum of absolute residuals in all equations is reduced by four orders of magnitude
(0.01%).

3) At convergence the stream function and the vorticity field are computed from the
velocity field. Information about the pressure is obtained from the pressure field.

4) Advance to the next time step.

5) Advance to the next time cycle

2.3 Geometrical model

The geometrical model used in the present study is a two-dimensional axisymmetrical
smooth shape constriction in a rigid tube (Fig. 1(b)). It is specified as the symmetric
cosine curve (Deshpande et al. [6], Young and Tsai [37], Fukushima et al. [9], Siegel et al.
[30], Zendehbudi and Moayeri [38]). The equation used to generate the geometry of the
model is of the form

R(z)=1− c

2

[

1+cos

(

2π
z−lc

lc

)]

if |(z−lc)|≤
ls

2
; 0≤ z≤ L,

R(z)=1 if |(z−lc)|≥
ls

2
; 0≤ z≤ L,

(2.21)

where c is the dimensionless constriction ratio, lc is the dimensionless distance to the cen-
tre of constriction from the inlet of tube, ls is the dimensionless length of the constriction,
and L is the total length of the tube.

3 Validation of computational results

To evaluate the present numerical procedure and check the validity of the numerical
result, the following test cases are considered:

3.1 Steady flow through the cosine curve constricted tube

The pertinent geometrical characteristics of this model is summarized as that the dimen-
sionless constriction ratio c is 0.667, the dimensionless distance to the centre of constric-
tion from the inlet of tube lc is 16, the dimensionless length of the constriction ls is 4, and
the total length of the tube L is 32 (2.21). This model duplicates the Model M3 investi-
gated numerically by Deshpande et al. [6] and is employed experimentally by Young and
Tsai [37], so that comparisons can be made with previous numerical and experimental
results to check the validity of the numerical results.

The present numerical predictions of the separation and reattachment points are com-
pared with the experimental data and other numerical solutions. The locations of separa-
tion points agree favorably. A greater disagreement is found for the reattachment point.
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This is not surprising since the reattachment points are difficult to ascertain experimen-
tally. The difference between numerical simulations is possible because of the way the
outlet boundary condition formulated. Deshpande et al. [6] assumed Poiseulle flow at
infinite distance downstream of constriction, while the present study assumes an unre-
strictive flow at the outlet and allows the flow profile to develop on its own. However,
the two results share a common validity. The onset of separation was observed exper-
imentally to occur at a Reynolds number of 10 (Young and Tsai, [37]), numerically at a
value of 8.75 by Deshpande et al. [6], and 8.7 by our calculations. The present study gives
separation more downstream than Deshpande et al. [6] did, and predicts a reattachment
point more upstream than Deshpande et al. [6] did.

We define the pressure drop ∆pz over a tube length z by

∆pz =

z
∫

0

−∂p

∂z
dz. (3.1)

The comparison of the dimensionless pressure drop is made with Deshpande et al. [6].
The agreement here is rather good.

The wall vorticity is related to the tube wall shearing stress in Newtonian flows. Since
there is no reliable method of determining the wall shear stress experimentally, the theo-
retical calculations offer some insight to the behavior of the quantity. The variation of the
maximum wall vorticity and the Reynolds number is compared with the data of Desh-
pande et al. [6]. The results are presented by a similar curve. The difference is obvious
due to the way the outlet boundary condition is formulated. Where the two results share
a common validity, however, the agreement is quite good.

3.2 Unsteady entrance flow development in a straight tube

To investigate the accuracy and computational efficiency of the present method, the si-
nusoidal fluctuated pulsatile laminar flow in a short tube without constrictions is carried
out by comparing their predictions with the results obtained by other researchers in the
developing region of the entrance laminar flow in a straight tube. The dimensionless ra-
dius and the dimensionless length of the tube were taken as 1 and 50 respectively. The
Womersley number and the Reynolds number were taken as 12.5 and 100, respectively.
The dimensionless velocities at the inflow boundary were specified by

vzin =1+sin

(

2π
t

T

)

, vrin =0. (3.2)

A blunt entrance profile was used for the upstream flow which varied in a sinusoidal
fashion, and the initial values of the variables in the computational field were set to zero
except boundary.

Calculations were carried out for a uniform grid size of 250 and 40 nodes along the
radial and axial directions respectively, and the time step in each cycle of 80, which a
gives grid independent solution for present method.
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The pulsatile flows were computed over sufficiently long time to obtain a periodic
solution, namely a solution that did not change measurably from one cycle to the next.
To avoid any chance for transient effects, all results correspond to ten cycles.

In order to verify the accuracy of the computational results for unsteady flow, the
axial velocity profile far downstream was compared with He et al. (1994) [11] at phases
90 degree and 270 degree. Excellent agreement was observed.

The comparisons between the downstream axial velocity profile of the sinusoidal fluc-
tuated flow with sinusoidal flow at four certain time steps (phase 0, 90, 180 and 270
degree) and steady flow profile are shown in Fig. 3. The axial velocity profiles of the si-
nusoidal fluctuated flow and sinusoidal flow are significantly different from a parabolic
velocity profile (Poiseuillean). It can be seen clearly that the velocity profile of the sinu-
soidal fluctuated flow was obtained when we added the velocity profile of pure sinu-
soidal flow to the velocity profile of the steady flow.

The comparisons between the current numerical results and the experimental data
and others numerical solutions show that the current numerical solvers are capable of
simulating laminar flow in the constricted tube with good accuracy and stability.

4 Result and discussion

In this section, the numerical procedure described in Section 2 is applied to the pulsat-
ing flow simulations. Different types of sinusoidal fluctuated pulsatile laminar flow in a
tube with cosine curved smooth axisymmetric single constriction are then comparatively
studied to investigate the effect of the Womersley number, the Reynolds number and the
pulsating amplitude. The pulsating flow through various cosine curved smooth axisym-
metric single constrictions is also studied to investigate the effects of the constriction ratio
and the constriction length.

4.1 Geometrical configuration

The pertinent geometrical characteristics of this model is summarized as that the dimen-
sionless constriction ratio c varies from 1/3 to 2/3, the dimensionless length of the con-
striction ls is adjusted from 1 to 4, the dimensionless length of the entrance region (lc−ls)
is 10 and the total length of the tube L varies from 41 to 44 (2.21).

4.2 Pulsating flow configuration and boundary conditions

For pulsating inlet flow, the flow rate Q is specified as uniform steady flow with an im-
posed sinusoidal fluctuation,

Q=Qm

[

1+Asin

(

2π
t

T

)]

, (4.1)
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Figure 2: Comparison of inflow axial velocity profiles of sinusoidal fluctuated flow with sinusoidal flow and steady
flow profiles (a) phases 0 and 90 degree (b) phases 180 and 270 degree.

point A: t/T=0

point B: t/T=0.25 

point C: t/T=0.50 

point D: t/T=0.75 

Figure 3: Instantaneous streamlines for sinusoidal fluctuated flow when Re= 100, Wo= 12.5, A = 1, C = 0.5,
ls=2.

where Q is the flow rate, Qm is the mean flow rate, T is the time period of the pulsation
t is time and A is the pulsating amplitude. This type of flow is often used in the initial
studies for pulsatile blood flows and many other engineering applications, e.g. Huang et
al. [13], Lee et al. [16], Deplano and Siouffi [7].

The inlet velocity profiles at each time step are significantly different from a parabolic
velocity profile (Poiseuillean) for the Womersley numbers greater than about one (Gary,
[10]). It can be carried out by hand with tables, using a simple computer program in
Mathematica (He et al. [11]) or by Fourier analysis (Rosenfeld [29]), Daily and Pletcher
[5], Neofytou and Drikakis [25]. In the current study the profile corresponding to pulsat-
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ing laminar fully developed entrance flow in a straight tube is employed as the inflow
condition. A laminar inflow condition is appropriate for the Womersley number, the
Strouhal number and the Reynolds number employed in the current study. The down-
stream outlet boundary conditions are specified with fully developed flow. The outflow
is considered as fully developed. Along a solid wall, the non-slip condition is assured,
that is, all velocity components are equal to zero on the wall. Along the centerline, the
axisymmetric condition is applied for all variables.

The Womersley numbers from 1 to 12.5, which are physiologically relevant for most
medium to small arteries (Tutty [35], Huang et al. [13], Ku [15]), are considered here, with
the Reynolds number varying from 20 to 200. The pulsating amplitude A varies from 0
to 2, where A=0 corresponds to the steady flow.

In this study, the results are compared by considering some selected points, includ-
ing four points corresponding to the conditions of mean accelerated, before peak, mean
decelerated and after peak flow rates on each waveform. The phases of these points are
0, 90, 180 and 270 degree, corresponding to the time of 0T, 0.25T, 0.5T and 0.75T, respec-
tively.

4.3 Basic case: Re=100, Wo=12.5, A=1, C=0.5, ls=2

The sinusoidal fluctuated flow with Re=100, Wo=12.5, A=1 for a moderate constriction
C=0.5, ls=2 will be taken as a ‘basic case’ for a number of comparisons.

For arterial application, the interest is in the time-dependent flow fields. The instanta-
neous streamlines of the sinusoidal fluctuated flow show considerable variation through-
out the cycle (Fig. 3). At point A, t/T =0, where the instantaneous Reynolds number is
equal to the mean one in the accelerated flow of the total flux, the streamlines are differ-
ent from those in the steady flow. The streamlines run smoothly through the constriction
flow field with a small vortex nestled in the concavity of the constriction contour, the
separation and reattachment points are located close to the inflection point of the wall
curve. As the flow accelerates to the peak flow rate point B, where t/T = 0.25, the at-
tached vortex grows longer and fatter. Past the peak flux, as the flow decelerates, the
attached vortex continues to grow in size. At point C, t/T=0.5, where the instantaneous
Reynolds number equals the mean one during decelerated flow of the total flux, the vor-
tex occupies about 75% of the total distal area. When the flow rate reach its zero net flux
and relatively low velocities at point D, t/T = 0.75, the remnants of these detached vor-
tices occupy most of the constriction flow area, not only the distal to the throat, but also
the proximal to the throat. When t/T further advances to 1, the next cycle restarts and
the flow follows a repeated pattern.

Although the streamline pictures show more detail, the flow behavior can be shown
more clearly by presenting the wall vorticity distribution at different time steps (Fig. 4).
The instantaneous wall vorticity varies during the cycle, being higher than the wall vor-
ticity of the steady flows under the same mean Reynolds number in some parts of the
cycle, and lower in other parts. The maximum wall vorticity, which also occurs close to



T. S. Lee, X. Liu, G. C. Li and H. T. Low / Commun. Comput. Phys., 2 (2007), pp. 99-122 111

Dimensionless axial distense, z

W
a

ll
v
o

rt
ic

it
y

5 10 15

0

50

100

150

200

point A
point B

point C
point D

Figure 4: Wall vorticity distribution at different time steps for sinusoidal fluctuated flow when Re=100, Wo=12.5,
A=1, C =0.5, ls=2.
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Figure 5: Root mean square wall vorticity distribution (a) and time-average pressure drop (b) in one cycle when
Re=100, Wo=12.5, A=1, C =0.5, ls=2

the minimum constriction plane at the peak flow rate point B, is higher than the steady
flow. The maximum wall vorticity at the points A and C is also higher than the steady
flow, while the instantaneous Reynolds number equals the mean one.

For unsteady flow, the mean wall vorticity, rather than the peak value, is used as the
criterion. In order to observe more clearly, the root mean square wall vorticity distribu-
tions in one cycle is presented in Fig. 5(a). It can be seen that the maximum mean wall
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vorticity is consistently higher than the equivalent steady-state value. The time-average
pressure drop at various time steps is shown in Fig. 5(b). It shows that the unsteady flow
produces a higher pressure drop than the steady flow.

4.4 The effects of the Reynolds number

It has been know that the Reynolds number has a great influence on the flow field in the
constricted tube for a steady flow. The effects of the Reynolds number on the unsteady
pulsating flow are discussed in this study. The Reynolds numbers of 20, 100 and 200 are
considered here, with the Womersley number being fixed to 12.5, and the constriction
ratio and the constriction length being fixed to 2 and 0.5 respectively. The pulsating
amplitude A is set to be 1.

The instantaneous streamlines for sinusoidal fluctuated flow at Re = 20 and 200 are
shown in Figs. 6(a) and 6(b) respectively. Referring to the streamlines in Figs. 3, 6(a)
and 6(b), at the point A, t/T = 0, for Re = 20, the streamlines run smoothly through the
constriction flow field. However, for Re=200, there is a bigger vortex in the streamlines
nestled in the concavity of the constriction contour compared to the case of Re = 100.
At the peak flow rate point B, where t/T = 0.25, the attached vortex grows longer for
Re=200, and becomes shorter for Re=20. Past the peak flux, as the flow decelerates, the
attached vortex continues to grow in size. At the point D, t/T =0.75, where the flow rate
reaches its zero net flux, the remnants of these detached vortices occupy the distal to the
throat as well as the proximal to the throat. However, the shortest vortex is for Re= 20.
It can be seen that the variation of the Reynolds number can greatly influence the flow
pattern.

Since the magnitudes of the peak wall vorticity near the constriction at peak flow rate
point B are always higher than the ones at other points, only the comparison of instan-
taneous wall vorticity distributions at point B is presented in Fig. 7(a) for conciseness.
The value of the maximum wall vorticity increases monotonically with the increase of
the Reynolds number. The location of the peak wall vorticity tends to shift slightly up-
stream as the Reynolds number increases. The comparison of the root mean square wall
vorticity distributions in one cycle is presented in Fig. 7(b). It can be seen that the maxi-
mum mean wall vorticity is consistently higher for higher Reynolds number than the one
for low Reynolds number. The increase of the Reynolds number from 100 to 200 causes
a 50% increase of the maximum wall vorticity. For Re = 100 and 200, the wall vorticity
downstream the constriction does not seem to regain its undisturbed upstream values as
it does for Re=20. This is due to the increase in size of the recirculation region.

It can be concluded that the flow pattern can be greatly influenced by the variation
of the Reynolds number. Higher Reynolds numbers can cause the peak wall vorticity to
increase sharply.
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point A: t/T=0

point B: t/T=0.25

point C: t/T=0.50

point D: t/T=0.75

(a) (b)

Figure 6: Instantaneous streamlines for sinusoidal fluctuated flow when Re = 20 (a) and 200 (b), Wo = 12.5,
A=1, C =0.5, ls=2.
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Figure 7: Comparison of wall vorticity distribution at B (phase 90 degree) (a) and root mean square wall vorticity
distribution in one cycle (b) when Re=20, 100 and 200.

4.5 The effects of the Womersley number

In order to elucidate the effects of the Womersley number, the details of flow fields for
different Womersley numbers are examined without varying the Reynolds number and
the shape of the constriction. The Womersley numbers 1, 6 and 12.5 are taken into account
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here, with the Reynolds number being fixed to 100, and the constriction ratio and the
constriction length being fixed to 2 and 0.5 respectively. The pulsating amplitude A is set
to be 1.

The instantaneous streamlines for Wo=6 and 1 at the selected time levels are shown
in Figs. 8(a) and 8(b) respectively. Referring to the streamlines in Figs. 3, 8(a) and 8(b),
the difference in flow patterns can be noticed for different Womersley numbers. For a
comparatively low Womersley number, the flow pattern looks similar to those of the
quasi-unsteady flow. There is always a recirculating vortex forming downstream the
constriction for nonzero instantaneous flow rate for low Womersley number. The flow
field is mainly affected by the current instantaneous flow rate for low Womersley num-
bers. In contrast, the flow field can be strongly influenced by the flow rate at previous
time levels for higher Womersley numbers. Since the upstream flow rate predominates
in the periodic development of the flow field, the recirculation zone almost always oc-
curs on the downstream side of constriction, except for the instant flow rate being zero or
nearly zero. It is interesting that the recirculation zones always prefer to simultaneously
occur both the proximal and the distal to the constriction when the instant net flow rate
approaches zero for each Womersley number.

The instantaneous wall vorticity distributions at the peak upstream flow rate point B
are displayed in Fig. 9(a) for the Womersley numbers 1, 6 and 12.5. It can be seen that
the peak values of instantaneous wall vorticity are not greatly affected by the variation
of the Womersley number. However, the wall vorticity downstream the constriction for
Wo = 12.5 recovers rapidly to the same level as that of the constriction upstream, while
this is not a case for the Womersley numbers 1 and 6.

The comparison of the root mean square wall vorticity distributions in one cycle is
presented in Fig. 9(b). It can be seen that the mean wall vorticity distributions are almost
the same for the three different Womersley numbers.

The Womersley number can be interpreted as the ratio of unsteady force to viscous
force. The dynamic nature of the flow greatly depends on the frequency of the flow.
At low Womersley numbers, the difference of flows of different Womersley numbers is
less, while high Womersley number puts a significant impact on the flow behaviors. The
Womersley number does not greatly affect the maximum and mean wall vorticity distri-
butions.

4.6 The effects of the pulsating amplitude

The details of flow fields for different sinusoidal pulsating amplitude are examined, with-
out varying the Reynolds number, the Womersley number and the shape of the constric-
tion, to investigate the effects of the sinusoidal pulsating amplitude on the developing
flow characteristics. The pulsating amplitude A is set to be 0.5, 1 and 2. The Womersley
number of 12.5 and the Reynolds number of 100 are considered here with the constriction
ratio and the constriction length being fixed to 2 and 0.5, respectively.

The instantaneous streamlines for sinusoidal fluctuated flow at A = 0.5 and 2 are
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point A: t/T=0

point B: t/T=0.25

point C: t/T=0.50

point D: t/T=0.75

(a) (b)

Figure 8: Instantaneous streamlines for sinusoidal fluctuated flow when Wo=6 (a) and 1 (b), Re=100, A=1,
C =0.5, ls=2.
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Figure 9: Comparison of wall vorticity distribution at B (phase 90 degree) (a) and root mean square wall vorticity
distribution in one cycle (b) when Wo=1, 6 and 12.5.

shown in Figs. 10(a) and 10(b) respectively. Referring to the streamlines in Figs. 3, 10(a)
and 10(b), at point A, t/T = 0, for A = 2, the streamlines run smoothly through the con-
striction flow field with the vortex nestled in the center of the tube at the proximal to
the throat. However, for A = 0.5, there is a bigger vortex nestled in the concavity of the
constriction contour compared to the case of A = 1. As the flow accelerates to the peak
flow rate point B, where t/T = 0.25, the attached vortex grows longer for A = 2, being
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similar for A =1 and 0.5. Past the peak flux, as the flow decelerates, the attached vortex
continues to grow in size. Since the flow rate of A = 2 is reverse now, the vortex occurs
on the left side of the constriction. When the flow rate reaches its minimum value at the
point D for A = 0.5, t/T = 0.75, the remnants of these detached vortices occupy most of
the constriction flow area including the distal to the throat. For A=2, remnants of these
detached vortices occupy most of the constriction flow area including the proximal to the
throat, and the vortex now is separated from the wall.

The comparison of instantaneous wall vorticity distributions at the point B is pre-
sented in Fig. 11(a). The value of the maximum wall vorticity increases monotonically
with increasing pulsating amplitude because the flow rate is increased. The value of
maximum wall vorticity when A=2 is twice as larger as the value when A=1, and three
times larger than the value when A =0.5. The comparison of the root mean square wall
vorticity distributions in one cycle is presented in Fig. 11(b). It can be seen that the max-
imum mean wall vorticity is consistently higher for higher pulsating amplitude, and the
wall vorticity downstream the constriction for high amplitude does not seem to regain its
upstream value as it does for low pulsating amplitude. Larger pulsating amplitude can
cause the peak wall vorticity to increase sharply.

4.7 The effects of the constriction ratio

It is obvious that the constriction ratio has a great influence on the flow field in a con-
stricted tube. In this study, we discuss how the characteristics of the flow vary with
the variation of the constriction ratios for the pulsating flow. The numerical results are
compared for the three different constriction ratios 1/3, 1/2 and 2/3. The Womersley
number of 12.5 is considered here, with the Reynolds number being fixed to 100 and the
constriction length being fixed to 2. The pulsating amplitude A is fixed to 1.

The instantaneous streamlines for sinusoidal fluctuated flow at C = 1/3 and 2/3 are
shown in Figs. 12(a) and 12(b) respectively. Referring to the streamlines in Figs. 3, 12(a)
and 12(b), at point A, t/T = 0, for C = 1/3, the streamlines run smoothly through the
constriction flow field. However, for C = 2/3, there is a bigger vortex nestled in the
concavity of the constriction contour compared to the case of C =1/2. At the peak flow
rate point B, where t/T=0.25, the attached vortex grows longer for C=2/3 and becomes
shorter for C=1/3. The attached vortex continues to grow in size as the flow decelerates.
When the flow rate reaches zero net flux at the point D, t/T =0.75, the remnants of these
detached vortices occupy both the distal and the proximal to the throat. The shortest
vortex is for C=1/3.

The comparison of instantaneous wall vorticity distributions at the point B is pre-
sented in Fig. 13(a). The value of the maximum wall vorticity increases monotonically
with increasing constriction ratio. The value of the maximum wall vorticity when C=2/3
is 5.5 times larger than the value when C =1/3, and 3 times larger than the value when
C=1/2.

The comparison of the root mean square wall vorticity distributions in one cycle is
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point A: t/T=0

point B: t/T=0.25

point C: t/T=0.50

point D: t/T=0.75

(a) (b)

Figure 10: Instantaneous streamlines for sinusoidal fluctuated flow when A = 2 (a) and 0.5 (b), Wo = 12.5,
Re=100, C =0.5, ls=2.
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Figure 11: Comparison of wall vorticity distribution at B (phase 90 degree) (a) and root mean square wall
vorticity distribution in one cycle (b) when A=0.5, 1 and 2.

presented in Fig. 13(b). It can be seen that for a narrow constriction, the maximum mean
wall vorticity is consistently high, and the wall vorticity downstream the constriction
seems to regain its upstream value quickly.

It can be concluded that the severe constriction ratio leads to a more complex flow
field. The peak wall vorticity tends to increase with increasing constriction ratio.
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point A: t/T=0

point B: t/T=0.25

point C: t/T=0.50

point D: t/T=0.75

(a) (b)

Figure 12: Instantaneous streamlines for sinusoidal fluctuated flow when C =1/3 (a) and 2/3 (b), Wo=12.5,
Re=100, A=0.5, ls=2.
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Figure 13: Comparison of wall vorticity distribution at B (phase 90 degree) (a) and root mean square wall
vorticity distribution in one cycle (b) when C =1/3, 1/2 and 2/3.

4.8 The effects of the constriction length

We now discuss how the characteristics of the flow vary with the variation of constriction
length for the pulsating flow. The numerical results are compared for three different
constriction lengths, namely 1, 2 and 4. The Womersley number of 12.5 is considered,
here with the Reynolds number being fixed to 100 and the constriction ratio being fixed
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point A: t/T=0

point B: t/T=0.25

point C: t/T=0.5

point D: t/T=0.75

(a) (b)

Figure 14: Instantaneous streamlines for sinusoidal fluctuated flow when ls=1 (a) and 4 (b), Wo=12.5, Re=100,
A=0.5, C =0.5.
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Figure 15: Comparison of wall vorticity distribution at B (phase 90 degree) (a) and root mean square wall
vorticity distribution in one cycle (b) when ls=1, 2 and 4.

to 1/2. The pulsating amplitude A is fixed to 1.

The instantaneous streamlines for sinusoidal fluctuated flow at ls = 1/3 and 2/3 are
shown in Figs. 14(a) and 14(b), respectively. The instantaneous streamlines are similar for
the three cases with regards to the streamlines in Figs. 3, 14(a) and 14(b). Compared to
other parameters the constriction length does not have a significant impact on the flow
instantaneous streamline behaviors.
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The comparison of instantaneous wall vorticity distributions at the point B is pre-
sented in Fig. 15(a). The value of the maximum wall vorticity increases monotonically
with decreasing constriction length. The value of the maximum wall vorticity when
ls = 1 is twice as larger as the value when ls = 2, and three times larger than the value
when ls=4.

The comparison of the root mean square wall vorticity distributions in one cycle is
presented in Fig. 15(b). The maximum mean wall vorticity is consistently higher for
longer constriction than for shorter constriction. Long constriction tends to decrease the
value of peak wall vorticity.

5 Conclusions

A finite volume method has been developed to solve the fluid flow governing equations
on a non-staggered non-orthogonal grid. The flow governing equations are expressed in
primitive variable form. The SIMPLE algorithm is used to solve these equations, with
the variable terms approximated by second-order difference schemes. The SIP algorithm
is used in solving the resulting matrix equations. With this numerical method and the
boundary-fitted grids, optimum properties are easier to achieve than with orthogonal
curvilinear grids, and the boundary conditions are more easily implemented than with
stepwise approximation of curved boundaries.

The present numerical method has been evaluated by calculating steady laminar flow
through a cosine curve constricted tube and unsteady entrance laminar flow develop-
ment in a straight tube. Comparisons have been made between its state solutions and
the experimental data and other numerical solutions reported in literature. Then it has
been applied to the calculation of laminar steady and pulsating flow in a tube with single
constriction.

The effects of the Reynolds number, the Womersley number, the pulsatile amplitude,
the constriction ratio and the constriction length of fluid flow in constricted tube were
investigated by comparing the results of instantaneous streamlines, instantaneous wall
vorticity distribution, and root mean square wall vorticity distribution.

From the numerical investigation of the sinusoidal fluctuated flows, the following
conclusions can be drawn:

1) The recirculation region and the recirculation points in pulsating flows change in
size and location with time, due to the variation of the instantaneous flow rate.
There is no constant flow stationary point in the pulsatile flow. The conclusions
regarding fluid dynamical effects in unsteady flow cannot be based solely on the
mean flow.

2) The variation of the Reynolds numbers can greatly influence the flow pattern. The
maximum mean wall vorticity is consistently higher for higher Reynolds numbers
than the ones for lower Reynolds numbers.
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3) The dynamic nature of the flow greatly depends on the frequency of the flow change.
The recirculation zones always prefer to occur simultaneously both the proximal
and the distal to the constriction when the instant net flow rate approaches zero for
each Womersley number. The peak values of the instantaneous wall vorticity are
not greatly affected by the variation of the Womersley number.

4) The flow deceleration in the pulsating cycles tends to enlarge the recirculation re-
gion, and this effect becomes more significant with increasing pulsating amplitude.
The maximum mean wall vorticity is consistently high for high pulsating ampli-
tude.

5) The maximum mean wall vorticity is consistently high for severe constriction ratio.

6) Compared to other parameters the constriction length does not have a significant
impact on the flow instantaneous streamline behavior. Short constriction can cause
the peak wall vorticity to increase dramatically.
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[8] J. H. Ferziger and M. Perić, Computational Methods for Fluid Dynamics, Springer, Berlin,
2001.

[9] T. Fukushima, T. Azuma and T. Matsuzawa, Numerical analysis of blood flow in the verte-
bral artery, J. Biomech. Eng. ASME, 104 (1982), 143-147.

[10] L. L. Gary, Laminar Flow and Convective Transport Processes, Butterworth-Heinemann,
Stoneham, 1992.

[11] X. He, D. N. Ku and J. E. Moore, Simple calculation of the velocity profiles for pulsatile flow
in a blood vessel using Mathematica Ann. Biomed. Eng., 21 (1993), 45-49.

[12] X. He and D. N. Ku, Unsteady entrance flow development in a straight tube, J. Biomech.
Eng., 116 (1994), 355-360.

[13] H. Huang, V. J. Modi and B. R. Seymour, Fluid mechanics of stenosed arteries, Int. J. Eng.
Sci., 33 (1995), 815-828.

[14] C. Kleinstreuer, Engineering Fluid Dynamics, Cambridge University Press, London, 1997.
[15] D. N. Ku, Blood flow in arteries, Annu. Rev. Fluid Mech., 29 (1997), 399-434.



122 T. S. Lee, X. Liu, G. C. Li and H. T. Low / Commun. Comput. Phys., 2 (2007), pp. 99-122

[16] T. S. Lee, T. W. Ng and Z. D. Shi, Numerical study of effects of pulsatile amplitude on un-
steady laminar flows in rigid pipe with ring-type constrictions, Int. J. Numer. Meth. Fluids,
24 (1997), 275-290.

[17] W. Liao, T. S. Lee and H. T. Low, Numerical study of physiological turbulent flows through
stenosed arteries, Int. J. Mod. Phys. C, 14 (2003), p. 635-659.

[18] H. Liu and T. Yamaguchi, Waveform dependence of pulsatile flow in a stenosed channel, J.
Biomech. Eng. ASME, 123 (2001), 88-96.

[19] T. R. Mahapatra, G. C. Layek and M. K. Maiti, Unsteady laminar separated flow through
constricted channel, Int. J. Nonlinear Mech., 37 (2002), 171-186.

[20] F. Mallinger and D. Drikakis, Instability in three-dimensional unsteady stenotic flows, Int. J.
Heat Fluid Fl., 23 (2002), 657-663.

[21] O. A. Masry and K. Shobaky, Plusating slurry flow in pipeline, Exp. Fluids, 7 (1989), 481-486.
[22] R. Mittal, S. P. Simmons and H. S. Udaykumar, Application of large-eddy aimulation on the

study of pulsatile flow in a modeled arterial stenosis, J. Biomech. Eng. ASME, 123 (2001),
325-332.

[23] R. Mittal, S. P. Simmons and F. Najjar, Numerical study of pulsatile flow in a constricted
channel, J. Fluid Mech., 485 (2003), 337-378.

[24] N. P. Moshkin and P. Mounnamprang, Numerical simulation of vortical ideal fluid flow
through curved channel, Int. J. Numer. Meth. Fluids, 41 (2003), 1173-1189.

[25] P. Neofytou and D. Drikakis, Effects of blood models on flows through a stenosis, Int. J.
Numer. Meth. Fluids, 43 (2003), 597-635.

[26] B. Niceno and E. Nonile, Numerical analysis of fluid flow and heat transfer in periodic wavy
channels, Int. J. Heat Fluid Fl., 22 (2001), 156-167.

[27] W. W. Nichols and M. F. O’Rourke, McDonald’s Blood Flow in Arteries, Arnold, London,
1997.

[28] S. V. Pantankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
[29] M. Rosenfeld, Validation of numerical simulation of incompressible pulsatile flow in a con-

stricted channel, Comput. Fluids, 22 (1993), 139-156.
[30] J. M. Siegel, C. P. Markou, D. N. Ku and S. R. Hanson, A scaling law for wall shear rate

through an arterial stenosis, J. Biomech. Eng. ASME, 116 (1994), 446-451.
[31] H. L. Stone, Iterative solution of implicit approximations of multidimensional partial differ-

ential equations, SIAM J. Numer. Anal., 5 (1968), 530-558.
[32] H. Suzuki, Y. Inouo, T. Nishimura, K. Fukutani and K. Suzuki, Unsteady flow in a channel

obstructed by a square rod, Int. J. Heat Fluid Fl., 14 (1993), 2-9.
[33] J. C. Tannehill, D. A. Anderson and R. H. Pletcher, Computational Fluid Mechanics and Heat

Transfer, Taylor & Francis, New York, 1997.
[34] P. G. Tucker, Computation of Unsteady Internal Flows, Kluwer Academic Publishers, Lon-

don, 2001.
[35] O. R. Tutty, Pulsatile flow in a constricted channel, J. Biomech. Eng., 114, (1992), 50-54.
[36] P. Wesseling, Principles of Computational Fluid Dynamics, Springer-Verlag, Berlin, Heidel-

berg, 2001.
[37] D. F. Young and F. Y. Tsai, Flow characteristics in models of arterial stenoses-I. Steady flow,

J. Biomech., 6 (1973), 395-410.
[38] G. R. Zendehbudi and M. S. Moayeri, Comparison of physiological and simple pulsatile

flows through stenosed arteries, J. Biomech., 32 (1999), 959-965.


