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Abstract. We discuss the basic concept of compartmental modelling in pharmacoki-
netics and demonstrate that all the solutions admitted by multi-compartment mod-
els of classical pharmacokinetics are expressed as linear combinations of exponential
functions of time. This lends itself to data analysis that depends on fitting exponential
functions to finite size sets. A mathematical method developed a long time ago to deal
with this type of problem is called Prony’s method. We discuss the usefulness of this
method in pharmacokinetic modeling and apply it to a particular data set obtained
for the drug mibefradil. In spite of the method’s power in dealing with well-behaved
data sets, we indicate the existence of severe limitations since real concentration curves
coming from pharmacokinetic data are seldom purely exponential.

PACS: 82.39.-k, 05.45.Df, 61.43.Hv, 82.30.-b
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1 Introduction to classical pharmacokinetics

In an attempt to interpret and quantify pharmacokinetic data, a commonly used model
scheme, now termed “classical”, was established. The biological model system under
study is described by one, two, or more kinetically distinguishable interacting compart-
ments. Each compartment represents a space of the body that is assumed to be kinetically
distinct and homogeneously distributed with the drug [1–3]. The movement of drug be-
tween the compartments and the elimination of drug are assumed to follow the law of
mass action to the first-order with time independent rate constants, ki,j. Their mammil-
lary structure is intended to correspond to biological model systems composed of organ
arrangements that receive blood circulation in parallel, as in humans. Source terms, R,
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Figure 1: A schematic of a general 2-compartment model where the sources enter, and measurements are taken
from, the central compartment. The ith-compartment is considered open if it looses drug to the environment
(k0i>0) and closed if it does not (k0i=0). A multi-compartment model is considered mamillary if the secondary
compartments are connected to the central compartment in a parallel arrangement and concatenary if the
secondary compartments are connected in series.

are usually given as an initial condition for an effectively instantaneous bolus injection,
as a zero-order (constant rate) i.v. infusion, or a first-order absorption of the drug from
an oral dose (see Fig. 1). Ordinarily, measurements of drug plasma concentration are
taken from the “central compartment” which is assumed to contain most or all of the
blood [4–6].

The mass balance equations for a multi-compartmental system with m compartments
are first-order differential equations that take the vector-matrix form

d~X

dt
=−K~X+~R,

~C=V
−1~X,

(1.1)

where ~X is a column vector of the m independent state variables (mass or concentration)
of the system, K is a constant matrix composed of the first-order rate constants, ki,j, such

that, if the model is open (see Fig. 1) then K is non singular and invertible [2], ~R is the

column vector describing the sources, ~C is the vector of compartment concentrations, and
V is the distribution volume matrix. Solutions to this differential system are realized by
standard matrix methods to be sums of exponentials with the form for each compartment
following

Cj(t)=
m

∑
i=0

Aij e
aijt, (1.2)

where Aij and aij are both functions of the first-order rate constants, f (ki,j). The form
of the solution is the key reason that multi-compartmental modelling is so popular [7].
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The model parameters kij may be found directly from these solutions while the decaying
exponential functions serve as a power basis set for describing the normally declining
concentration time-course pharmacokinetic data.

Classical mammillary multi-compartmental models possess the properties of constant
clearance, linearity, time invariance, and a terminal mono-exponential phase. Linearity
and time invariance of this model are due to the linearity and time invariance of the
differential operator, d/dt, and the constant matrix K. The systemic clearance, CLS, is
the extraction rate (rate of elimination), dXe/dt, divided by the plasma concentration of
drug, such that for an i.v. bolus dose,

CLS =
dXe/dt

C(t)
=

∫ ∞

0 dXe∫ ∞

0 C(t)dt
=

Xe|∞0∫ ∞

0 C(t)dt
=

0−Xe(0)

AUC
=

−Dose

AUC
=const, (1.3)

where AUC stands for the area under the curve. Finally, the terminal mono-exponential
phase occurs, since beyond some time, tz, all but one exponential term, say i=m, will be
approximately zero, such that

Cj(t)≈Amje
amjt ∀t> tz. (1.4)

Consequently, the coefficients aij must be negative in order to lead to an asymptotic trend
of Cj(t) to zero as t→∞.

2 Prony’s method applied to pharmacokinetics

The equations generated by classical compartmental models, and sometimes used by
non-compartmental techniques, are sums of exponentials. Prony’s method is a mathe-
matical routine to fit said equations to data [8, 9] and was studied for its merits in phar-
macokinetic applications. Broadly described, the approach of Prony’s method is to con-
vert exponential expressions to nonlinear algebraic equations and then transform those
to a larger number of linear algebraic equations that can be easily solved by the method
of least squares. So, presuming that drug concentration time-course data is to be fit to an
approximation with 2M unknowns of the form

C(t)≈A1ea1t+A2ea2t+···+AMeaMt, (2.1)

let µk = eak , to put the exponential relation into the more convenient configuration of

C(t)≈A1µt
1+A2µt

2+···+AMµt
M. (2.2)

Now Prony’s method demands that ordinate values of C(t) are specified on a set of N≥M
equally spaced points, and that a linear change of variables has been introduced in ad-
vance in such a way that the abscissa datum points are at t→k=0,1,2,.. . ,N−1. Therefore,
the real data must be translated in time so that the first meaningful datum is at time t=0,
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and then scaled by a lowest common denominator and mapped onto the natural num-
bers. If the data set is incomplete at this point, then the only known option is to complete
the data set by interpolation between the actual datum points. By successive substitution
of each transformed datum (k,Ck), each relation of the following group

C0≈ A1µ0
1 + A2µ0

2 +···+AMµ0
M, µ0

k =1
C1≈ A1µ1

1 + A2µ1
2 +···+AMµ1

M

C2≈ A1µ2
1 + A2µ2

2 +···+AMµ2
M

...

CN−1≈A1µN−1
1 +A2µN−1

2 +···+AMµN−1
M

(2.3)

necessarily would be met, such that the exponential approximation may be based on the
result of satisfying these N algebraic expressions as nearly as possible.

To help solve this group of mostly nonlinear algebraic relations, introduce a temporary
variable µ and construct the equation

(µ−µ1)(µ−µ2)···(µ−µM)=0, (2.4)

where µ1,µ2,. . .,µM are the roots of the expanded algebraic equation

α0µM+α1µM−1+α2µM−2+···+αM−1µ1+αMµ0 =0, (2.5)

where αi = f (µ1,µ2,. . .,µM) and α0 = 1 without loss of generality. The strategy is to tem-
porarily isolate the nonlinearity of the system within the single polynomial and trans-
form it into a set of linear algebraic equations. In order to determine the coefficients
α1,α2,. . .,αM, the first equation in (2.3) is multiplied by αM, the second equation by αM−1,
. . ., the Mth equation by α1, and the (M+1)th equation by α0, and then the results are
added as follows:

C0≈ A1µ0
1 + A2µ0

2 +···+AMµ0
M×αM

C1≈ A1µ1
1 + A2µ1

2 +···+AMµ1
M×αM−1

C2≈ A1µ2
1 + A2µ2

2 +···+AMµ2
M×αM−2

...
...

CN−1≈A1µM
1 +A2µM

2 +···+AMµM
M×α0,

C0αM+C1αM−1+···+CMα0

≈ 0=(α0µM+α1µM−1+···+αMµ0)×(A1+···+AM).

(2.6)

Notice, since N≥2M, the above démarche does not include all of the N equations in (2.3).
But, with the same approach, by starting instead successively with the second, third,
.. ., (N−M)th equation, all of the equations of (2.3) are used, and N−M−1 additional
equations of similar form to (2.6) are obtained. Together, the above treatment implies the
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set of N−M linear algebraic equations

CMα0+CM−1α1+CM−2α2+···+ C0αM ≈0,
CM+1α0+ CMα1 +CM−1α2+···+ C1αM ≈0,

...
CN−1α0+CN−2α1+CN−3α2+···+CN−M−1αM≈0.

(2.7)

Since the ordinates Ck are determined from the real data, the above set generally can be
solved using the method of least-squares.

From this course of action, after the α’s are determined, the M µ’s, and subsequently
the unknown parameters a1,. . .,aM, are found as the roots of a single polynomial equa-
tion. After substitutions, equations (2.3) then become linear equations in the M A’s with
known coefficients µk. Finally, the unknown parameters A1,. . .,AM are determined again
by applying the least squares technique to this set of equations to complete the process
of obtaining values for all of the sought after pharmacokinetic parameters.

For data sets that are not in the form required, additional datum points can be syn-
thesized by linearly interpolating between real data points. Once obtained, the resulting
new set of data could be mapped onto the natural numbers by division by the lowest
common denominator.

3 Application of the method to mibefradil data sets

Mibefradil is a calcium antagonist designed for the treatment of hypertension and angina
since it has the useful effects of being able to relax blood vessels allowing more blood
and oxygen to reach the heart but at the same time not reducing the performance of
the heart [11–13]. Experiments on chronically instrumented dog model systems exhib-
ited nonlinear pharmacokinetics for mibefradil as dose was increased, and the liver was
identified as the major organ for elimination of the drug [14, 15]. Plasma concentration
time-course data sets were collected for different dogs at different oral and i.v. dosages.

Because the uncertainties of the concentration measurements were never explicitly
stated and perhaps never calculated in either [11] or [12], the values were directly calcu-
lated from the documented concentration calibration chromatograms of HPLC assays of
mibefradil in the dog plasma from [11]. The percentage errors of measured concentration
values of the known test standards were assumed to be Gaussian distributed, such that
the standard deviation of the distribution, to randomly account for the discrepancies 90%
of the time, was 9%. The uncertainty in the documented measurements of the indepen-
dent time variable likewise was not stated in [11] or [12], but is assumed to be small for
the purposes of this article.

Since the declared nonlinear behaviour of mibefrdail after higher oral doses is at least
partially attributed to a possible increase in the gut absorption [11], only the data for
the i.v. trials were considered. It was additionally concluded in [11] that the observed
nonlinear kinetics was mainly due to dose- and/or time-dependent reductions in hepatic
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Figure 2: A curve generated using a sum of six exponential terms fit by the standard Prony’s method compared
to a representative concentration verses time data set from the dog model system studied with a characteristic
sharp peak and elongated tail. The measured concentrations are of mibefradil in the plasma of the number two
dog taken at various times from the portal vein after an intravenous dose (IV-PV-D2). The uncertainty of the
concentration measurements was calculated to be 9%.

Figure 3: A curve generated using a sum of six exponential terms determined by the weighted Prony’s method
to the IV-PV-D2 concentration time-course data exhibiting an improved fit.

clearance. A major objective of this paper is to propose a novel physical mechanism that
helps explain the observed nonlinear behaviour of mibefradil in dogs.

The results of Prony’s method as applied to fitting the mibefradil data are illustrated
in Figs. 2 and 3. The first seven datum points of the concentration peak were matched re-
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markably well considering the rapidly changing, and broad range of, drug concentration
values over a narrow domain of time. The global fit of the data was generally not as suc-
cessful as indicated by a rather large figure-of-merit chi-square function value. A view of
the statistical residuals, Ri=|Ci−C(ti)|, of the data indicated that most of the discrepancy
as measured by the figure-of-merit function between the curve fit and the data was due
to the datum points in the long shallow sloped tail (see Fig. 4). This was not surprising
since the standard Prony’s method must perform with all the data, real and synthesized,
without discrimination, while the chi-square figure-of-merit function is only concerned
with the agreement between the fitted curve and the real experimental data. Whereas the
chi-square function weights all absolute deviations between the fitted curve and the real
datum points inversely proportional to the uncertainty (previously shown to be 9%) of
the measured concentration at that point (wi = 1/σ2

i ), thus demanding greater absolute
accuracy at the low concentrations of the tail, the standard Prony’s method has no abili-
ties to take into account weighted datum points and considers the absolute deviation of
all datum points equally. An amelioration of Prony’s method appeared necessary for the
statistical technique to be influenced by the real datum points to a larger extent than the
interpolated datum points and, since the range of the ordinate data spans 4.3 orders of
magnitude (relative to base e), to consider absolute residuals differently for each datum
point.

From the theory of approximation by the method of least-squares for discrete data, a
system of equations can be used to manufacture a set of M normal equations with which
the M unknowns α1,α2,. . .,αM, can be exactly solved for using matrix methods. Establish-
ing the rth normal equation entails multiplying each relation of (2.6) by the coefficient of
αr in that equation, and by the weight associated with that equation, and summing the
results, as follows

−CM ≈CM−1α1+CM−2α2+···+C0αM ×CM−r ×w?

−CM+1≈ CMα1 +CM−1α2+···+C1αM ×CM+1−r×w?
...

−CN−1≈CN−2α1+CN−3α2+···+CN−M−1αM×CN−1−r×w?

(3.1)

where r = 1,2,.. .,M, α0 = 1, and wi are the unknown weights. Besides possessing the
appropriate form to be susceptible to solution by the method of least-squares through
the use of normal equations, the above group of relations possesses the critical differ-
ence, compared to groups of relations formed by an approximation to data with a linear
model, of each of the relations not being dependent on a single discrete datum value.
An examination of the individual relations shows that the coefficients and constants are
dependent on a train of M+1 ordered ordinate datum values.

Since weights are normally applied to a single relation as functions based on the one
corresponding datum point determining the coefficients and constants of the single rela-
tion, the same weighting scheme for Prony’s method is unworkable. An altered weight-
ing scheme based on the entire ordered series of ordinate concentration values of an in-
dividual equation was devised ad hoc. Because any ordered sequence of ordinate data
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implies an ordered sequence of abscissate data, the weight assigned to each equation was
considered to be the average weight attributed to each datum point as a function of time.

Using aggregate weights as define above effectively smears in time the influence of
the weight function, w, around each abscissal datum value, tk, over a domain t∈ [tk−M−1,
tk+M+1]. This occurs because each equation that is used to calculate the aggregate weight
is a train in time, M+1 cars long, that requires 2M+1 units of time to pass. Therefore, this
weighting scheme performs most like a regular linear least-squares weighting procedure
when the number of parameters, M, is small and the short train is more like a point
along the abscissa than a long line. Illustrative results of the process can be discerned
from Fig. 5.

An advantage of the described weighting system for Prony’s method for fitting phar-
macokinetic data is that much of the influence of the interpolated datum points, intro-
duced because of an incomplete data set as a necessity of the procedure, can be re-
moved by setting the weight function to be zero for all interpolated data, such that
w(tk)=0∀(k,Ck)∈{interpolated data}. This results in the interpolated data mostly being
diminished to valueless placeholders that the method requires, but that affect the final fit
diminutively. The nonzero weights assigned to real datum points were the same as those
for the normal linear least-squares method: w(tk) = 1/σ2

k ∀ (k,Ck) ∈ {real data}, where
σk =9%Ck. Because Prony’s method uses a least-squares fit a second time, in a more con-
ventional format, the weights of the individual datum points are used again to calculate
for the A’s.

Finally, to calculate the rth normal equation contributing to a direct solution as de-
scribed above, as a first step in Prony’s method, for the unknowns α1,α2,. . .,αM, the ag-
gregate weights were implemented explicitly as follows

−CM ≈CM−1α1+CM−2α2+···+C0αM ×CM−r ×w(tM,. . .,t0)
−CM+1≈ CMα1 +CM−1α2+···+C1αM ×CM+1−r×w(tM+1,. . .,tN−M−1)

...
−CN−1≈CN−2α1+CN−3α2+···+CN−M−1αM×CN−1−r×w(tN−1,. . .,t0),

which yields

ζr,1α1+ζr,2α2+···+ζr,MαM =ηr (rth normal equation), (3.2)

where ζr,j are the constant coefficients of the unknown parameter variables αj described
by

ζr,j =
N−1

∑
i=M

w(ti,ti−1,. . .,ti−M)Ci−r Ci−j (3.3)

and ηr are constants described in terms of known values by

ηr =−
N−1

∑
i=M

w(ti,ti−1,. . .,ti−M)Ci−rCi. (3.4)
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Figure 4: A plot of the weighted residual squared for each of the real datum points separated in time to indicate
their relative contribution to the disparity with the curve produced by Prony’s method as measured by the
chi-squared figure-of-merit function for the trial IV-PV-D2.

Figure 5: A plot of the calculated aggregate weight values assigned to each of the N−M equations for the IV-
PV-D2 data. Large values cluster around real data and are assigned large weights whereas zero values indicate
equations constituted entirely of interpolated data given no weight.

The consequences of the utilization of the weights can be appreciated in Figs. 2 and 3.

The improvement of the curve fit to the pharmacokinetic data was most clear by the
observed reduction in the calculated chi-square merit function value from 45.2 to 26.9,
(see Figs. 2 and 3). However, we expect the regular Prony’s method was fortunate to fit
the real data so well in the first place. Although it did not weigh the calculated residual
values from the tail any more than the residual values from the peak, as it should have
because of the smaller variances there (w ∝ 1/σ2), the nature of the incomplete data set
conspired to provide hundreds of interpolated datum points along the shallow extended
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tail that compensated for this neglect. We predict that the improvements of the weighted
Prony’s method would be even greater if the original data contained gaps more evenly
spread or contained no interruptions at all.

Regardless of the improved accuracy of a weighted Prony’s method for fitting phar-
macokinetic concentration-time course data, apparently the method cannot be used to
assist in any kind of standard interpretation of results in connection with classical com-
partmental models. The actual expression is

C(t)≈37e−0.001t +250e−0.08t

+(9−132i)e(−0.2+0.2i)t+(9+132i)e(−0.2−0.2i)t

−(152−181i)e(−0.2+0.4i)t−(152+181i)e(−0.2−0.4i)t .

(3.5)

The complex exponential coefficients arise naturally when the µ’s are solved for as the
roots of a polynomial. Since the exponential coefficients are a function of the µ’s, µk =eak ,
the a’s and the A’s from subsequent calculations have imaginary components generally.
The result is a concentration curve that is oscillatory and that possesses physically im-
possible negative concentration values at very early times. The fit ostensibly utilises 20
adjustable parameters. However, since C(t) must be a real function, the complex terms
appear as complex conjugate pairs, reducing the number of adjustable parameters to 12.
The data sets used to generate the fit contained 13 points and Prony’s method is valid for
2M≤N which is the case here.

Yet if classical multi-compartmental models are generalized somewhat to similarly
include linear interactions, based on the amount of drug in a compartment with other
compartments, that do not imply a direct transfer of material, then control systems based
on positive or negative feedback signals can be represented by compartmental analysis
[16–19]. We speculate the means of this may be from the induction of metabolism in
one compartment due to the presence of drug in another compartment via one of the
signalling systems of the body. Prony’s method could then serve a useful purpose when
describing a system from this new perspective.

4 Discussion

In this section we give additional comments regarding the fitting. Initial estimates of the
macro-constants, Ai and ai, were conducted by an exponential curve stripping process
from the original program Model Maker to reduce the potential domains of the parame-
ters, corresponding computing times, and any resulting chances for bias (see Fig. 6). The
equations were then fitted by minimizing weighted sum of squares within Model Maker
for a one, two, and three term sum of exponentials to obtain the macro-parameters, Ai

and ai, i=1,2,or 3.
As the number of terms in the sum of exponential functions was increased the devia-

tion of the curve from the data decreased, as measured by the chi-squared merit function.
The data seemed to be closely fit with a three-term sum of exponentials requiring six free
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Figure 6: A semi-log plot of mibefradil concentration versus time shows an intuitive estimation of the domain
of the linear elimination before curve stripping for the IV-PV-D2 data.

parameters, yet the domain where the slope of the graph subjectively changed from the
early-time behaviour of the peak to the late-time behaviour of the tail, was estimated
to be [5,25) where few data points reside. Observations of the residuals for those data
points in this domain for all of the dog trials, intuitively revealed a non-normal distri-
bution indicating an unrealized pattern. The inability of the exponential functions to
describe this transition was unsatisfying. This in turn implied that an interpretation of
the pharmacokinetics of mibefradil based on a classical compartmental model would also
be disappointing.
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